使用无铅焊料并具有反应阻挡层用于倒装芯片的互连结构的制作方法

文档序号:6850143阅读:262来源:国知局
专利名称:使用无铅焊料并具有反应阻挡层用于倒装芯片的互连结构的制作方法
技术领域
本发明涉及微电子集成电路(IC)芯片对封装体的互连,特别涉及分区阵列倒装芯片互连技术,通常称为C4(受控倒塌芯片连接)。本发明进一步关于互连方案,由于使用无铅焊料合金且环境友好的制造工艺所以是环境可接受的。进一步,本发明涉及关于互连方案,其通过消除与微电子电路接触的焊料中α粒子源,从而消除芯片上(on-chip)电路中的软错误源。
背景技术
在半导体芯片封装中,互连分级(hierarchy)是必要的。在芯片和衬底(或芯片载体)之间的互连级(level)上,三种不同的互连技术被广泛采用带自动粘接(TAB),线接合(wire bonding),和分区倒装芯片互连。
焊料凸块分区阵列互连方案通常被称为倒装芯片焊料连接或C4,集成电路器件(IC)面朝下焊接至芯片载体上。与线接合不同,分区阵列焊料凸块构型允许芯片整个表面被C4凸块覆盖,以便最大可能地输入/输出(I/O)计数(counts)以满足对电气功能和IC技术可靠性不断增加的要求,比局限互连于芯片外围的线连接或TAB更可行。
更特别地,C4技术使用沉积于成图案的焊料可润湿层状结构上的焊料凸块,即公知的球限冶金术(ball-limiting metallurgy(BLM)),其也被称为凸块下冶金术(UBM)。UBM限定芯片顶部表面上的端点金属焊垫,其可为焊料润湿,且其也限制到焊料区域的横向流动。在焊料凸块在芯片上成图案的UBM焊垫上回流以形成球之后,芯片被结合至芯片载体上焊料可润湿层上匹配的覆盖区(footprint)。芯片面朝下安置在载体上导致C4技术被称为倒装芯片结合。比较其它互连方法,C4技术提供包括下面的独特的优势1)缩短互连距离,允许较快的信号响应和较低的电感;2)更一致的功率和热分布;3)降低同时开关噪声;和4)更大的设计灵活性和最大可能的总输入/输出计数。
已经开发了通过金属掩膜蒸发制造PbSn C4互连的技术,并且该技术从20世纪60年代中期就已经完美。C4凸块和BLM焊垫是通过成图案金属掩膜蒸发以形成高度可靠,高密度互连结构;已经从最早的低密度,低输入/输出计数IC器件到2000s的高密度,高输入/输出计数产品证明了可延伸性。然而,对较大晶片尺寸,更高密度阵列和无铅应用的可延伸性的极限可通过蒸发的方法实现。
可替换蒸发的方法是C4s的电化学制造,它是选择性的且有效的工艺。电化学C4制造已经有文献报导,例如Yung在美国专利5162257中,该专利被整个并入此处以供参考。电化学制造的C4s的可制造性和其它集成问题已经由Datta等在1995年电化学会杂志的142卷第3779页作了描述,该文以参考的方式并入此处。使用电镀和蚀刻工艺,并通过开发复杂的工具,可以获得成分和体积高度一致的电镀焊料,球限冶金术(BLM)的一致的尺寸,和受控的BLM边缘剖面。
电化学工艺比蒸发的C4技术更可延伸至更大晶片和更精细的C4尺寸。通过光刻胶掩膜的电沉积只在掩膜开口和UBM的顶部产生焊料。和蒸发相比,电沉积更可延伸至高锡含量的无铅合金和大至300mm的晶片。
一般的C4结构包括从球限冶金(此处表示为“BLM”)开始的所有要素。多层BLM结构一般由粘附层,反应阻挡层,和用于促进焊料凸块在器件与互连结构之间结合的可润湿层,芯片载体。选择BLM结构中不同金属层以和焊料合金彼此相容,并不仅满足C4结合中严格的电气,机械和可靠性要求,而且允许容易地制造。
包括多层BLM结构和C4凸块的要素的详细的说明总结如下。
1)要在晶片顶表面上沉积的第一层是BLM的粘附层(adhesionlayer),其提供对下面的衬底的粘附。该层也可以用作扩散/反应阻挡层以防止硅晶片和线后端(back-end-of-line(BEOL))布线层的任何相互作用,该布线层上具有互连结构。这是通常由溅射或蒸发在晶片钝化层表面上沉积的薄膜层,其通常由聚合物,氧化物或氮化物材料组成。候选的粘附层是Cr,TiW,Ta,W,Tj,TiN,TaN,Zr等,仅列举部分,厚度的量级为几百到几千埃。
2)BLM的下一层是反应阻挡层,其可通过熔化焊料焊接,但反应缓慢(有限的反应)以允许多个回流周期(或返工周期)而不会全部被消耗。该层厚度通常是几千埃的量级。
3)BLM的最后层是可润湿层,允许容易地润湿焊料和与焊料快速反应。典型的例子是铜,通常厚度范围为几百到几千埃,由溅射,化学镀或电镀沉积。在某些特许芯片结合应用中,Cu的厚度可在几微米的范围内。
4)对于在BLM结构顶部形成的C4凸块,已经开发多个制造工艺,包括蒸发,镀覆,模板印刷,浆料筛选和焊料喷射,及熔化的焊料注射,不一一列举。
5)在凸块形成之后,焊料凸块被回流。回流通常在直通炉中惰性或还原性气氛(H2/N2)中,或真空炉或加热炉中进行。在回流中,金属间化合物在焊料和反应阻挡层之间形成。这些化合物用来为可靠的焊料结合提供良好的机械整体性。
6)这些晶片通过切块,分类和挑选操作切割成芯片。挑选好的芯片(这些满足规格的芯片),对齐并通过使用合适的熔剂或无熔剂结合技术翻转结合至芯片载体上。

发明内容
因此为倒装芯片附着提供BLM结构是本发明的一个方面,该倒装芯片附着适合于使用且使用无铅焊料。
提供倒装芯片电气连接是发明的另一个目的,该电气连接减少了计算机芯片中软错误的发生。本发明集中于用于C4结合中无铅焊料的成本效率,环境上稳定,可靠的BLM。本发明也为集成的C4结构的制造提供了可能的工艺,即,用于制造最终BLM结构的BLM的选择和沉积及蚀刻工艺。
无铅C4通常有作为主要成分的Sn,通常重量百分比大于90%,和一种或多种合金元素。由于Sn的高反应性的本质,无铅焊料要求更坚固的反应阻挡层以在球限冶金术中保护端点金属和位于下面的布线层避免被富锡焊料破坏。最可能候选的无铅焊料是有一定重量百分比的银,铜,锌,铋或锑的锡合金。
焊接可通过电镀,蒸发,浆料筛选或注入成模的焊接工艺产生的,这在美国专利5244143;5775569;6003757;和6056191中揭示。
因此,本发明旨在适合于微电子器件芯片的倒装芯片固定至芯片载体的互连结构,三层球限冶金术包括用于在晶片或衬底上沉积的粘接层;从下面组中选择的材料的焊接反应阻挡层,该组由Ti,TiN,Ta,TaN,Zr,ZrN,V和Ni组成;和焊料可润湿层。粘接层可由从下面组中选择的材料形成的,该组由Cr,TiW,TiN,Ti,Ta,Zr,和ZrN组成。焊料可润湿层可由从下面的组中选择的材料形成,该组由Cu,Pd,Co,Ni,Au,Pt,和Sn组成。互连结构可进一步包括可选的第四层,该第四层由从下面的组中选择的材料形成,如果Au或Sn不用在第三层中,该组由Au和Sn组成。在一个实施例中,粘接层包括Cr和TiW中的一种,反应阻挡层由Ti组成,焊料可润湿层由Cu,Co,Ni,Pd和Pt组成。
本发明也旨在适合于微电子器件芯片倒装固定至封装体的互连结构,该互连结构包括两层球限成分,该两层球限成分包括粘接/反应阻挡层,其中粘接/反应阻挡层用作粘接和反应阻挡层,以及焊料可润湿层,被安置在微电子器件和焊料可润湿层之间的粘接/阻挡层,且其中焊料可润湿层有与含锡无铅焊料元件反应的金属,因此焊料可润湿层在焊接的过程中被消耗,其中粘接/反应阻挡层在焊接过程中被安置在和无铅焊料接触之后仍剩余;且一个或多个无铅焊料球被选择性地安置在焊料可润湿层上,无铅焊料球包括作为主要成分和一种和多种合金成分的锡。粘接/反应阻挡层可包括从下面组中选择的材料,该组由Ti,TiN,TiW,Ta,TaN,Zr,ZrN和V组成。焊料可润湿层可包括从下面组中选择的材料,该组由Cu,Ni,Co,Pd,Pt,Au和Sn组成。互连结构可进一步包括可选的第三层,如果第二层不是由Au或Sn形成,该可选的第三层可包括Au或Sn。优选地,无铅焊料球由这样的材料组成,该材料基本没有α粒子发射(emission)。合金成分是从下面的组中选择,该组由Sn,Bi,Cu,Ag,Zn和Sb组成。粘接/反应阻挡层可包括Ti而可焊接层可包括Cu,Co,Ni,Pd和Pt中的一种。
本发明也旨在适合于微电子器件芯片的倒装芯片附着至封装体的互连结构,包括三层球限成分,该三层球限组成包括粘接层,在粘接层上的反应阻挡层和焊料可润湿层,其中粘接/阻挡层在微电子器件和焊料可润湿层之间,且其中焊料可润湿层有这样的成分,该成分和含锡无铅焊料的成分充分反应,反应阻挡层和在在焊料结合过程中被安置其中并接触之后的焊料基本不反应;一个或多个无铅焊料球选择性地位于焊料可润湿层,具有作为主要成分的锡的无铅焊料球和从下面组中选择的一种或多种合金成分,该组由Cu,Zn,Ag,Bi和Sb组成,其中无铅焊料球基本无α粒子发射和从中产生的诱导的软逻辑错误。可焊接层是由从下面的组中选择的材料形成的,该组由Cu,Ni,Co,Pd,PdNi,PdCo,NiCo,Au,Pt和Sn组成。
本发明进一步旨在用于形成互连结构的方法,该互连结构适合于微电子器件芯片的倒装芯片固定至封装体,该方法包括形成球限成分于衬底上;在球限成分上形成光刻胶图案;通过使用光刻胶作为蚀刻掩膜蚀刻球限成分;和沉积焊料于球限成分上。焊料可基本无铅。球限成分可通过沉积粘接层于衬底上形成;沉积反应阻挡层于粘接层上;和沉积焊料可润湿层于阻挡层上。反应阻挡层可由从下面的组中选择的材料形成,该组由Ti,TiN,Ta,TaN,Zr,ZnN,V和Ni组成。粘接层可通过溅射,镀覆或蒸发沉积,并具有约100到4000埃的厚度。反应阻挡层也可通过溅射,镀覆或蒸发沉积,并可具有约100到20000埃的厚度。焊料可润湿层也可通过溅射,镀覆或蒸发沉积,且具有约100到约20000埃的厚度。
该方法可进一步包括沉积由Au或Sn组成的层于焊料可润湿层上。沉积在焊料可润湿层上的层可具有在约100到约20000埃之间的厚度,且可通过溅射,电镀或化学镀或蒸发中的一种沉积。球限成分可通过沉积粘接/反应阻挡层于衬底上而形成;和沉积焊料可润湿层于阻挡层上。该方法优选进一步包括在150-250℃退火球限成分30到60分钟。
本发明也旨在一种用于形成互连结构的方法,该互连结构适合于微电子器件芯片的倒装芯片固定至芯片载体,其包括沉积粘接层于晶片或用作芯片载体的衬底上;沉积焊料反应阻挡层于粘接层上;沉积焊料可润湿层于反应阻挡层上;沉积无铅焊料于焊料可润湿层上;和回流焊料以便焊料可润湿层扩散至无铅焊料中。该焊料可润湿层可含Cu,且Cu可扩散至焊料中。无铅焊料可基本是纯Sn,二元Sn-Cu无铅焊料因此在回流过程中形成。
无铅焊料可基本是在回流过程中形成的二元Sn-Ag,三元Sn-Ag-Cu无铅焊料。焊料中元素的数目可通过扩散至少增加一种元素。可形成低共熔焊料。优选地,该方法进一步包括在150-250℃退火30到60分钟。
本发明也旨在用于形成互连结构的方法,该互连结构适合于微电子器件芯片的倒装芯片固定至芯片载体,其包括沉积粘接层于晶片或用作芯片载体的衬底上;沉积焊料反应阻挡层,该焊料阻挡层是可在粘接层上润湿的焊料;沉积无铅焊料于焊料可润湿层上;并回流焊料以便焊料可润湿层扩散至无铅焊料中。焊料可润湿层可含有Cu,且Cu因此溶解在焊料中。无铅焊料可基本是在回流过程中形成的纯Sn,和二元Sn-Cu无铅焊料。无铅焊料可基本是在回流过程中形成的纯Sn-Ag,和三元Sn-Ag-Cu无铅焊料。焊料中元素的数目通过Cu的分散而至少增加一种元素。该方法可进一步包括在150-250℃退火30到60分钟。
本发明优选的实施例是三层BLM结构,包括衬底上Cr粘接层,用于镀覆的Cu种层,和Cu层上的Ni反应阻挡层。当Cu层在Ni层顶部形成时,也可以是四层结构。顶部Cu层可溶解到无铅焊料中以形成二元Sn-Cu合金或三元Sn-Ag-Cu合金,其中在引入Cu作为添加元素之前,焊接材料最初是分别作为纯Sn和Sn-Ag镀覆的。


这些和其它发明,特征,和本发明的优点将在结合附图研读时对本发明下面的详细说明进一步考虑之后而变得显然,其中图1是按照本发明C4结构的第一实施例的横截面视图。
图1A是图1中实施例在焊料回流之后的横截面视图。
图2A到2D示出按照本发明第一种用于形成C4结构的方法的步骤。
图3A到3D示出按照本发明用于形成C4结构的方法的第二种方法的步骤。
图4是按照本发明的C4结构的第二个实施例的横截面视图。
图4A是图4中实施例在焊料回流之后的横截面视图。
具体实施例方式
为本发明说明的变化可以为每个特殊应用所需的组合实现。因此对特殊应用可能具有特殊优点的特殊的限制,和/或此处所述的实施例改进不必用于所有应用。而且,应该认识到不是所有限制需要在包含本发明一个或多个思想的方法,系统和/或设备中执行。
参考图1,本发明提供适合于微电子集成电路(IC)芯片连接至封装体的互连结构10。具体地,本发明关于分区阵列或通常称为C4(受控倒塌芯片连接)的倒装芯片技术。BLM(也称为凸块下冶金术(UBM))11沉积于钝化的集成电路(IC)器件12上(如,硅晶片)。BLM 11第一层是粘接/扩散阻挡层14,其是从下面组中选择的金属或化合物,该组由Cr,W,Ti,Ta,Ti,V,Zr和它们的合金(或化合物)组成的,并具有约100至4000埃的厚度,并可通过蒸发,溅射,电镀或其它公知的技术沉积的。金属或化合物的焊料反应阻挡层16可随后沉积于粘接层上,例如,溅射,镀覆,或蒸发,厚度约为500至25000埃,该金属或化合物是从由Ti,Ta,Zr,W,V,Ni和它们的合金(或化合物)中选择的。顶层18是通过例如,溅射,镀覆,或蒸发形成的可焊接层,可焊接层由从下面组中选择的金属,该组是由Cu,Pd,Pt,Ni,Co,Au,Sn和它们的合金组成,可焊接层厚度为500到10000埃。在某些特殊应用中,当Cu用作可润湿层时,厚度范围在1-6微米的Cu层可用来形成合金无铅焊料。在某些状态下,如果没有在第三层使用Au和Sn,可选的第四层38,如金或锡薄层,可在层18上沉积以用作防止氧化或腐蚀的保护层。对于所描述的层状结构,如果所选择的元素已经用在先前层中,那么它将不用在随后的层中以避免重复。然后应用焊料40,如图1所示。
C4结构10可用包括锡作为主要成分和从Bi,Ag,Cu,Zn,Ni,Au,In和Sb中选择的一种或多种合金元素的无铅焊料球20完成。
例1-三层UBM按照本发明,优选的粘接层14是Cr,TiW或Ti,该粘接层优选要么是溅射的要么是蒸发的,优选厚度约为100到3000埃。粘接层12的厚度可广泛地改变,只要保持良好的粘接和良好的阻挡特性。如果覆盖的(blanket)TiW是沉积的并随后被蚀刻,作为形成成图案BLM结构11的最后一个步骤,膜厚度应被最小化以和适当的性能一致。可选的粘接层是Cr或Ti,厚度约为100到3000埃。
第二层16是焊料反应阻挡层,厚度通常几千埃到2微米,是通过溅射,蒸发或镀覆沉积的。因为高锡含量无铅焊料比富铅PbSn焊料合金的反应性高得多。示出被广泛用在高Pb焊料中的Cu形成厚锡铜金属间化合物于铜和高锡焊料之间的界面,并仅在几个回流循环中被完全消耗在薄膜C4结构中,导致结构整体性的失败。因此,必须使用非铜金属作为无铅C4结构中BLM焊料反应阻挡层。
按照本发明,已经发现适合的焊料反应阻挡层可由钛,氮化钛,钽,氮化钽,锆,氮化锆,钒或Ni,且Ti是优选的材料。如果Ti也良好地粘接至器件的钝化层,那么粘接和反应阻挡层可通过使用Ti而融合到一层中。
第三层18是焊料可润湿层。层18易于为熔化的焊料在回流结合中被润湿并可能被完全溶解到熔化的焊料中,因此通过和反应阻挡层形成金属间化合物而允许可靠的对BLM焊垫的冶金结合的形成。可润湿层是从下面的组中选择的金属,该组包括Cu,Pd,Pt,Co,Ni,Sn,Au和它们的合金。铜和钯与高锡合金非常快速地反应且不提供合适的反应阻挡层。然而,这些金属都与焊料很好地反应并润湿,因此用作用于润湿和结合C4焊料的顶层。
在附加的益处中,Cu溶解到焊料中可用作用于焊料的合金中。例如,当Cu溶解到纯Sn焊料中时,其形成二元Sn-Cu低共熔合金。当溶解到二元SnAg合金中时,其形成三元低共熔Sn-Ag-Cu焊料。Sn-Cu和Sn-Ag-Cu是用于微电子组件的主要无铅焊料候选者。显示出Cu的溶解和引入作为焊料中附加的合金元素特别简化镀覆工艺。代替镀覆非常复杂的三元Sn-Ag-Cu合金,可执行较简单的二元SnAg合金的镀覆,而第三种元素Cu来自BLM焊垫。相同的方法被应用到纯锡的镀覆,纯Sn很简单,随后纯Sn和来自BLM焊垫的Cu反应以形成简单的二元合金。这比二元Sn-Cu合金的镀覆简单的多。在多成分焊料合金的镀覆过程中保持镀液化学成分并精确控制焊料成分是非常复杂的,使用该方法可避免这样的复杂性。指出了在工艺回流部分Cu快速扩散到基本为液体的焊料中,因此确保焊料球的成分相对一致。
焊料可润湿层扩散至焊料球中的方式示于本发明第一个实施例的图1A中,和本发明第二个实施例的在图4A中。
可焊接层可用与其它BLM层的沉积相同的过程溅射,蒸发或镀覆。随后,覆盖状膜(blanket film)必须成图案以在图1中描绘的完成的结构中形成BLM 11。
例2-四层UBM在该例子中,第一层优选是Cr或TiW。第二层优选是Ti,Zr,V,或TiW。第二层优选是Ti,Zr,V,或它们的合金(或化合物)。第三层优选是Cu,Co,Ni,Pd,Pt或它们的合金。第四层可以是Au或Sn。
例3-简单的两层UBM在这个例子中,第一层优选是Ti,其既用作粘接层也用作反应阻挡层。第二层是从由Cu,Co,Ni,Pd,Pt,Sn或它们的合金组成的组中选择的。
在所有这三个结构中,Cu是在回流结合过程中用于反应,溶解和引入到焊料合金中,以通过仅要求分别镀覆纯Sn或Sn-Ag作为凸块材料而形成Sn-Cu或Sn-Ag-Cu焊料合金的优选层。
用在UBM上的焊料合金的熔化特性必须和C4应用的要求一致。这个约束将优选合金限制在成分接近锡银低共熔化合物(其含银的重量百分比为2.0-3.8%),锡-铜,锡-铋,锡-银-铜三元低共熔化合物和锡-锑合金的合金。锡-银低共熔化合物具有221℃的熔点并适合于该应用。高锡的锡-铜合金在227℃熔化,而锡-铋合金也在合适的范围内熔化。然而,Sn-Bi相图表明具有重量百分比约为20%的铋浓度的合金回流将分成富锡相和锡-铋低共熔化合物。由于这个原因,优选的实施例采用铋重量百分比含量低于约10%的锡-铋焊料。锑重量百分比含量低于约5%的锡-锑合金也具有适合于C4应用的熔化范围。
优选的焊料沉积方法是电沉积(要么直接电沉积合金,要么依次沉积合金成分),丝网印刷或通过注模焊料工艺或通过浆料筛选。
图2A到图2D示出制造图1中的结构的步骤。在图2A中,图1中的BLM 11制造于晶片或衬底12上,如上所述,该BLM 11包括层14,16和18。C4图案定义于具有合适光刻胶图案24的晶片上,光刻胶图案24的厚度至少和要沉积的焊料的厚度一样。
参考图2B,无铅焊料26通过镀覆,浆料筛选,丝网印刷或熔化焊料注入的方法沉积在光刻胶开口中,沉积方法不一一列举。随后焊料成分的电镀可替换直接镀覆合金,电镀之后是回流混和。
参考图2C,通过传统光刻胶剥离工艺除去光刻胶24。参考图2D,除了焊料26下面的区域,通过选择性电蚀刻或湿化学蚀刻,干蚀刻或这些技术的组合除去BLM 11的层14,16和18。TiW或Cr层14也可通过反应性离子蚀刻(RIE)或离子铣而除去。
然后在适当的气氛中回流焊料以形成焊料球,如图1所示。
然后可切割晶片12,分类,挑选,且通过合适的焊剂或无焊剂结合将好晶片结合到陶瓷或有机芯片载体中。
图3A到图3D示出可替换的工艺以形成图1中的机构。在图3A中,光刻胶图案24沉积于覆盖状BLM 11上。图3B示出BLM 11层的蚀刻,其没有被掩盖在光刻胶24的下面。用作蚀刻掩膜的光刻胶图案24用来形成BLM的图案。在图3C中,光刻胶图案24被从成图案的BLM层上剥离。在图3D中,焊料凸块是通过浆料筛选,熔化焊料注入,丝网印刷,化学镀或电镀等方法选择性沉积在BLM 11上。
然后在适当的气氛中回流焊料凸块26。
然后切割晶片,分类并挑选。通过合适的焊剂或无焊剂将好晶片结合到芯片载体上。
图4是按照本发明C4结构的第二个实施例的横截面视图。BLM30是适合于在衬底或晶片上沉积氧化物,氮化物或聚酰亚安钝化层32的两层结构。第一层34可以是Cr,Ti,Ta,Zr,V或它们的合金,该第一层34是在钝化的晶片或衬底上沉积的。下一层36用作可焊接层,是在层34上沉积的,并可从由Cu,Pd,Pt,Co,Ni,Sn组成的组中选择的。层36应是不同于已经选择用作第一层的其它材料。可选的第三层38,如金或锡的薄膜,可在层36上沉积以用作氧化保护层。然后应用焊料40,如图1所示。
如上所述,当没有应用可选层38,且图4中的顶层是,例如,Cu时,焊料可润湿层溶解到焊料球40中的方式示于图4A。
图4中所示的实施例可用图2A到图2D,或图3A到图3D中所示的方法中的一种形成。
例4-两层UBM第一层优选是Ti或其合金,Ti用作粘接和反应阻挡金属。该层上面的第二层是从由Cu,Co,Ni,Pd,Sn和Pt组成的组中选择的。
例5-三层BML结构三层BLM结构包括沉积于衬底上的Cr粘接层,Cr层上的Ni反应阻挡层,和沉积于Cr层上应用镀覆的Cu种层。Sn的无铅焊料,或SnAg合金沉积于Cu层上。当回流时,如上所述,Cu层溶解在最终的焊料球中以和焊料形成合金。焊料优选是无铅的,且二元Sn-Cu合金或三元Sn-Ag-Cu合金是当Cu溶解到焊料中时形成的,其中原始焊料分别是纯Sn和二元Sn-Ag。
例6四层结构包括用于在衬底上沉积的Cr粘接层,在Cr层上的Cu层,在Cu层上的Ni反应阻挡层,在Ni层顶部上的Cu层。一旦镀覆的纯锡或二元合金Sn-Ag焊料回流,Cu顶层溶解至无铅焊料中分别形成二元Sn-Cu合金或三元Sn-Ag-Cu合金。
本发明的BLM冶金术可通过在BLM成图案后在150-250℃退火30到60分钟进一步提高坚固性。
因此,虽然已经示出并说明和指出了如应用至其中优选实施例的本发明重要的新颖特征,应该理解,本领域的技术人员在不偏离本发明的精神的同时,可对所示的方法和产品的形式及细节做多种省略,替换和变化。此外,也应该理解,附图不必按比例。因此,只有权利要求及其等价物可限制本发明的范围。
应该指出,前面已经概述本发明的某些更重要的目的和实施例。本发明的思想可用于许多应用。因此,虽然说明是对特殊布置和方法做出的,本发明的意图和思想适合于并可应用于其它布置和应用。本领域的技术人员可以明了对所揭示的实施例的其它的修改可在不偏离本发明的精神和范畴下实现。所描述的实施例应该被解释为仅是本发明的某些更相关的特征和应用的说明。其它有益的结果可通过以不同的方式应用该揭示的发明或以本领域技术人员所公知的方式修改本发明而实现。因此,应该理解实施例是作为例子而非限制而提供的。本发明的范畴由权利要求限定。
权利要求
1.在一种适合于微电子器件芯片的倒装芯片固定至芯片载体的互连结构中,三层球限冶金术包括用于在晶片或衬底上沉积的粘接层;从由Ti,TiN,Ta,TaN,Zr,ZrN,V和Ni组成的组中选择的材料构成的焊料反应阻挡层;以及焊料可润湿层。
2.如权利要求1所述的互连结构,其中所述粘接层是由从由Cr,TiW,TiN,TaN,Ti,Ta,Zr,和ZrN组成的组中选择的材料形成的。
3.如权利要求1所述的互连结构,其中所述焊料可润湿层是由从由Cu,Pd,Co,Ni,Au,Pt,和Sn组成的组中选择的材料形成的。
4.如权利要求1所述的互连结构,进一步包括可选的第四层,如果Au或Sn没有用在第三层,该可选的第四层是由从由Au和Sn组成的组中选择的材料组成的。
5.如权利要求1所述的互连结构,其中所述粘接层由Cr和TiW中的一种组成,所述的反应阻挡层由Ti组成,所述焊料可润湿层是由Cu,Co,Ni,Pd和Pt中的一种构成的。
6.一种适合于微电子器件芯片的倒装芯片固定至封装体的互连结构,其包括两层球限成分,其包括粘接/反应阻挡层和焊料可润湿层,其中所述粘接/反应阻挡层用作粘接及反应阻挡层,所述粘接/阻挡层被安置在微电子器件和所述焊料可润湿层之间,且其中所述焊料可润湿层具有和含锡无铅焊料的成分反应特性的金属,使得所述焊料可润湿层在焊接过程中被消耗,其中所述粘接/反应阻挡层在焊接过程中被安置成和所述无铅焊料接触后仍剩余;以及一个或多个无铅焊料球选择性地位于所述焊料可润湿层上,所述无铅焊料球包括作为主要成分的锡和一种或多种组成合金的成分。
7.如权利要求6所述的互连结构,其中所述粘接/反应阻挡层由从由Ti,TiN,TiW,Ta,TaN,Zr,ZrN和V组成的组中选择的材料组成。
8.如权利要求6所述的互连结构,其中所述焊料润湿层由从由Cu,Ni,Co,Pd,Pt,Au和Sn组成的组中选择的材料组成。
9.如权利要求6所述的互连结构,进一步包括可选的第三层,如果所述第二层不是由Au或Sn形成,该可选的第三层由Au或Sn组成。
10.如权利要求6所述的互连结构,其中所述无铅焊料球由基本避免α粒子发射的材料组成。
11.如权利要求6所述的互连结构,其中所述组成合金的成分是从由Sn,Bi,Cu,Ag,Zn和Sb组成的组中选择的。
12.如权利要求6所述的互连结构,粘接/反应阻挡层包含Ti,且所述可焊接层包括Cu,Co,Ni,Pd和Pt中的一种。
13.一种用于微电子器件芯片的倒装芯片固定至封装体的互连结构,其包括三层球限成分,其包括粘接层、所述粘接层上的反应阻挡层、和焊料可润湿层,其中所述粘接/阻挡层在微电子器件和所述焊料可润湿层之间,且其中所述焊料可润湿层具有和含锡无铅焊料的成分充分反应的成分,且反应阻挡层在焊料结合过程中被安置成与其接触后和焊料基本无反应;以及一种或多种无铅焊料球选择性地位于所述焊料可润湿层上,所述无铅焊料球具有作为主要成分的锡,和从由Cu,Zn,Ag,Bi和Sb组成的组中选择的一种或多种组成合金的成分,由此所述无铅焊料球基本避免α粒子发射和由其产生的诱导软逻辑错误。
14.如权利要求13所述的互连结构,其中所述可焊接层由从由Cu,Ni,Co,Pd,PdNi,PdCo,NiCo,Au,Pt和Sn组成的组中选择的材料形成。
15.一种用于形成互连结构的方法,该互连结构适合于微电子器件芯片的倒装芯片固定至封装体,该方法包括在衬底上形成球限成分;在球限成分上形成光刻胶图案;通过使用光刻胶作为蚀刻掩膜蚀刻球限成分;从余下的球限成分除去所述光刻胶;以及在所述球限成分上沉积焊料。
16.如权利要求15所述的方法,其中所述焊料基本是无铅的。
17.如权利要求15所述的方法,其中所述球限成分由下面步骤形成在所述衬底上沉积粘接层;在所述粘接层上沉积反应阻挡层;以及在所述阻挡层上沉积焊料可润湿层。
18.如权利要求17所述的方法,其中所述反应阻挡层是由从由Ti,TiN,Ta,TaN,Zr,ZnN,V和Ni组成的组中选择的材料组成的。
19.如权利要求17所述的方法,其中所述粘接层是通过溅射,镀覆或蒸发沉积的。
20.如权利要求17所述的方法,其中所述粘接层是沉积的以便具有约100到约4000埃的厚度。
21.如权利要求17所述的方法,其中所述反应阻挡层是通过溅射,镀覆或蒸发沉积的。
22.如权利要求21所述的方法,其中所述反应阻挡层是沉积以便具有约100到约20000埃的厚度。
23.如权利要求21所述的方法,其中所述焊料可润湿层是通过溅射,镀覆或蒸发沉积的。
24.如权利要求17所述的方法,其中所述焊料可润湿层沉积成以便具有约100到约20000埃的厚度。
25.如权利要求17所述的方法,进一步包括在焊料可润湿层上沉积包括Au或Sn的层。
26.如权利要求25所述的方法,其中在所述焊料可润湿层上沉积的层具有基本上100到基本上20000埃之间的厚度。
27.如权利要求25所述的方法,其中在所述焊料可润湿层上沉积的层是通过溅射,电镀或化学镀或蒸发中的一种沉积的。
28.如权利要求15所述的方法,其中所述球限成分由下面步骤形成在所述衬底上沉积粘接/反应阻挡层;以及在所述阻挡层上沉积焊料可润湿层。
29.如权利要求15所述的方法,进一步包括在150-250℃退火球限成分30到60分钟。
30.一种形成互连结构的方法,该互连结构适合于微电子器件芯片的倒装芯片固定至芯片载体,该方法包括在晶片或衬底上沉积粘接层作为所述芯片载体;在所述粘接层上沉积焊料反应阻挡层;在所述反应阻挡层沉积焊料可润湿层;在所述焊料可润湿层上沉积无铅焊料;以及回流所述焊料以便所述焊料可润湿层扩散至所述无铅焊料中。
31.如权利要求30所述的方法,其中所述可润湿层含Cu,且所述Cu扩散至所述焊料中。
32.如权利要求31所述的方法,其中所述无铅焊料基本是纯锡,而二元Sn-Cu无铅焊料在回流的过程中形成。
33.如权利要求31所述的方法,其中所述无铅焊料基本是二元Sn-Ag,而三元Sn-Ag-Cu无铅焊料在回流过程中形成。
34.如权利要求33所述的方法,其中形成有低共熔焊料。
35.如权利要求30所述的方法,其中在所述焊料中多种元素通过扩散至少增加一种元素。
36.如权利要求30所述的方法,进一步包括在150-250℃退火30到60分钟。
37.一种形成互连结构的方法,该互连结构适合于微电子器件芯片的倒装芯片固定至芯片载体上,该方法包括在晶片或用作所述芯片载体的衬底上沉积粘接层;在所述粘接层上沉积焊料可润湿的焊料反应阻挡层;在所述焊料可润湿层上沉积无铅焊料;以及回流所述焊料以便所述焊料可润湿层扩散至所述无铅焊料中。
38.如权利要求37所述的方法,其中所述焊料可润湿层含Cu,且所述Cu溶解至所述焊料中。
39.如权利要求38所述的方法,其中所述无铅焊料基本是纯Sn,且二元Sn-Cu无铅焊料在回流过程中形成。
40.如权利要求38所述的方法,其中所述无铅焊料基本是纯Sn-Ag,且三元Sn-Ag-Cu无铅焊料在回流过程中形成。
41.如权利要求40所述的方法,其中形成有低共熔焊料。
42.如权利要求37所述的方法,其中所述焊料中的多种元素通过所述Cu溶解而至少增加一种元素。
43.如权利要求37所述的方法,进一步包括在150-150℃退火30到60分钟。
44.一种三层球限结构,其包括安置在衬底上的Cr粘接层;Cu种层和在Cu层上的Ni反应阻挡层。
45.如权利要求44所述的结构,进一步包括无铅焊料成分,其中在焊料回流的过程中Ni层和焊料反应。
46.一种四层结构,其包括沉积在衬底上的Cr粘接层,在Cr层上的Cu层,在所述Cu层上的Ni反应阻挡层,在Ni层顶上的Cu层,所述Cu层溶解在无铅焊料中以分别通过镀覆的纯锡或二元Sn-Ag焊料形成二元Sn-Cu合金或三元Sn-Ag-Cu合金。
全文摘要
一种适合于微电子器件芯片的倒装芯片固定至封装体的互连结构,其包括两层,三层或四层球限成分,其包括粘接/反应阻挡层,并具有和含锡无铅焊料的成分反应的焊料可润湿层,因此可焊接层可在焊接过程中被完全消耗,但阻挡层在焊接过程中被安置和无铅焊料接触之后仍剩余。一个或多个无铅焊料球选择性地位于焊料润湿层上,无铅焊料球包括作为主要成分的锡和一种或多种组成合金的成分。
文档编号H01L21/60GK1681099SQ20051006005
公开日2005年10月12日 申请日期2005年3月31日 优先权日2004年3月31日
发明者凯斯·E·福格尔, 巴拉兰·高萨尔, 康圣权, 斯蒂芬·基尔帕特里克, 鲍尔·A·劳罗, 亨利·A·奈伊三世, 席大远, 多纳·S·祖潘斯基-尼尔森 申请人:国际商业机器公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1