锂离子电池隔膜及其制备方法以及锂离子电池与流程

文档序号:12788301阅读:704来源:国知局
锂离子电池隔膜及其制备方法以及锂离子电池与流程

本发明涉及锂离子电池领域,具体地,涉及一种锂离子电池隔膜及制备方法以及锂离子电池。



背景技术:

锂离子电池隔膜是锂离子电池的重要组成部分,它是一种绝缘多孔薄膜,主要作用是使电池的正、负极分隔开来,允许自由离子于其间通过,防止两极接触而短路,此外还具有能使电解质离子通过的功能。具体地,该隔膜需要一定的孔隙率和孔径分布,让离子正常通过,另外在锂离子电池使用过程中提供安全性:一方面隔离正负极,阻止二者直接接触而短路;另一方面在电池因外部故障或内部短路,致使电池内部反应热失控时,该隔膜能在较低温度下正常自闭孔,隔断电池正负极反应,使电池停止工作,并在反应停止但内部温度继续上升到更高温度时,隔膜仍有足够的耐高温性能,保持尺寸稳定不致破孔,即有较高的破膜温度。所以,希望获得隔膜即有较低自闭孔温度又有较高的破孔温度。该隔膜的性能很大程度上决定了电池的容量、内阻及循环性能,对提高电池的综合性能具有重要意义。

目前商业化的锂离子电池隔膜主要是聚乙烯、聚丙烯等聚烯烃材料,这是因为聚烯烃化合物能在较合理的成本范围内能提供良好的机械强度和耐热性能,并且在高温下还具备热关闭性能,从而提高了锂离子电池隔膜的安全性能。

CN102134342A公开了一种交联型聚烯烃微孔膜,制备原料包括聚烯烃、潜溶剂、过氧化合物、硅烷和抗氧剂。其公开的制备方法中先形成聚烯烃微孔膜,然后再完成交联。

CN103421208B公开了一种辐照交联锂离子电池隔膜及其制备方法。包括(1)将聚乙烯多孔隔膜浸泡在含有0.01-10质量%的光引发剂、0.01-10质量%的交联剂的易挥发性有机溶剂中5秒以上,取出后室温干燥;(2)将隔膜在0-5质量%的亲水性单体的水溶液液面以下1-50mm处用辐照源辐照2秒以上,或直接将浸泡后的隔膜置于惰性气体保护下用辐照源辐照2秒以上,辐照温度为室温至110℃,隔膜表面离辐照源距离3-15cm,得到辐照交联聚乙烯多孔隔膜。

CN103059375A公开了一种锂离子电池隔膜母料,包括高密度聚乙烯、交联剂、亲水改性三氧化二铝纳米粉体,高密度聚乙烯的密度为0.95-0.96,平均分子量为20万-50万,交联剂为叔丁基过氧化氢。还公开的制备方法包括将高密度聚乙烯、交联剂和亲水改性三氧化二铝纳米粉体混合均匀后经挤出造粒得到锂离子电池隔膜母料。

CN101345296B公开了一种锂离子电池隔膜制备方法,包括将分子量100万-700万的超高分子聚乙烯、聚降冰片烯交联剂、抗氧剂和矿物油在40-300rpm条件下搅拌混合;将搅拌后的混合物经挤出得基片;将基片在5-40℃冷却成型;对基片进行双向拉伸成薄膜;使用高浓度烷烃类萃取剂萃取薄膜中的矿物油;将经萃取后的薄膜进行热处理得到锂离子电池隔膜。

在实际生产中,现有技术的锂离子电池隔膜存在耐热性差、加工工艺复杂、工艺成本高等缺陷。



技术实现要素:

本发明的目的是为了解决现有技术加工工艺复杂,工艺成本高,制品膜耐热性差的问题,提供了一种锂离子电池隔膜及制备方法以及锂离子电池。

为了实现上述目的,本发明提供了一种锂离子电池隔膜的制备方法,包括:(1)将聚乙烯、成孔剂、交联剂和交联助剂熔融共混得到混合物A;(2) 将所述混合物A成型为初始膜片B,所述初始膜片B的凝胶含量小于5重量%;(3)将所述初始膜片B进行高温交联形成交联膜C,所述交联膜C的凝胶含量为30~70重量%;(4)将所述交联膜C进行拉伸得到拉伸膜D;(5)将所述拉伸膜D进行退火处理得到锂离子电池隔膜;其中,所述聚乙烯的熔融指数MI为0.02g/10min~5g/10min;相对于100重量份的所述聚乙烯,所述交联剂的用量为0.03~8重量份,所述交联助剂的用量为0.03~10重量份。

本发明还提供了一种由本发明的方法制得的锂离子电池隔膜。

本发明还提供了一种锂离子电池,包括本发明的锂离子隔膜。

本发明为了实现发明目的,提供的锂离子电池隔膜用聚乙烯组合物选用具有特定MI的聚乙烯为基体树脂,改善熔体,进一步结合特定的交联剂和交联助剂,通过先交联再拉伸的制备方法,获得了耐热性能提高的锂离子电池隔膜。该隔膜可以具有30%以上的孔隙率,在170℃下保持120s后的膜片面积保持率为80%以上。

本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。

附图说明

图1是实施例1中混合物A在150℃的等温流变曲线;

图2是实施例1制备的锂离子电池隔膜的表面形貌扫描电镜照片;

图3是对比例2制备的锂离子电池隔膜的表面形貌扫描电镜照片。

具体实施方式

以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。

本发明提供了一种锂离子电池隔膜的制备方法,包括:(1)将聚乙烯、 成孔剂、交联剂和交联助剂熔融共混得到混合物A;(2)将所述混合物A成型为初始膜片B,所述初始膜片B的凝胶含量小于5重量%;(3)将所述初始膜片B进行高温交联形成交联膜C,所述交联膜C的凝胶含量为30~70重量%;(4)将所述交联膜C进行拉伸得到拉伸膜D;(5)将所述拉伸膜D进行退火处理得到锂离子电池隔膜;其中,所述聚乙烯的熔融指数MI为0.02g/10min~5g/10min;相对于100重量份的所述聚乙烯,所述交联剂的用量为0.03~8重量份,所述交联助剂的用量为0.03~10重量份。

根据本发明,优选的,所述聚乙烯的熔融指数MI为0.1g/10min~3g/10min。熔融指数MI可以依据ASTM D 1238测得。

根据本发明的优选方式,所述聚乙烯为高密度聚乙烯,优选地所述聚乙烯的密度为0.945g/cm3~0.962g/cm3,更优选为0.950g/cm3~0.962g/cm3

根据本发明,优选的,所述交联剂选自2,5-二甲基-2,5-二叔丁基过氧基-3-己炔、过氧化二异丙苯、过氧化叔丁基异丙苯、2,5-二甲基-2,5-二(叔丁基过氧基)己烷、3,3,5,7,7-五甲基-1,2,4-三氧庚环和1,4-双叔丁基过氧化异丙基苯中的一种或多种。

根据本发明,优选的,所述交联助剂为三烯丙基氰脲酸酯、三烯丙基异氰脲酸酯、三羟甲基丙烷三甲基丙烯酸酯和三羟甲基丙烷三丙烯酸酯中的一种或多种。

本发明提供的锂离子电池隔膜的制备方法中,在从制备锂离子电池隔膜的各组分共混到得到隔膜的过程中,控制制备步骤先发生交联然后再将交联膜进行拉伸,从而可以更好地如本发明的锂离子电池隔膜用聚乙烯组合物配方相配合,获得耐热性能提高的锂离子电池隔膜。具体地,可以通过各步骤制得的产品的凝胶含量判定是否控制交联反应的发生,在步骤(1)和(2)制得的产品的凝胶含量低,仅是各组分物料的共混和成型为初始膜片。而在步骤(3)中控制进行高温交联,制得的交联膜中凝胶含量为30~70重量%。

本发明的制备方法中,在获得交联膜的基础上再进行拉伸,可以更有利于配合本发明的锂离子电池隔膜用聚乙烯组合物得到耐温性能提高的锂离子电池隔膜。

根据本发明,在步骤(1)中,所述熔融共混在双螺杆挤出机中实施,所述熔融共混的温度为140~160℃。

根据本发明,优选的,所述混合物A的凝胶含量小于1重量%。说明没有发生大量的交联。

根据本发明,优选的,在步骤(2)中,所述成型的温度为25~150℃。将混合物A成型为初始膜片B即可,可以是流延成膜,也可以是压片成膜。

根据本发明,优选的,在步骤(3)中,所述高温交联的温度为180~230℃。

根据本发明,优选的,在步骤(4)中,所述拉伸的温度为90~150℃。所述拉伸可以是单向拉伸,也可以是双向拉伸。

根据本发明,优选的,在步骤(5)中,所述退火的温度为110~150℃。所述退火可以有应力松弛作用。

本发明还提供了一种由本发明的方法制得的锂离子电池隔膜。

根据本发明,该隔膜的凝胶含量为30~70重量%,优选为40~65重量%。

根据本发明,优选的,该隔膜的孔隙率为30%以上。

根据本发明,优选的,该隔膜在170℃下保持120s后的膜片面积保持率为80%以上。

本发明还提供了一种锂离子电池,包括本发明的锂离子隔膜。

所述锂离子电池的主要构件可以包括电极、隔离膜和电解液。电极和电解液可以为本领域公知的不再赘述。所述锂离子电池可以采用本领域公知的电池形式和结构,其中的隔离膜为本发明的锂离子隔膜。

以下将通过实施例对本发明进行详细描述。

以下实施例中,凝胶含量的测定:

依据ASTM-D2765测定二甲苯不溶物含量得到。取一定量的聚乙烯树脂碎屑,包于120目的铜网内,放入带有回流装置的锥形瓶中,以二甲苯为溶剂,沸腾回流至少24小时后,干燥至恒重,计算不溶物的含量,即凝胶含量;

锂离子电池隔膜的表面通过电镜观察成孔情况,电镜为FEI公司Nova NanoSEM 450型号的扫描电镜仪器;

锂离子电池隔膜的孔隙率通过十六烷法测试:

先将隔膜样品称重,然后浸渍在分析纯的十六烷中1h,取出用滤纸拭去表面余液,通过下式计算孔隙率:ε%=(V十六烷/V样品)×100%,V十六烷表示十六烷体积;V样品表示样品体积;

锂离子电池隔膜的耐热性测试:

将带视窗的烘箱升温至待测温度(170℃),同时将待测样品膜的两边固定在一个长方形的金属圈上,记下样品测试前的尺寸。待待测烘箱的温度稳定5min后,将烘箱门开一个小缝,将待测样品迅速放入烘箱内,同时按下秒表计时,通过烘箱的可视窗口观察测试样品膜的变化情况。测试时间结束后,迅速将样品从测试烘箱内取出,待样品温度降至室温时,测量样品的尺寸,计算放入烘箱前后膜片的面积保持率,

膜片面积保持率%=(经过烘箱测试的膜片的面积/膜片放入烘箱前的初始面积)×100%

如果样品在测试过程中熔断或开始熔断,视为样品膜破,无需再测样品尺寸。

实施例1

(1)锂离子电池隔膜用聚乙烯组合物配方:

基体树脂为MI=0.3g/10min的HDPE(密度=0.960g/cm3)100g,2,5-二甲基-2,5-二(叔丁过氧基)已烷0.7g,三烯丙基异氰脲酸酯1.1g。

(2)锂离子电池隔膜制备:

将组成上述配方的各组分在低剪切的双螺杆挤出机(长径比为18/1,螺杆的转速为100转/分)中挤出造粒得到混合物A,共混温度为140℃,同时测试混合物A在150℃等温30min的流变曲线,如图1所示。由图1可看出,在熔融共混过程中,混合物A的粘度在测试条件下可基本保持不变,说明此配方组合物的加工热稳定性好,没有发生交联。混合物A取样测定凝胶含量为0.5重量%;

将混合物A以压片方式成型(成型温度为140℃)得到初始膜片B,初始膜片B取样测定凝胶含量为0.5重量%;

将初始膜片B在压片机中压片制得交联膜C,压片过程中在180℃下高温交联,交联膜C取样测定凝胶含量,二甲苯不溶物的含量为62重量%;

将交联膜C在130℃下进行单向拉伸550%,得到拉伸膜D;再在130℃等温退火处理5min得到锂离子电池隔膜。

将锂离子电池隔膜的表面进行电镜观察,照片如图2所示。从图2可看出,锂离子电池隔膜出现大片孔径分布均匀的孔洞。

将锂离子电池隔膜用十六烷法测试膜的孔隙率为45%。

将锂离子电池隔膜进行耐热性测试,170℃下保持120s隔膜由白色变透明,膜片的面积保持率为85%。

实施例2

(1)锂离子电池隔膜用聚乙烯组合物配方:

基体树脂为MI=2g/10min的HDPE(密度=0.955g/cm3)100g,2,5-二甲基-2,5-二(叔丁过氧基)已烷0.7g,三烯丙基异氰脲酸酯1.1g。

(2)锂离子电池隔膜制备:

将组成上述配方的各组分在低剪切的双螺杆挤出机(长径比为18/1,螺杆的转速为100转/分)中挤出造粒得到混合物A,共混温度为150℃,同实施例1测试混合物A的流变曲线,与实施例1相同基本保持不变,说明此配方组合物的加工热稳定性好,没有发生交联。混合物A取样测定凝胶含量为0.5重量%;

将混合物A以压片方式成型(成型温度为145℃)得到初始膜片B,初始膜片B取样测定凝胶含量为0.5重量%;

将初始膜片B在压片机中压片制得交联膜C,压片过程中在230℃下高温交联,交联膜C取样测定凝胶含量,二甲苯不溶物的含量为66重量%;

将交联膜C在130℃下进行单向拉伸400%,得到拉伸膜D;再在110℃等温退火处理5min锂离子电池隔膜。

将锂离子电池隔膜的表面进行电镜观察,同图2相似锂离子电池隔膜出现大片孔径分布均匀的孔洞。

将锂离子电池隔膜用十六烷法测试膜的孔隙率为41%。

将锂离子电池隔膜进行耐热性测试,170℃下保持120s隔膜由白色变透明,膜片的面积保持率为83%。

实施例3

(1)锂离子电池隔膜用聚乙烯组合物配方:

基体树脂为MI=0.3g/10min的HDPE(密度=0.960g/cm3)100g,2,5-二甲基-2,5-二(叔丁过氧基)已烷0.65g,三烯丙基异氰脲酸酯1g。

(2)锂离子电池隔膜制备:

将组成上述配方的各组分在低剪切的双螺杆挤出机(长径比为18/1,螺杆的转速为100转/分)中挤出造粒得到混合物A,共混温度为150℃,同实施例1测试混合物A的流变曲线,与实施例1相同基本保持不变,说明此配方组合物的加工热稳定性好,没有发生交联。混合物A取样测定凝胶含量为0.5重量%;

将混合物A以压片方式成型(成型温度为145℃)得到初始膜片B,初始膜片B取样测定凝胶含量为0.5重量%;

将初始膜片B在压片机中压片制得交联膜C,压片过程中在180℃下高温交联,交联膜C取样测定凝胶含量,二甲苯不溶物的含量为58重量%;

将交联膜C在132℃下进行单向拉伸620%,得到拉伸膜D;再在132℃等温退火处理5min锂离子电池隔膜。

将锂离子电池隔膜的表面进行电镜观察,同图2相似锂离子电池隔膜出现大片孔径分布均匀的孔洞。

将锂离子电池隔膜用十六烷法测试膜的孔隙率为48%。

将锂离子电池隔膜进行耐热性测试,170℃下保持120s隔膜由白色变透明,膜片的面积保持率为81%。

对比例1

(1)配方:基体树脂为MI=0.3g/10min的HDPE(密度=0.960g/cm3)。

(2)制备:经双螺杆挤出机(长径比为18/1,螺杆的转速为100转/分)中挤出造粒得料A,挤出温度为140℃;

将料A压片得到初始膜片B;

将初始膜片B在130℃下进行拉伸330%,膜片拉伸时断裂,膜片的高温拉伸强度非常差。

对比例2

(1)配方:基体树脂为MI=8.5g/10min的HDPE(密度=0.948g/cm3)100g,2,5-二甲基-2,5-二(叔丁过氧基)已烷0.7g,三烯丙基异氰脲酸酯1.1g。

(2)制备:按照实施例1的方法,制得锂离子电池隔膜。

将锂离子电池隔膜的表面进行电镜观察,照片如图3所示。从图3可看出,膜表面无孔。

对比例3

(1)配方:基体树脂为MI=0.3g/10min的HDPE(密度=0.960g/cm3)100g,2,5-二甲基-2,5-二(叔丁过氧基)已烷0.7g,三烯丙基异氰脲酸酯1.1g。

(2)制备:将组成上述配方的各组分在低剪切的双螺杆挤出机(长径比为18/1,螺杆的转速为100转/分)中挤出造粒得到混合物A,共混温度为140℃;

将混合物A在压片机中压片制得交联膜C,压片过程中在240℃下高温交联;

将交联膜C在80℃下单向拉伸200%左右,拉伸膜发生断裂。

将拉伸膜进行凝胶含量测试,二甲苯不溶物的含量为81重量%。

对比例4

(1)配方:基体树脂为MI=0.01g/10min的PE(密度=0.965g/cm3)100g,2,5-二甲基-2,5-二(叔丁过氧基)已烷0.7g,三烯丙基异氰脲酸酯1.1g。

(2)制备:按照实施例1的方法。

不能完成熔融共混,得不到锂离子电池隔膜。

由以上实施例和对比例可以看出,本发明提供的锂离子电池隔膜用聚乙烯组合物通过本发明的锂离子电池隔膜制备方法,可以获得耐热性能提高的 锂离子电池隔膜。可以具有30%以上的孔隙率,在170℃下保持120s后的膜片面积保持率为80%以上。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1