一种无弧开关电路的制作方法

文档序号:6968894阅读:285来源:国知局
专利名称:一种无弧开关电路的制作方法
技术领域
本实用新型涉及电路控制领域,涉及用于各类电路控制系统终端开关及其开关电 路消弧和扩大带载能力的一种无弧开关电路。
背景技术
各类电路控制系统终端开关及其开关电路在闭合或断开时往往会产生拉弧现象, 不但严重损坏开关触点,影响带载能力,还会给用电电路造成种种事故隐患;为了消除交流 接触器、继电器及其开关系统的拉弧问题,扩大带载能力,现有技术主要有以下几种方法(1)采用真空灭弧室或在封闭的开关内部充入灭弧气体(如SF6)并增加其内部 触点接触面积的方法来消除电弧和扩大其带载能力,但由于其内部空间有限及其它条件限 制,其带载能力的扩大受到限制。(2)采用固态继电器取代普通继电器来消除电弧,尤其是在自动化控制领域,这种 灭弧装置虽然也克服了拉弧现象,能够达到较好的灭弧效果,但其存在以下问题一、容易 发热、从而使设备的散热问题成为严重问题;二、载流量的提高往往引起成本的大幅上升, 从而使其性价比降低。(3)目前还有一种效果较好的消除电弧的方法就是主辅开关消弧电路,其做法是 在开关电器主开关的电极两端并联一个辅助电路,且使辅助电路与主开关在闭合或断开时 形成一定的逻辑关系来达到消弧效果,这种消弧方法虽能有效克服拉弧现象,达到较好的 灭弧效果,但上述方法目前仅用于消弧方面,如同时用于消弧和功率扩展两个方面,还存在 以下三个问题一、在现代电气电路设计中,特别是在设备自动化电路设计中,对结构的空 间结构要求很高,而在上述开关消弧电路中,其辅助电路通常采用机械结构方式来满足其 消弧逻辑关系需要,这样就会造成该类开关结构比较复杂,体积较大,成本较高,这样就会 与现实要求发生矛盾;二、当辅助电路采用机械结构方式时,其机械结构会随着时间推移而 产生一些磨损和变形,影响开关电路的消弧逻辑关系和消弧效果;三、如果其辅助电路单纯 采用电子电路结构方式(如程序控制方式)来满足其消弧逻辑关系需要的话,其成本较高, 且随着时间推移或使用环境变化,也会产生一些控制精度方面的变化,影响其消弧逻辑关 系,从而影响开关电路的消弧效果和功率扩展需求。
发明内容为克服上述不足,本实用新型的目的是向本领域提供简单实用的一种无弧开关电 路,使其解决现有同类产品结构设计中上述三个方面的技术问题。其目的是通过如下技术 方案实现的。图1、一种无弧无弧开关电路,其要点在于所述无弧开关电路由控制电路A、系统控制电路B、消弧逻辑电路C、稳压电源电压 端Vcc、稳压电源接地端GND、主开关体G、辅开关体K、第一电极端P1、第二电极端P2构成; 控制电路A为弱电电路,包括系统控制电路B和消弧逻辑电路C,其中系统控制电路B为控
4制电路A的主控制电路,根据实际需要设定,消弧逻辑电路C是带有反馈信号的逻辑控制电 路,为控制电路A的中间控制电路;主开关体G包括主体G、G第一输入端E、G第二输入端F 和G主开关GKl ;辅开关体K包括主体K、K第一输入端Ml、Κ第二输入端附和K主开关Kl ; 其中G第一输入端E、G第二输入端F、K第一输入端M1、K第二输入端m分别与控制电路A 对应电连接,G主开关GKl与K主开关Kl并联在第一电极端Pl和第二电极端P2之间;其 中K主开关Kl为无弧开关。图2,作为第一个优选方案一种无弧开关电路,其要点在于所述无弧开关电路由控制电路A、系统控制电路B、消弧逻辑电路C、稳压电源电压 端Vcc、稳压电源接地端GND、主开关体G、辅开关体K、第一电极端P1、第二电极端P2构成; 控制电路A为弱电电路,包括系统控制电路B和消弧逻辑电路C,其中系统控制电路B为控 制电路A的主控制电路,根据实际需要设定,消弧逻辑电路C由三极管T、二极管D1、K辅开 关K2、G辅开关GK2构成,其中K辅开关K2、三极管T串接在主开关体G和稳压电源接地端 GND之间,三极管T的b极与系统控制电路B的输出端对应电连接,二极管Dl与三极管T串 接在辅开关体K和稳压电源接地端GND之间,G辅开关GK2串接在辅开关体K和稳压电源 接地端GND之间,G辅开关GK2与二极管D1、三极管T并联;主开关体G包括主体G、G第一 输入端E、G第二输入端F、G主开关GKl、G辅开关GK2 ;辅开关体K包括主体K、K第一输入 端Ml、K第二输入端附、K主开关Kl、K辅开关K2 ;其中G第一输入端E、G第二输入端F、K 第一输入端Ml、K第二输入端m分别与控制电路A对应电连接,G主开关GKl与K主开关 Kl并联在第一电极端Pl和第二电极端P2之间;其中K主开关Kl为无弧开关。图3,作为第二个优选方案一种无弧开关电路,其要点在于所述无弧开关电路由控制电路A、系统控制电路B、消弧逻辑电路C、稳压电源电压 端Vcc、稳压电源接地端GND、继电器KMA、真空继电器KM(或其它消弧继电器)、第一电极端 Pl、第二电极端P2构成;控制电路A为弱电电路,包括系统控制电路B和消弧逻辑电路C, 其中系统控制电路B为控制电路A的主控制电路,根据实际需要设定,消弧逻辑电路C由三 极管T、二极管Dl、KM辅开关KM2、KMA辅开关KMA2构成,其中KM辅开关KM2、三极管T串 接在继电器KMA和稳压电源接地端GND之间,三极管TWb极与系统控制电路B的输出端 对应电连接,二极管D1、三极管T与KMA辅开关KMA2并联,串接在真空继电器KM和稳压电 源接地端GND之间;继电器KMA包括继电器KMA本体、G第一输入端E、G第二输入端F、KMA 主开关KMAl、KMA辅开关KMA2 ;真空继电器KM包括真空继电器KM本体、K第一输入端Ml、 K第二输入端N1、KM主开关KM1、KM辅开关KM2 ;其中G第一输入端E、G第二输入端F、K第 一输入端Ml、K第二输入端m分别与控制电路A对应电连接,KMA主开关KMAl与KM主开 关KMl并联在第一电极端Pl和第二电极端P2之间;其中KM主开关KMl为无弧开关。图4、图5,作为第三个优选方案一种无弧开关电路,其要点在于所述无弧开关电路由控制电路A、系统控制电路B、消弧逻辑电路C、稳压电源电压 端Vcc、稳压电源接地端GND、继电器KMA、辅开关体K、第一电极端P1、第二电极端P2构成; 控制电路A为弱电电路,包括系统控制电路B和消弧逻辑电路C,其中系统控制电路B为控 制电路A的主控制电路,根据实际需要设定,消弧逻辑电路C由三极管T、二极管D1、K辅开 关K2、KMA辅开关KMA2构成,其中K辅开关K2、三极管T串接在继电器KMA和稳压电源接地 端GND之间,三极管T的b极与系统控制电路B的输出端对应电连接,二极管Dl与三极管T与KMA辅开关KMA2并联,串接在辅开关体K和稳压电源接地端GND之间;继电器KMA包括继 电器KMA本体、G第一输入端E、G第二输入端F、KMA主开关KMA1、KMA辅开关KMA2 ;辅开关 体K包括光耦合器件IC1、光耦合器件IC2、双向可控硅SCRl (或其它三端可控器件)、双向 可控硅SCR2 (或其它三端可控器件)、电阻Rl、继电器KM、KM主开关KMl、KM辅开关KM2、K 第一输入端Ml、K第二输入端附、K第一输出端M2、K第二输出端N2、稳压电源电压端Vcc、 稳压电源接地端GND ;其中G第一输入端E、G第二输入端F、K第一输入端M1、K第二输入端 Nl分别与控制电路A对应电连接;电阻Rl、K第一输出端M2、K第二输出端N2串接在双向 可控硅SCRl (或其它三端可控器件)、双向可控硅SCR2 (或其它三端可控器件)的控制端之 间;KMA主开关KMAl与双向可控硅SCRl (或其它三端可控器件)、双向可控硅SCR2 (或其它 三端可控器件)并联在第一电极端Pl和第二电极端P2之间,其中双向可控硅SCRl (或其 它三端可控器件)、双向可控硅SCR2(或其它三端可控器件)接成反向并联。图6、图7,作为第四个优选方案一种无弧开关电路,其要点在于所述无弧开关电路由控制电路A、系统控制电路B、消弧逻辑电路C、稳压电源电压 端Vcc、稳压电源接地端GND、主开关体G、真空继电器KM(或其它消弧继电器)、第一电极端 P1、第二电极端P2构成、第三电极端P3构成;控制电路A为弱电电路,包括系统控制电路B 和消弧逻辑电路C,其中系统控制电路B为控制电路A的主控制电路,根据实际需要设定, 消弧逻辑电路C由三极管T、二极管D1、KM辅开关KM2、KMB辅开关KMB2构成,其中KM辅开 关KM2、三极管T串接在主开关体G和稳压电源接地端GND之间,三极管T的b极与系统控 制电路B的输出端对应电连接,二极管Dl、三极管T与KMB辅开关KMB2并联,串接在真空继 电器KM和稳压电源接地端GND之间;主开关体G包括G第一输入端E、G第二输入端F、继 电器KMA、KMA主开关KMA1、KMA辅开关KMA2、交流接触器KMB、KMB主开关KMB1、KMB辅开 关KMB2、第一电极端P1、第二电极端P2、第三电极端P3 ;其中KMA主开关KMA1、交流接触器 KMB串接在第一电极端Pl与第三电极端P3之间;真空继电器KM包括真空继电器KM本体、 K第一输入端Ml、K第二输入端Ni、KM主开关KMl、KM辅开关KM2 ;其中G第一输入端E、G 第二输入端F、K第一输入端Ml、K第二输入端m分别与控制电路A对应电连接,KMB主开 关KMBl与KM主开关KMl并联在第一电极端Pl和第二电极端P2之间。与现有技术相比,本实用新型的优点在于(1)与其它真空开关及无弧开关相比,不但能保证所述无弧开关电路的无弧断合, 而且能保证其功率的扩展不受其内部空间及其它条件限制。(2)与固态继电器相比,一,不存在容易发热问题,二,其载流量的提高与成本的降 低同步,使其性价比大幅提高。(3)与现有克服拉弧的技术方案相比,无论是用在产品的更新换代方面还是用在 产品的技术改造方面,都真正做到了体积小、效果好、成本低、制造简单。

图1是本实用新型的基本电路原理图。图2是本实用新型实施例1的电路原理图。图3是本实用新型实施例2的电路原理图。图4是本实用新型实施例3的电路原理图。[0025]图5是本实用新型实施例3的补充电路原理图。图6是本实用新型实施例4的电路原理图。图7是本实用新型实施例4的补充电路原理图。以上附图中元器件的代号及名称A、控制电路,B、系统控制电路,C、消弧逻辑电路,Vcc、稳压电源电压端,GND、稳压 电源接地端,G、主开关体,K、辅开关体,GKl、G主开关,GK2、G辅开关,Kl、K主开关,K2、K辅 开关,Ρ1、第一电极端,Ρ2、第二电极端,Ρ3、第三电极端,KM、继电器,ΚΜΑ、继电器,ΚΜ1、ΚΜ主 开关,ΚΜ2、KM辅开关,ΚΜΑ1、KMA主开关,ΚΜΑ2、KMA辅开关,D1、二极管,Τ、三极管,ΚΜΒ、交 流接触器,KMBl、KMB主开关,ΚΜΒ2、KMB辅开关,E、G第一输入端,F、G第二输入端,Ml、K第 一输入端,Ν1、Κ第二输入端,Μ2、Κ第一输出端,Ν2、Κ第二输出端,R1、电阻,SCR1、双向可控 硅,SCR2、双向可控硅,IC1、光耦合器件,IC2、光耦合器件。
具体实施方式
现结合附图和实施例对本实用新型作进一步详细描述该无弧开关电路的基本电路结构如图1所示,所述无弧开关电路由控制电路Α、系 统控制电路B、消弧逻辑电路C、稳压电源电压端Vcc、稳压电源接地端GND、主开关体G、辅开 关体K、第一电极端Pl、第二电极端P2构成;控制电路A为弱电电路,包括系统控制电路B 和消弧逻辑电路C,其中系统控制电路B为控制电路A的主控制电路,根据实际需要设定,消 弧逻辑电路C是带有反馈信号的逻辑控制电路,为控制电路A的中间控制电路;主开关体G 包括主体G、G第一输入端E、G第二输入端F和G主开关GKl ;辅开关体K包括主体K、K第 一输入端Ml、K第二输入端m和K主开关Kl ;其中G第一输入端E、G第二输入端F、K第一 输入端M1、K第二输入端附分别与控制电路A对应电连接,G主开关GKl与K主开关Kl并 联在第一电极端Pl和第二电极端P2之间;其中K主开关Kl为无弧开关。一种无弧开关电路的控制方法,其要点在于控制方法的步骤及其逻辑关系所述无弧开关电路作为电路开关使用时,其控制方法是第一步骤,所述无弧开关电路处于原始断开状态;第二步骤,令控制电路A发出闭合信号,系统控制电路B首先对消弧逻辑电路C发 出闭合信号,然后由消弧逻辑电路C首先控制辅开关体K导通,K主开关Kl在无弧状态下 闭合,此时第一电极端Pl与第二电极端P2之间的电压为零,瞬时后,控制主开关体G导通, G主开关GKl在无弧状态下闭合导通;第三步骤,令控制电路A发出断开信号,系统控制电路B首先对消弧逻辑电路C发 出断开信号,然后由消弧逻辑电路C首先控制主开关体G断开,G主开关GKl断开;在G主 开关GKl断开以前,通过消弧逻辑电路C的逻辑控制,令辅开关体K仍处于导通状态,K主 开关Kl也处于导通状态,此时第一电极端Pl与第二电极端P2之间的电压为零,故G主开 关GKl断开时无弧;然后控制辅开关体K断开,K主开关Kl在无弧状态下断开,开关系统恢 复到原始断开状态。—种无弧开关电路的功率扩展方法,其要点在于一、设定所述无弧开关电路的额定功率指标和使用寿命指标;二、根据设定的所述无弧开关电路的额定功率指标和使用寿命指标,选择K主开关Kl承受瞬时电流的额定指标及使用寿命指标;三、根据K主开关Kl承受瞬时电流的指标及使用寿命指标,在使用寿命指标相同 的前提下,设定G主开关GKl的额定功率指标至少比K主开关Kl扩展0. 5倍。设计原理所述无弧开关电路的消弧设计原理详见控制方法中所述。所述无弧开关电路的功率扩展设计原理如下决定所述一种开关电路扩大其带载能力指标的关键因素是K主开关Kl的瞬时带 载能力指标和使用寿命指标,通常情况下,K主开关Kl能够承受瞬时电流的指标至少是其 额定电流指标的3倍(如电机的启动电流),在合理选择K主开关Kl能够承受瞬时电流指 标和使用寿命指标以后,就可以基本确定G主开关GKl的带载能力指标和使用寿命指标,从 而确定所述一种开关电路扩大其带载能力指标的具体数据;对于K主开关Kl和G主开关 GKl的带载能力指标和使用寿命指标,在无弧状态下,可以尽量减少其整体体积,增加其触 点接触面积。结合上述结构及方法,对两种实施例进行描述实施例一图2中,所述无弧开关电路由控制电路A、系统控制电路B、消弧逻辑电 路C、稳压电源电压端Vcc、稳压电源接地端GND、主开关体G、辅开关体K、第一电极端P1、第 二电极端P2构成;控制电路A为弱电电路,包括系统控制电路B和消弧逻辑电路C,其中系 统控制电路B为控制电路A的主控制电路,根据实际需要设定,消弧逻辑电路C由三极管 T、二极管Dl、K辅开关K2、G辅开关GK2构成,其中K辅开关K2、三极管T串接在主开关体 G和稳压电源接地端GND之间,三极管TWb极与系统控制电路B的输出端对应电连接,二 极管Dl与三极管T串接在辅开关体K和稳压电源接地端GND之间,G辅开关GK2串接在辅 开关体K和稳压电源接地端GND之间,G辅开关GK2与二极管D1、三极管T并联;主开关体 G包括主体G、G第一输入端E、G第二输入端F、G主开关GK1、G辅开关GK2 ;辅开关体K包 括主体K、K第一输入端Ml、K第二输入端m、K主开关Kl、K辅开关K2 ;其中G第一输入端 E、G第二输入端F、K第一输入端Ml、K第二输入端m分别与控制电路A对应电连接,G主 开关GKl与K主开关Kl并联在第一电极端Pl和第二电极端P2之间;其中K主开关Kl为 无弧开关。一种无弧开关电路的控制方法,其要点在于控制方法的步骤及其逻辑关系所述无弧开关电路作为电路开关使用时,其控制方法是第一步骤,所述无弧开关电路处于原始断开状态;第二步骤,令控制电路B发出闭合信号,辅开关体K通过二极管D1、三极管T首先 接通,K主开关Kl在无弧状态下闭合,K辅开关K2同步闭合,此时第一电极端Pl与第二电 极端P2之间的电压为零,瞬时后,主开关体G通过K辅开关K2、三极管T接通,G主开关GKl 在无弧状态下闭合,G辅开关GK2同步闭合;第三步骤,令控制电路B发出断开信号,三极管T处于截止状态,主开关体G首先 失电,G主开关GKl和G辅开关GK2同步断开;在G主开关GKl和G辅开关GK2断开以前, 由于G辅开关GK2的连接作用而使辅开关体K仍处于接通状态,K主开关Kl仍处于接通状 态,此时第一电极端Pl与第二电极端P2之间的电压为零,故G主开关GKl断开时无弧;瞬 时后,辅开关体K失电断开,K主开关Kl和K辅开关K2在无弧状态下同步断开;开关系统恢复到原始断开状态;在该电路中,因G辅开关GK2和K辅开关K2皆接在弱电电路中,故其 断、合时不会拉弧。一种无弧开关电路的功率扩展方法,其要点在于一、设定所述无弧开关电路的额定功率指标和使用寿命指标;二、根据设定的所述无弧开关电路的额定功率指标和使用寿命指标,选择K主开 关Kl承受瞬时电流的额定指标及使用寿命指标;三、根据K主开关Kl承受瞬时电流的指标及使用寿命指标,在使用寿命指标相同 的前提下,设定G主开关GKl的额定功率指标至少比K主开关Kl扩展0. 5倍。设计原理所述无弧开关电路的消弧设计原理详见控制方法中所述。所述无弧开关电路的功率扩展设计原理与前述相同。实施例二 图3中,所述无弧开关电路由控制电路A、系统控制电路B、消弧逻辑电 路C、稳压电源电压端Vcc、稳压电源接地端GND、继电器KMA、真空继电器KM (或其它消弧继 电器)、第一电极端Pl、第二电极端P2构成;控制电路A为弱电电路,包括系统控制电路B 和消弧逻辑电路C,其中系统控制电路B为控制电路A的主控制电路,根据实际需要设定,消 弧逻辑电路C由三极管T、二极管D1、KM辅开关KM2、KMA辅开关KMA2构成,其中KM辅开关 KM2、三极管T串接在继电器KMA和稳压电源接地端GND之间,三极管T的b极与系统控制 电路B的输出端对应电连接,二极管D1、三极管T与KMA辅开关KMA2并联,串接在真空继电 器KM和稳压电源接地端GND之间;继电器KMA包括继电器KMA本体、G第一输入端E、G第 二输入端F、KMA主开关KMAl、KMA辅开关KMA2 ;真空继电器KM包括真空继电器KM本体、K 第一输入端Ml、K第二输入端Ni、KM主开关KMl、KM辅开关KM2 ;其中G第一输入端E、G第 二输入端F、K第一输入端Ml、K第二输入端m分别与控制电路A对应电连接,KMA主开关 KMAl与KM主开关KMl并联在第一电极端Pl和第二电极端P2之间;其中KM主开关KMl为 无弧开关。一种无弧开关电路的控制方法,其要点在于控制方法的步骤及其逻辑关系所述无弧开关电路作为电路开关使用时,其控制方法是第一步骤,所述无弧开关电路处于原始断开状态;第二步骤,令控制电路B发出闭合信号,真空继电器KM通过二极管Dl、三极管T首 先接通,KM主开关KMl在无弧状态下闭合,KM辅开关KM2同步闭合,此时第一电极端Pl与 第二电极端P2之间的电压为零,瞬时后,继电器KMA通过KM辅开关KM2、三极管T接通,KMA 主开关KMAl在无弧状态下闭合,KM辅开关KM2同步闭合;第三步骤,令控制电路B发出断开信号,三极管T处于截止状态,继电器KMA首先 失电,KMA主开关KMAl和KMA辅开关KMA2同步断开;在KMA主开关KMAl和KMA辅开关KMA2 断开以前,由于KMA辅开关KMA2的连接作用而使真空继电器KM仍处于接通状态,KM主开关 KMl仍处于接通状态,此时第一电极端Pl与第二电极端P2之间的电压为零,故KMA主开关 KMAl断开时无弧;瞬时后,真空继电器KM失电断开,KM主开关KMl和KM辅开关KM2在无弧 状态下同步断开;开关系统恢复到原始断开状态;在该电路中,因KMA辅开关KMA2和KM辅 开关KM2皆接在弱电电路中,故其断、合时不会拉弧。一种无弧开关电路的功率扩展方法,其要点在于[0066]—、设定所述无弧开关电路的额定功率指标和使用寿命指标;二、根据设定的所述无弧开关电路的额定功率指标和使用寿命指标,选择KM主开 关KMl承受瞬时电流的额定指标及使用寿命指标;三、根据KM主开关KMl承受瞬时电流的指标及使用寿命指标,在使用寿命指标相 同的前提下,设定KMA主开关KMAl的额定功率指标至少比K主开关Kl扩展0. 5倍。设计原理所述无弧开关电路的消弧设计原理详见控制方法中所述。所述无弧开关电路的功率扩展设计原理与前述相似。实施例三图4、图5中,所述无弧开关电路由控制电路A、系统控制电路B、消弧逻 辑电路C、稳压电源电压端Vcc、稳压电源接地端GND、继电器KMA、辅开关体K、第一电极端 P1、第二电极端P2构成;控制电路A为弱电电路,包括系统控制电路B和消弧逻辑电路C,其 中系统控制电路B为控制电路A的主控制电路,根据实际需要设定,消弧逻辑电路C由三极 管T、二极管D1、K辅开关K2、KMA辅开关KMA2构成,其中K辅开关K2、三极管T串接在继电 器KMA和稳压电源接地端GND之间,三极管TWb极与系统控制电路B的输出端对应电连 接,二极管Dl与三极管T与KMA辅开关KMA2并联,串接在辅开关体K和稳压电源接地端GND 之间;继电器KMA包括继电器KMA本体、G第一输入端E、G第二输入端F、KMA主开关KMA1、 KMA辅开关KMA2 ;辅开关体K包括光耦合器件ICl、光耦合器件IC2、双向可控硅SCRl (或其 它三端可控器件)、双向可控硅SCR2 (或其它三端可控器件)、电阻Rl、继电器KM、KM主开关 KMUKM辅开关KM2、K第一输入端M1、K第二输入端m、K第一输出端M2、K第二输出端N2、 稳压电源电压端Vcc、稳压电源接地端GND ;其中G第一输入端E、G第二输入端F、K第一输 入端Ml、K第二输入端附分别与控制电路A对应电连接;电阻Rl、K第一输出端M2、K第二 输出端N2串接在双向可控硅SCRl (或其它三端可控器件)、双向可控硅SCR2 (或其它三端 可控器件)的控制端之间;KMA主开关KMAl与双向可控硅SCRl (或其它三端可控器件)、双 向可控硅SCR2(或其它三端可控器件)并联在第一电极端Pl和第二电极端P2之间,其中 双向可控硅SCRl (或其它三端可控器件)、双向可控硅SCR2 (或其它三端可控器件)接成反 向并联。—种无弧开关电路的控制方法,其要点在于控制方法的步骤及其逻辑关系所述无弧开关电路作为电路开关使用时,其控制方法是第一步骤,所述无弧开关电路处于原始断开状态;第二步骤,令控制电路B发出闭合信号,光耦合器件IC1、光耦合器件IC2通过二 极管D1、三极管T首先同步接通,双向可控硅SCRl (或其它三端可控器件)、双向可控硅 SCR2 (或其它三端可控器件)通过K第一输出端M2、K第二输出端N2导通,继电器KM同步 导通,此时第一电极端Pl与第二电极端P2之间的电压小于0. 7V,瞬时后,继电器KMA通过 KM辅开关KM2、三极管T接通,KMA主开关KMAl在无弧状态下闭合,KM辅开关KM2同步闭 合;第三步骤,令控制电路B发出断开信号,三极管T处于截止状态,继电器KMA首先 失电,KMA主开关KMAl和KMA辅开关KMA2同步断开;在KMA主开关KMAl和KMA辅开关KMA2 断开以前,由于KMA辅开关KMA2的连接作用而使光耦合器件IC1、光耦合器件IC2仍处于 导通状态,双向可控硅SCRl (或其它三端可控器件)、双向可控硅SCR2 (或其它三端可控器件)仍处于导通状态,此时第一电极端Pl与第二电极端P2之间的电压小于0. 7V,故KMA主 开关KMAl断开时无弧;瞬时后,光耦合器件IC1、光耦合器件IC2失电,双向可控硅SCRl (或 其它三端可控器件)、双向可控硅SCR2 (或其它三端可控器件)断开,继电器KM同步失电断 开,KM主开关KMl和KM辅开关KM2在无弧状态下断开;开关系统恢复到原始断开状态;仍 处于导通状态,此时第一电极端Pl与第二电极端P2之间的电压为零,故KMA主开关KMAl 断开时无弧;瞬时后,继电器KM失电断开,KM主开关KMl和KM辅开关KM2在无弧状态下同 步断开;开关系统恢复到原始断开状态;在该电路中,因KM辅开关KM2和KMA辅开关KMA2 皆接在弱电电路中,故其断、合时不会拉弧。—种无弧开关电路的功率扩展方法,其要点在于一、设定所述无弧开关电路的额定功率指标和使用寿命指标;二、根据设定的所述无弧开关电路的额定功率指标和使用寿命指标,选择双向可 控硅SCRl (或其它三端可控器件)和双向可控硅SCR2 (或其它三端可控器件)并联时承受 瞬时电流的额定指标及使用寿命指标;三、根据双向可控硅SCRl (或其它三端可控器件)和双向可控硅SCR2(或其它三 端可控器件)并联时承受瞬时电流的额定指标,在使用寿命指标相同的前提下,设定KMA主 开关KMAl的额定功率指标至少比K主开关Kl扩展0. 5倍。设计原理所述无弧开关电路的消弧设计原理详见控制方法中所述。所述无弧开关电路的功率扩展设计原理与前述相似。实施例四图6、图7中,所述无弧开关电路由控制电路A、系统控制电路B、消弧逻 辑电路C、稳压电源电压端Vcc、稳压电源接地端GND、主开关体G、真空继电器KM(或其它消 弧继电器)、第一电极端P1、第二电极端P2构成、第三电极端P3构成;控制电路A为弱电电 路,包括系统控制电路B和消弧逻辑电路C,其中系统控制电路B为控制电路A的主控制电 路,根据实际需要设定,消弧逻辑电路C由三极管T、二极管Dl、KM辅开关KM2、KMB辅开关 KMB2构成,其中KM辅开关KM2、三极管T串接在主开关体G和稳压电源接地端GND之间,三 极管T的b极与系统控制电路B的输出端对应电连接,二极管D1、三极管T与KMB辅开关 KMB2并联,串接在真空继电器KM和稳压电源接地端GND之间;主开关体G包括G第一输入 端E、G第二输入端F、继电器KMA、KMA主开关KMA1、KMA辅开关KMA2、交流接触器KMB、KMB 主开关KMB1、KMB辅开关KMB2、第一电极端Pl、第二电极端P2、第三电极端P3 ;其中KMA主 开关KMAl、交流接触器KMB串接在第一电极端Pl与第三电极端P3之间;真空继电器KM包 括真空继电器KM本体、K第一输入端Ml、K第二输入端Ni、KM主开关KMl、KM辅开关KM2 ; 其中G第一输入端E、G第二输入端F、K第一输入端Ml、K第二输入端m分别与控制电路 A对应电连接,KMB主开关KMBl与KM主开关KMl并联在第一电极端Pl和第二电极端P2之 间。一种无弧开关电路的控制方法,其要点在于控制方法的步骤及其逻辑关系所述无弧开关电路作为电路开关使用时,其控制方法是第一步骤,所述无弧开关电路处于原始断开状态;第二步骤,令控制电路B发出闭合信号,真空继电器KM通过二极管Dl、三极管T首 先接通,KM主开关KMl在无弧状态下闭合,KM辅开关KM2同步闭合,此时第一电极端Pl与第二电极端P2之间的电压为零,瞬时后,继电器KMA通过KM辅开关KM2、三极管T接通,KMA 主开关KMAl闭合,交流接触器KMB接通,KMB主开关KMBl在无弧状态下闭合;第三步骤,令控制电路B发出断开信号,三极管T处于截止状态,继电器KMA首先 失电,KMA主开关KMAl断开,交流接触器KMB失电,,KMB主开关KMB1、KMB辅开关KMB2同 步断开;在KMB主开关KMBl和KMB辅开关KMB2断开以前,由于KMB辅开关KMB2的连接作 用而使真空继电器KM仍处于接通状态,KM主开关KMl仍处于接通状态,此时第一电极端Pl 与第二电极端P2之间的电压为零,故KMA主开关KMAl断开时无弧;瞬时后,真空继电器KM 失电断开,KM主开关KMl和KM辅开关KM2在无弧状态下同步断开;开关系统恢复到原始断 开状态;在该电路中,因KMB辅开关KMB2和KM辅开关KM2皆接在弱电电路中,故其断、合时 不会拉弧。一种无弧开关电路的功率扩展方法,其要点在于一、设定所述无弧开关电路的额定功率指标和使用寿命指标;二、根据设定的所述无弧开关电路的额定功率指标和使用寿命指标,选择KM主开 关KMl承受瞬时电流的额定指标及使用寿命指标;三、根据KM主开关KMl承受瞬时电流的额定指标,在使用寿命指标相同的前提下, 设定KMB主开关KMBl的额定功率指标至少比KM主开关KMl扩展0. 5倍。设计原理所述无弧开关电路的消弧设计原理详见控制方法中所述。所述无弧开关电路的功率扩展设计原理与前述相似。
权利要求一种无弧开关电路,其特征在于所述无弧开关电路由控制电路A、系统控制电路B、消弧逻辑电路C、稳压电源电压端Vcc、稳压电源接地端GND、主开关体G、辅开关体K、第一电极端P1、第二电极端P2构成;控制电路A为弱电电路,包括系统控制电路B和消弧逻辑电路C,其中系统控制电路B为控制电路A的主控制电路,消弧逻辑电路C是带有反馈信号的逻辑控制电路,为控制电路A的中间控制电路;主开关体G包括主体G、G第一输入端E、G第二输入端F和G主开关GK1;辅开关体K包括主体K、K第一输入端M1、K第二输入端N1和K主开关K1;其中G第一输入端E、G第二输入端F、K第一输入端M1、K第二输入端N1分别与控制电路A对应电连接,G主开关GK1与K主开关K1并联在第一电极端P1和第二电极端P2之间;其中K主开关K1为无弧开关。
2.一种无弧开关电路,其特征在于所述无弧开关电路由控制电路A、系统控制电路B、消弧逻辑电路C、稳压电源电压端 Vcc、稳压电源接地端GND、主开关体G、辅开关体K、第一电极端P1、第二电极端P2构成;控 制电路A为弱电电路,包括系统控制电路B和消弧逻辑电路C,其中系统控制电路B为控制 电路A的主控制电路,根据实际需要设定,消弧逻辑电路C由三极管T、二极管D1、K辅开关 K2、G辅开关GK2构成,其中K辅开关K2、三极管T串接在主开关体G和稳压电源接地端GND 之间,三极管T的b极与系统控制电路B的输出端对应电连接,二极管Dl与三极管T串接 在辅开关体K和稳压电源接地端GND之间,G辅开关GK2串接在辅开关体K和稳压电源接 地端GND之间,G辅开关GK2与二极管Dl、三极管T并联;主开关体G包括主体G、G第一输 入端E、G第二输入端F、G主开关GKl、G辅开关GK2 ;辅开关体K包括主体K、K第一输入端 Ml、K第二输入端附、K主开关Kl、K辅开关K2 ;其中G第一输入端E、G第二输入端F、K第 一输入端Ml、K第二输入端附分别与控制电路A对应电连接,G主开关GKl与K主开关Kl 并联在第一电极端Pl和第二电极端P2之间;其中K主开关Kl为无弧开关。
3.根据权利要求2所述无弧开关电路,其特征在于消弧逻辑电路C由三极管T、二极 管Dl、K辅开关K2、G辅开关GK2构成,其中K辅开关K2、三极管T串接在主开关体G和稳 压电源接地端GND之间,三极管T的b极与系统控制电路B的输出端对应电连接,二极管Dl 与三极管T串接在辅开关体K和稳压电源接地端GND之间,G辅开关GK2串接在辅开关体K 和稳压电源接地端GND之间,G辅开关GK2与二极管D1、三极管T并联。
4.一种无弧开关电路,其特征在于所述无弧开关电路由控制电路A、系统控制电路B、消弧逻辑电路C、稳压电源电压端 Vcc、稳压电源接地端GND、继电器KMA、真空继电器KM(或其它消弧继电器)、第一电极端 Pl、第二电极端P2构成;控制电路A为弱电电路,包括系统控制电路B和消弧逻辑电路C, 其中系统控制电路B为控制电路A的主控制电路,根据实际需要设定,消弧逻辑电路C由三 极管T、二极管Dl、KM辅开关KM2、KMA辅开关KMA2构成,其中KM辅开关KM2、三极管T串 接在继电器KMA和稳压电源接地端GND之间,三极管TWb极与系统控制电路B的输出端 对应电连接,二极管D1、三极管T与KMA辅开关KMA2并联,串接在真空继电器KM和稳压电 源接地端GND之间;继电器KMA包括继电器KMA本体、G第一输入端E、G第二输入端F、KMA 主开关KMAl、KMA辅开关KMA2 ;真空继电器KM包括真空继电器KM本体、K第一输入端Ml、 K第二输入端N1、KM主开关KMl、KM辅开关KM2 ;其中G第一输入端E、G第二输入端F、K第一输入端Ml、K第二输入端m分别与控制电路A对应电连接,KMA主开关KMAl与KM主开 关KMl并联在第一电极端Pl和第二电极端P2之间;其中KM主开关KMl为无弧开关。
5.一种无弧开关电路,其特征在于所述无弧开关电路由控制电路A、系统控制电路B、消弧逻辑电路C、稳压电源电压端 Vcc、稳压电源接地端GND、继电器KMA、辅开关体K、第一电极端P1、第二电极端P2构成;控 制电路A为弱电电路,包括系统控制电路B和消弧逻辑电路C,其中系统控制电路B为控制 电路A的主控制电路,根据实际需要设定,消弧逻辑电路C由三极管T、二极管D1、K辅开关 K2、KMA辅开关KMA2构成,其中K辅开关K2、三极管T串接在继电器KMA和稳压电源接地端 GND之间,三极管T的b极与系统控制电路B的输出端对应电连接,二极管Dl与三极管T与 KMA辅开关KMA2并联,串接在辅开关体K和稳压电源接地端GND之间;继电器KMA包括继电 器KMA本体、G第一输入端E、G第二输入端F、KMA主开关KMA1、KMA辅开关KMA2 ;辅开关体 K包括光耦合器件ICl、光耦合器件IC2、双向可控硅SCRl、双向可控硅SCR2、电阻R1、继电 器KM、KM主开关KMl、KM辅开关KM2、K第一输入端Ml、K第二输入端附、K第一输出端M2、 K第二输出端N2、稳压电源电压端Vcc、稳压电源接地端GND ;其中G第一输入端E、G第二输 入端F、K第一输入端Ml、K第二输入端m分别与控制电路A对应电连接;电阻Rl、K第一 输出端M2、K第二输出端N2串接在双向可控硅SCR1、双向可控硅SCR2的控制端之间;KMA 主开关KMAl与双向可控硅SCR1、双向可控硅SCR2并联在第一电极端Pl和第二电极端P2 之间,其中双向可控硅SCR1、双向可控硅SCR2接成反向并联。
6.一种无弧开关电路,其特征在于所述无弧开关电路由控制电路A、系统控制电路B、消弧逻辑电路C、稳压电源电压端 Vcc、稳压电源接地端GND、主开关体G、真空继电器KM、第一电极端P1、第二电极端P2构成、 第三电极端P3构成;控制电路A为弱电电路,包括系统控制电路B和消弧逻辑电路C,其中 系统控制电路B为控制电路A的主控制电路,根据实际需要设定,消弧逻辑电路C由三极管 T、二极管D1、KM辅开关KM2、KMB辅开关KMB2构成,其中KM辅开关KM2、三极管T串接在主 开关体G和稳压电源接地端GND之间,三极管TWb极与系统控制电路B的输出端对应电连 接,二极管D1、三极管T与KMB辅开关KMB2并联,串接在真空继电器KM和稳压电源接地端 GND之间;主开关体G包括G第一输入端E、G第二输入端F、继电器KMA、KMA主开关KMA1、 KMA辅开关KMA2、交流接触器KMB、KMB主开关KMBl、KMB辅开关KMB2、第一电极端P1、第二 电极端P2、第三电极端P3 ;其中KMA主开关KMA1、交流接触器KMB串接在第一电极端Pl与 第三电极端P3之间;真空继电器KM包括真空继电器KM本体、K第一输入端M1、K第二输入 端Ni、KM主开关KMl、KM辅开关KM2 ;其中G第一输入端E、G第二输入端F、K第一输入端 MUK第二输入端附分别与控制电路A对应电连接,KMB主开关KMBl与KM主开关KMl并联 在第一电极端Pl和第二电极端P2之间。
专利摘要本实用新型涉及电路控制领域的终端一种无弧开关电路,该无弧开关电路的结构设计要点在于控制电路A由系统控制电路B和消弧逻辑电路C构成;其中消弧逻辑电路C是带有反馈信号的逻辑控制电路;其无弧开关主电路由G主开关GK1与K主开关K1并联在第一电极端P1和第二电极端P2之间构成;控制电路A通过消弧逻辑电路C控制开关主电路消弧并对主开关进行功率扩展。其消弧效果好、功率大、体积小、成本低、简单实用、用途广泛。
文档编号H01H9/30GK201725704SQ20102021292
公开日2011年1月26日 申请日期2010年6月2日 优先权日2010年6月2日
发明者顾刚, 顾诚 申请人:顾刚;顾诚
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1