各向异性导电膜和连接结构体的制作方法

文档序号:11161734阅读:312来源:国知局
各向异性导电膜和连接结构体的制造方法与工艺

本发明涉及各向异性导电膜、使用各向异性导电膜的连接方法、以及用各向异性导电膜连接的连接结构体。



背景技术:

各向异性导电膜在将IC芯片等电子构件安装于基板时被广泛使用。近年来,对于手机、笔记本电脑等小型电子仪器而言,寻求配线的高密度化,作为使各向异性导电膜符合该高密度化的方法,已知有将导电颗粒在各向异性导电膜的绝缘粘接剂层中均等配置成矩阵状的技术。

然而,即使均等配置导电颗粒也会产生连接电阻不均匀的问题。这是因为:位于端子边缘上的导电颗粒因绝缘性粘接剂的熔融而向空间流出,从而难以被上下端子夹持。

针对该问题而提出了下述方案:将导电颗粒排列成格子状,以导电颗粒的第一排列方向作为各向异性导电膜的长度方向,使与第一排列方向交叉的第二排列方向相对于与各向异性导电膜的长度方向垂直的方向倾斜5°以上且15°以下(专利文献1)。

现有技术文献

专利文献

专利文献1:日本专利4887700号公报。



技术实现要素:

发明要解决的问题

然而,用各向异性导电膜进行连接的电子构件的凸起尺寸变小、排列成格子状的导电颗粒的密度(单位面积的导电颗粒个数)提高时,存在导电颗粒的排列状态的检测费时费力、检测精度也降低的问题。

因而,本发明的课题在于,即使对于高密度地分散有导电颗粒的各向异性导电膜而言,也能够容易地进行各向异性导电膜中的导电颗粒的分散状态的检测。

用于解决问题的方案

本发明人发现:对于各向异性导电膜而言,无论是导电颗粒在绝缘粘接剂层中分散成格子状的情况,还是导电颗粒在绝缘粘接剂层中随机分散的情况,若在平面视图中观察到没有导电颗粒的直线状线条,则能够使用该线条容易地检测导电颗粒的分散状态,从而完成了本发明。

即,本发明提供各向异性导电膜,其为包含绝缘粘接剂层和分散在该绝缘粘接剂层中的导电颗粒的各向异性导电膜,

在平面视图中以特定的间隔存在没有导电颗粒的直线状线条(以下称为消失线)。

尤其是提供下述技术方案:在上述各向异性导电膜之中,导电颗粒通过沿着第一排列方向和第二排列方向进行排列而配置成格子状,消失线相对于第一排列方向或第二排列方向发生倾斜,此外,提供下述连接方法:其是使用该技术方案的各向异性导电膜,将第一电子构件的连接端子与第二电子构件的连接端子进行各向异性导电连接的连接方法,使与各向异性导电膜的第一排列方向或第二排列方向大致垂直的方向同第一电子构件或第二电子构件的连接端子的长度方向相一致。

此处,大致垂直是指:不仅包括严格地垂直于第一排列方向的方向,还包括使用各向异性导电膜安装电子构件时产生的偏移的范围。通常,包括相对于与第一排列方向垂直的方向偏移±3°。

并且,本发明提供下述连接结构体:其使用上述的各向异性导电膜,第一电子构件的连接端子与第二电子构件的连接端子进行了各向异性导电连接。

发明效果

根据本发明的各向异性导电膜,由于具有消失线,因此通过目视或图像检测来检测各向异性导电膜的排列状态时,能够以消失线为基准来扫描视野,因此容易无遗漏地对整体进行检测。此外,通过以消失线为基准来扫描视野,容易确定发生不良情况的部位的位置。因此,容易降低各向异性导电膜中的导电颗粒的聚集、缺损等不良情况的漏视,将各向异性导电膜的品质维持得较高。

此外,通过具有消失线而使面视野中的导电颗粒的占有面积变得稀疏,因此容易进行宏观上的观察。即,即使在导电颗粒通过排列成格子状等而均等地分散的情况下,由于存在消失线而容易以颗粒的集合群体的形式来捕获导电颗粒,因此能够简便地掌握形成群的规则性的好坏。因此,无论导电颗粒的个数密度低时还是高时,均能够降低导电颗粒的聚集、缺损等不良情况的漏视。

进而,根据本发明的各向异性导电膜,即使在使用其进行了各向异性导电连接后,由于事先获知没有导电颗粒的区域的规则性,因此也容易掌握凸起中的导电颗粒的捕捉状态。

附图说明

[图1]图1是实施例的各向异性导电膜1A的平面图。

[图2]图2是实施例的各向异性导电膜1A中的导电颗粒的配置图。

[图3]图3是实施例的各向异性导电膜1B中的导电颗粒的配置图。

[图4]图4是实施例的各向异性导电膜1C中的导电颗粒的配置图。

[图5]图5是实施例的各向异性导电膜1D中的导电颗粒的配置图。

[图6A]图6A是实施例的各向异性导电膜1E中的导电颗粒的配置图。

[图6B]图6B是实施例的各向异性导电膜1E’中的导电颗粒的配置图。

[图7]图7是实施例的各向异性导电膜1F中的导电颗粒的配置图。

[图8]图8是实施例的各向异性导电膜1G中的导电颗粒的配置图。

具体实施方式

以下,参照附图来详细说明本发明。应予说明,各图中,同一符号表示同一或同等的构成要素。

图1是本发明的一个实施例的各向异性导电膜1A的平面图,图2是该各向异性导电膜1A中的导电颗粒的配置图。

该各向异性导电膜1A具有绝缘粘接剂层2和以配置成格子状的方式固定于绝缘粘接剂层2的导电颗粒3。更具体而言,该各向异性导电膜1A是将长条的各向异性导电膜切成带状而得到的,导电颗粒3在与形成为带状的各向异性导电膜1A的长度方向D1平行的第一排列方向L1上以间距P1进行排列,并且,在与垂直于各向异性导电膜1A的长度方向D1的各向异性导电膜1A的宽度方向D2平行地排列,即在垂直于第一排列方向L1的第二排列方向L2上以间距P2进行排列,形成四角格。

该各向异性导电膜1A中,相对于导电颗粒3的第一排列方向L1或第二排列方向L2发生了倾斜的线上的格子点因没有导电颗粒3而形成消失线L3,所述消失线L3相对于第一排列方向L1以倾斜角α发生倾斜、或者相对于第二排列方向L2以倾斜角β发生倾斜地形成。消失线L3优选以特定的间隔平行地形成。

通过在各向异性导电膜1A中存在消失线L3,在利用目视检测或图像检测来检测各向异性导电膜1A的导电颗粒3的排列状态的情况下,如图2所示那样,能够设定以消失线L3作为对角线的视野10,调查视野10内的导电颗粒3的个数和配置,并且以视野10与消失线L3维持特定角度的方式进行扫描。因此,容易在视野10中无遗漏地扫描各向异性导电膜1A上的整面。

进而,通过目视检测,在视野10中,以消失线L3作为对称轴,容易识别导电颗粒3的排列对称性,因此容易发现导电颗粒3的聚集、缺损等不良情况。因而,通过存在消失线L3,容易将各向异性导电膜1A的品质维持得较高,此外,能够缩短制品检测所需的时间,制品的生产率提高。

如图1所示那样,通常在电子仪器的生产线上的各向异性导电连接中,以连接端子4的宽度方向沿着各向异性导电膜1A的长度方向D1的方式进行配置。因此,为了针对以细距形成的连接端子4进行各向异性导电连接,优选减小消失线L3的倾斜角α,例如,如进行将电视机的显示器用玻璃基板与柔性印刷电路板(FPC:Flexible Printed Circuits)接合的FOG(Film on Glass)接合时那样地,连接端子4的连接面的尺寸为宽度8~200μm、长度1500μm以下时,优选将倾斜角α设为15~75°。

作为倾斜角α的调整方法,如图2所示那样,以穿过导电颗粒3的基础排列(即,不存在消失线L3时的排列)的单元格5的对角的方式形成消失线L3时,倾斜角α可以根据导电颗粒3的第一排列方向L1的间距P1和第二排列方向L2的间距P2的尺寸来调整。例如,从使倾斜角α小于各向异性导电膜1A的宽度方向L2与消失线L3所成的角β的观点出发,使第一排列方向L1的间距P1长于第二排列方向L2的间距。

此外,减小倾斜角α时,如图4所示的各向异性导电膜1C那样地,可以以穿过第一排列方向L1上连接的2个程度的单元格5的对角的方式形成消失线L3。

本发明中,导电颗粒3的基础排列、消失线L3的方向没有特别限定。例如,如图5所示的各向异性导电膜1D那样地,可以使第二排列方向L2相对于导电颗粒3的第一排列方向L1发生倾斜。此时,第二排列方向L2与第一排列方向L1所成的角γ优选设为15~75°、更优选设为18~72°、进一步更优选设为20~70°。

此时,如图6A、图6B所示的各向异性导电膜1E、1E’那样地,可将导电颗粒3的基础排列设为六角格,设置相对于该第一排列方向L1发生倾斜的消失线L3。导电颗粒3的基础排列方向相对于各向异性导电膜的长度方向D1可以呈现任意的方向。

通过使第二排列方向L2相对于第一排列方向L1发生倾斜,用各向异性导电膜1D将矩形的连接端子(凸起)进行各向异性导电连接时,如图1所示那样,使矩形的连接端子4的长度方向同与第一排列方向L1垂直的方向相一致时(即,使连接端子4的宽度方向同第一排列方向L1相一致时),通过位于连接端子4的边缘部,能够降低在各向异性导电连接时流入绝缘性树脂而无助于连接的导电颗粒个数,因此,在各向异性导电膜1A的膜面内的任何位置采取用于各向异性导电连接的矩形区域,均能够以充分的个数来确保有助于导通的导电颗粒3。

如图7所示的各向异性导电膜1F那样,可以与导电颗粒3的第一排列方向L1平行地形成消失线L3,同样地,也可以与导电颗粒3的第二排列方向L2平行地形成消失线L3。从提高导电颗粒在凸起中的捕捉性的观点、以及容易确认各向异性导电连接后的导电颗粒在凸起中的捕捉状态的观点出发,优选相对于导电颗粒3的第一排列方向L1或第二排列方向L2倾斜地形成消失线L3,从因膜的制造时容易检测而提高成品率的观点出发,优选与第一排列方向L1或第二排列方向L2平行地形成消失线L3。

如图8所示的各向异性导电膜1G那样,可以在随机分散的导电颗粒3中,也可以以没有导电颗粒3的线状区域的形式来观察消失线L3。

本发明的各向异性导电膜针对导电颗粒3自身的构成、绝缘粘接剂层2的层构成和构成树脂没有特别限定,可以呈现各种形式。

例如,作为导电颗粒3,可以从公知的各向异性导电膜所使用的颗粒中适当选择并使用。例如,可列举出镍、钴、银、铜、金、钯等的金属颗粒、金属覆盖树脂颗粒等。也可以组合使用2种以上。

从防止短路和电极间接合的稳定性的观点出发,导电颗粒3的粒径优选为1~50μm、更优选为1~20μm。

将导电颗粒3排列成格子状时,导电颗粒3的第一排列方向L1的间距和第二排列方向L2的间距分别优选为导电颗粒3的粒径的0.5~128倍、优选为0.8~64倍、更优选为1.2~32倍。若这些间距过短,则使用各向异性导电膜将端子之间进行连接时,容易产生短路,反之,若这些间距过长,则在端子之间捕捉到的导电颗粒个数变得不充分。

导电颗粒3的密度优选为100~100000个/mm2、更优选为200~80000个/mm2、特别优选为300~50000个/mm2。该颗粒密度根据导电颗粒3的粒径和排列方向来适当调整。

另一方面,作为绝缘粘接剂层2,可以适当采用在公知的各向异性导电膜中使用的绝缘性树脂层。可以使用例如包含丙烯酸酯化合物和光自由基聚合引发剂的光自由基聚合型树脂层、包含丙烯酸酯化合物和热自由基聚合引发剂的热自由基聚合型树脂层、包含环氧化合物和热阳离子聚合引发剂的热阳离子聚合型树脂层、包含环氧化合物和热阴离子聚合引发剂的热阴离子聚合型树脂层等。此外,这些树脂层可以为根据需要分别聚合而得的树脂层。此外,绝缘粘接剂层2也可以由多个树脂层形成。

作为将导电颗粒3以上述的配置固定至绝缘粘接剂层2的方法,可以通过机械加工、激光加工、光刻等公知的方法来制作具有与导电颗粒3的配置相对应的凹坑的模具,向该模具中投入导电颗粒,在其上填充绝缘粘接剂层形成用组合物,使其固化来固定导电颗粒,并从模具中取出。也可以用刚性低的材质来制作模具。

此外,也可以制作具有与不存在消失线L3时的导电颗粒3的配置相对应的凹坑的模具,在该模具的表面粘贴与消失线L3相对应的胶带,堵住与消失线L3相对应的部分的凹坑,接着,向该模具中,投入导电颗粒3至模具中,与上述同样地使用绝缘粘接剂层形成用组合物,将导电颗粒3固定至绝缘性粘接剂层。

此外,为了使导电颗粒3在绝缘粘接剂层2中呈现上述配置,可以在绝缘粘接剂层形成组合物层上设置以特定的配置形成有贯通孔的部件,从其上供给导电颗粒3,并使其穿过贯通孔。

此外,使用具有贯通孔的部件,并使导电颗粒3穿过该贯通孔来配置导电颗粒时,作为具有贯通孔的部件,也可以制作具有与不存在消失线L3时的导电颗粒3的配置相对应的贯通孔的部件,将该部件的贯通孔用于消失线L3相对应的胶带堵住,从其上供给导电颗粒3。

本发明中,使用导电颗粒排列成格子状且消失线相对于第一排列方向或第二排列方向发生倾斜的各向异性导电膜,将IC芯片、IC模块等第一电子构件的连接端子与柔性基板、玻璃基板等第二电子构件的连接端子进行各向异性导电连接时,如图1所示那样,使导电颗粒3的第一排列方向L1或第二排列方向L2同各向异性导电膜的长度方向D1相一致,使与第一排列方向L1或第二排列方向L2大致垂直的方向同第一电子构件或第二电子构件的连接端子4的长度方向相一致。由此能够充分地提高连接端子4中的导电颗粒3的捕捉个数。

根据本发明,还可以以消失线为基准、容易地进行对这样地进行了各向异性导电连接的第一电子构件与第二电子构件的连接结构体中的导电颗粒的配置的确认。本发明还包括所述连接结构体。

实施例

以下,基于实施例来具体说明本发明。

实施例1~6、比较例1~3

如表1所示那样,实施例1~6和比较例2、3中,使用表1所示的导电颗粒和树脂,制作导电颗粒为图2(四角格)或图6A(六角格)所示配置的各向异性导电膜。此时,将导电颗粒的第一排列方向L1的间距P1和第二排列方向L2的间距P2设为表1所示的尺寸。

比较例1中,导电颗粒的配置设为随机。

更具体而言,按照表1所示的组成制备包含热塑性树脂、热固性树脂和潜伏性固化剂的绝缘性树脂的混合溶液,将其涂布在膜厚为50μm的PET膜上,用80℃的烘箱干燥5分钟,在PET膜上形成厚度为20μm的粘合层。

另一方面,制作具有与表1所示的导电颗粒排列相对应的凸部图案的模具,使公知的透明性树脂的粒料在熔融状态下流入至该模具中,并进行冷却固化,从而形成凹部为表1所示的排列图案的树脂模具。向该树脂模具的凹部中填充导电颗粒,在其上覆盖上述绝缘性树脂的粘合层,通过紫外线固化而使该绝缘性树脂中包含的热固性树脂发生固化。并且,从模具中剥离绝缘性树脂,制造各实施例和比较例的各向异性导电膜。

应予说明,比较例1中,将导电颗粒分散在低沸点溶剂中,进行喷雾而随机地配置在同一平面上。

评价

进行下述(a)~(e)的评价。

(a)有无消失线

在各实施例和比较例的各向异性导电膜中,选择任意的导电颗粒,以此作为基点,设定第一排列方向和第二排列方向分别为500×500μm的区域,通过显微镜观察(倍率:100倍),检测所预期的消失线上的格子点处的导电颗粒是否缺落。进而,在不与该区域重复的部分,重复进行10次同样的检测。应予说明,在观察区域的设定中,也可以设定存在特定个数的导电颗粒的区域(例如为30个×30个)来代替设定特定面积的区域。

在该观察结果中,将消失线上的格子点处存在的导电颗粒个数与消失线上的格子点个数的比例为5%以下评价为存在消失线,除此之外评价为不存在消失线。将结果示于表1。

(b)有无连结颗粒

与(a)同样操作来观察各实施例和比较例的各向异性导电膜,检测是否存在2个以上的导电颗粒连结而成的情况。

在该观察结果中,2个以上的导电颗粒连结存在的部分的个数与没有连结颗粒时的设计颗粒个数的比例为5%以下时评价为不存在2个以上的连结颗粒,除此之外评价为存在2个以上的连结颗粒。其结果,比较例1中评价为存在2个以上的连结颗粒,其它评价为不存在。应予说明,2个连结颗粒的颗粒个数若为所有颗粒个数的5%以下,则在实用上没有问题。

(c)个数一致率

通过使用了显微镜的目视观察,针对包括消失线在内的500×500μm的区域中包含的导电颗粒个数进行计数,接着,使用图像处理机(WinRoof:三谷商事株式会社制),针对相同区域中包含的导电颗粒个数进行计数,通过下式来算出个数一致率。

个数一致率(%)=100-(│N1-N2│/N1)×100

(其中,N1:通过目视观察而计数的导电颗粒个数

N2:通过图像处理机而计数的导电颗粒个数)。

根据个数一致率的数值,按照下述基准进行评价。将结果示于表1。

A:个数一致率为97%以上

B:个数一致率为92%以上~低于97%

C:个数一致率为85%以上且低于92%

D:个数一致率低于85%

实用上,个数一致率优选为B评价以上。

(d)初始导通电阻

将各实施例和比较例的各向异性导电膜夹持在初始导通和导通可靠性评价用FPC与玻璃基板之间,进行加热加压(180℃、3MPa、5秒)而得到各评价用连接物,测定该评价用连接物的导通电阻。将结果示于表1。

此处,该评价用FPC和玻璃基板对应于它们的端子图案,尺寸如下所示。

评价用FPC

聚酰亚胺基材(厚度为25μm)

配线规格:Cu配线(高度为18μm)、Au镀敷

配线尺寸:宽度25μm×长度1000μm

玻璃基板

玻璃材质:コーニング公司制

外径:15×70mm

厚度:0.5mm

电极:ITO配线。

(e)导通可靠性

与初始导通电阻同样地测定将初始导通电阻的评价用FPC与各实施例和比较例的各向异性导电膜的评价用连接物在温度85℃、湿度85%RH的恒温槽中放置500小时后的导通电阻。将结果示于表1。

应予说明,若该导通电阻为5Ω以上,则从连接的电子构件的实用导通稳定性的观点出发不优选。

[表1]

由表1可知:若导电颗粒的排列中形成有消失线,则导电颗粒的检测效率提高。

比较例1中,由于颗粒随机地存在,因此图像处理机判断为噪音,可推测检测成功率会显著变低。

附图标记说明

1A、1B、1C、1D、1E、1E’、1F、1G 各向异性导电膜

2 绝缘粘接剂层

3 导电颗粒

4 连接端子

5 单元格

10 视野

D1 各向异性导电膜的长度方向

D2 各向异性导电膜的宽度方向

L1 第一排列方向

L2 第二排列方向

L3 消失线

P1 导电颗粒的第一排列方向的间距

P2 导电颗粒的第二排列方向的间距

α 倾斜角

β 倾斜角

γ 第一排列方向L1与第二排列方向L2所成的角

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1