一种用于晶体硅太阳电池的高电导率无铅银浆及制备方法

文档序号:7162764阅读:248来源:国知局
专利名称:一种用于晶体硅太阳电池的高电导率无铅银浆及制备方法
技术领域
本发明涉及晶体硅太阳能电池正面电极银浆技术领域,具体说是一种用于晶体硅太阳能电池的纳米改性高电导率无铅银浆的制备方法。
背景技术
太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置,太阳能电池银电极是一种将此过程中所产生的电流输出转化成电能的组件。太阳能电池性能的优劣除了取决于所使用的半导体材料中载流子的浓度、分布和迁移率外,还取决于正反电极性能的好坏。而正电极的质量直接影响到太阳能电池的串联电阻、分流电阻、填充因子和电池的光电转换效率。所以正电极所使用的银浆的制备、印刷以及烧结质量将影响太阳能电池的性能。现阶段,太阳能电池产业界所使用的银浆普遍都是含铅的,其中铅是以氧化铅的形式存在于浆料里的玻璃粘合剂里面,这种玻璃粘合剂是一种铅-硼-硅混合玻璃粉末。由于氧化铅和氧化硼均具有较低的熔点,氧化铅和氧化硼的存在降低了该玻璃体系的软化温度,从而使得导电银浆的烧结温度降低,同时银电极的电性能更稳定。太阳能电池工业界, 银浆的烧结温度通常为800°C左右。由于铅对人体健康的损害和环境的污染非常大,含铅导电银浆将逐步被限制使用。我国的太阳能电池产品主要依赖于出口,出口地集中在欧美等发达地区,这些地区要求太阳能电池产品是环境友好型的,因此,必须发展无铅导电银浆以满足大规模太阳能电池
生产需求。在不加氧化铅的情况下,银浆的烧结温度较高,容易破坏硅片的结构,从而降低晶体硅太阳能电池的光电转换性能。因此,需要寻求替代氧化铅的添加物。纳米银粉由于其表面积大、活性高,其熔化温度显著低于大颗粒银粉的熔化温度, 比如直径为70纳米(70nm)的银粉的熔化温度为500°C,50nm的银粉的熔化温度为300°C, 而且随着纳米银粉粒径的继续减小,其熔化温度进一步降低。块状金属银的熔化温度即为金属银的熔点,金属银的熔点为962°C。纳米银粉是指颗粒直径小于IOOnm的银粉,1 μ m等于lOOOnm,因此微米级银粉不具有纳米级银粉所具有的低熔化温度的特点,微米级银粉的熔化温度一般为金属银熔点即962°C。低的熔化温度表明在用于电极的烧结过程中其烧结温度更低。考虑到纳米银粉熔化温度具有显著低于块体银熔化温度的独特优势,本专利采用纳米银粉代替氧化铅来制备银浆,用于晶体硅太阳能的正面电极。纳米银的掺入能够降低银浆的烧结温度,同时由于具有高导电率的纳米银替代了导电性差的氧化铅,能有效地降低晶体硅太阳能电池的串联电阻,从而显著提高晶体硅太阳能电池的光电转换效率。专利20081002M31. 8和专利20081002M30. 3所述的银浆,虽然使用了无铅玻璃粘合剂,但是导电相使用的是微米级的银粉,无法达到纳米银掺入能够降低银浆烧结温度、 降低串联电阻、以及提高太阳能电池光电转换效率的三重效果。因此纳米改性无铅银浆是含铅银浆的切实可行的替代品。

发明内容
本发明的目的是针对现有技术的不足,提供一种用于晶体硅太阳电池的高电导率无铅银浆及制备方法,其主要特点是通过微米级银粉与适当比例的纳米级银粉的优化配比达到高性能银浆的目标,该银浆烧结形成的银电极的电导率具有比常规银浆高得多的特点,有效地提高晶体硅太阳能电池的光电转换效率。本发明所提出的制备高电导率无铅银浆所采用的微米级-纳米级银粉优化配比的技术原理借助图1、2、3来叙述。首先,如图1所示,微米级银粉由两种颗粒大小的组成,进行优化级配(图1),达到小颗粒银粉能够填充大颗粒银粉间空隙的目的,由于银浆经烧结所形成电极的导电是通过银颗粒之间的电荷传递实现的,颗粒与颗粒之间接触面积越大, 则导电率越高。在晶体硅太阳能电池的生产中,电极烧结是一个非常快速的过程,电极烧结温度一般为800°C左右,电极烧结的持续时间极短,仅有5秒钟左右,微米级银粉颗粒间来不及发生明显的原子扩散,因此微米级银粉颗粒间的接触面积很难增大,从而其导电率不能有效提高。晶体硅太阳能电池的电极烧结与一般陶瓷材料的烧结过程差异极大,陶瓷材料一般在1000°C以上的高温下持续烧结数小时至几十小时(如氧化铝陶瓷在1600°C烧结10小时以上),由于原子在高温下的长时间扩散,颗粒与颗粒之间最终形成连续、致密的界面。将若干含量纳米银粉掺入微米级银粉中,如图2所示,由于纳米银粉的粒径远小于微米级的,因此它们将填充在不同粒径微米银颗粒接触的空隙中。纳米银粉的熔化温度 (2000C )远低于微米级金属银,在晶体硅太阳能电池电极快速烧结过程中,温度升高时,填充在微米银颗粒空隙中的纳米颗粒将首先熔化、在微米级银颗粒的夹角处形成一体,如图3 所示,将微米级银颗粒焊接起来、并形成牢固的金属键,微米级银颗粒之间的接触面积明显增大,导电率也随之升显著高。本发明所述无铅银浆的组分及各组分的重量百分比为导电银粉75% -80%,玻璃粘合剂3% _5%,无机添加剂3% _5%,有机载体15% -20%,所述导电银粉为微米银粉和纳米银粉的混合粉末,纳米银粉粒径为20-70nm,纳米银粉5% -10%,粒径2 4. 5 μ m的微米银粉8% -9%,粒径5 10 μ m的微米银粉56% -62%,所述玻璃粘合剂为铋-硅-硼混合玻璃体系,该体系的组分及重量百分比为=Bi2O3 60 % -80%, B2O3 5% -20%, SiO2 5% -20%,所述无机添加剂的组分及重量百分比为=Al2O3 10% -20%, MnO2 10% -20%, MgO 10% -20%,CaO 10% -20%,Ta2O5IO% -20%,所述有机载体由有机溶剂和有机添加剂以重量比5 1组成,有机溶剂为α-松油醇和2-乙氧基乙酸乙酯的混合溶剂,有机添加剂为乙基纤维素。本发明所述无铅银浆的制备方法(1)玻璃粘合剂的制备将玻璃粘合剂的组分按如下重量百分比称取=Bi2O3 60% -80%, B2O3 5% -20%, Si025% -20%,将以上组分混合均勻后置于高温马弗炉内,温度控制在1200°C,保温60分钟,随后将熔融的玻璃体系淬火并且球磨;(2)无机添加剂的制备
将无机添加剂的组分按如下重量百分比称取=Al2O3 10 % "20 %, MnO2 10% -20%, MgOlO% -20%, CaO 10% -20%, Ta2O5 10% -20%,将以上组分在玻璃碾钵中混合均勻;(3)有机载体的制备将有机溶剂和有机添加剂以重量比5 1混合均勻,其中有机溶剂中α-松油醇和2-乙氧基乙酸乙酯以2 1的重量比混合均勻;(4)所述无铅银浆的制备将粒径2 4. 5 μ m的微米银粉8% _9%,粒径5 10 μ m的微米银粉56%~62%, 纳米银粉5% _10%,玻璃粘合剂3% _5%,无机添加剂3% -5%和有机载体15% -20%称重后搅拌均勻,放入球磨机中混合均勻,得到低电阻无铅纳米-微米复合银浆。本发明的有益效果是按本发明所制备的无铅银浆,由于不含铅,完全符合目前的环保要求,且掺入了若干含量的低熔点纳米银,弥补了因氧化铅的限制使用而造成的烧结温度过高的缺陷;此外,通过微米银粉优化级配,且用纳米银替代了导电性差的氧化铅,烧结后能形成极高电导率、低欧姆接触及附着力极强的银电极,能够有效地降低晶体硅太阳能电池的串联电阻,从而提高晶体硅太阳能电池的光电转换效率。


图1为两种粒径微米银粉的优化级配示意图;1为粒径5 10 μ m的微米银粉,2为粒径2 4. 5 μ m的微米银粉;图2为掺入纳米银粉后两种粒径微米银粉的优化级配示意图;1为粒径5 10 μ m的微米银粉,2为粒径2 4. 5 μ m的微米银粉,3为粒径20 70nm的纳米银粉;图3为烧结完成后银电极的形貌示意图。1为粒径5 10 μ m的微米银粉,2为粒径2 4. 5 μ m的微米银粉,3为粒径20 70nm纳米银粉熔融后的形貌。
具体实施例方式下面结合具体的实例进一步阐述本发明。附表1 各实例的组分含量
权利要求
1.一种用于晶体硅太阳电池的高电导率无铅银浆,其特征是,所述无铅银浆的组分及各组分的重量百分比为导电银粉75%-80%,玻璃粘合剂3%-5%,无机添加剂3%-5%,有机载体15%-20%,所述导电银粉为微米银粉和纳米银粉的混合粉末,粒径2、. 5 μ m的微米银粉 8%-9%,粒径5 10 μ m的微米银粉56%-62%,纳米银粉粒径为20_70nm,纳米银粉5%_10%,所述玻璃粘合剂为铋-硅-硼混合玻璃体系,该体系的组分及重量百分比为=Bi2O3 60%-80% ; B2O3 5%-20% ;SiO2 5%-20%,所述无机添加剂的组分及重量百分比为Al2O3 10%_20%,MnO2 10%-20%, MgO 10%-20%, CaO 10%_20%,Ta2O5 10%_20%,所述有机载体由有机溶剂和有机添加剂以重量比5:1组成,有机溶剂为α -松油醇和2-乙氧基乙酸乙酯的混合溶剂,有机添加剂为乙基纤维素。
2.一种用于晶体硅太阳电池的高电导率无铅银浆的制备方法,其特征是(1)玻璃粘合剂的制备将玻璃粘合剂的组分按如下重量百分比称取=Bi2O3 60%-80%, Β2035%-20%, SiO2 5%_20%, 将以上组分混合均勻后置于高温马弗炉内,温度控制在1200°C,保温60分钟,随后将熔融的玻璃体系淬火并且球磨;(2)无机添加剂的制备将无机添加剂的组分按如下重量百分比称取=Al2O3 10%_20%,MnO2 10%_20%,MgO 10%-20%, CaO 10%-20%,Ta2O5 10%_20%,将以上组分在玻璃碾钵中混合均勻;(3)有机载体的制备将有机溶剂和有机添加剂以重量比5:1混合均勻,其中有机溶剂中α -松油醇和2-乙氧基乙酸乙酯以2:1的重量比混合均勻;(4)所述无铅银浆的制备将粒径2 4. 5 μ m的微米银粉8%-9%,粒径5 10 μ m的微米银粉56%_62%,纳米银粉 5%-10%,玻璃粘合剂3%-5%,无机添加剂3%-5%和有机载体15%-20%称重后搅拌均勻,放入球磨机中混合均勻,得到低电阻无铅纳米-微米复合银浆。
全文摘要
一种用于晶体硅太阳电池的高电导率无铅银浆及制备方法,是通过纳米银粉与微米银粉复合而成,微米银粉通过优化级配,烧结后所形成的银电极具有极高的电导率。该纳米改性高电导率无铅银浆的组分为(重量比)粒径2~4.5μm的微米银粉8%-9%,粒径5~10μm的微米银粉56%-62%,纳米银粉5%-10%,玻璃粘合剂3%-5%,无机添加剂3%-5%,有机载体15%-20%,所述纳米银粉粒径为20-70nm,所述玻璃粘合剂为铋-硅-硼混合玻璃体系,所述有机载体由有机溶剂和有机添加剂组成。该高电导率无铅银浆的制备工艺简单,易于规模化生产,对提高晶体硅太阳能电池的光电转换效率有实际意义。
文档编号H01L31/0224GK102368391SQ20111032822
公开日2012年3月7日 申请日期2011年10月26日 优先权日2011年10月26日
发明者杜国平, 罗晖, 陈楠 申请人:南昌大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1