半导体装置的制作方法

文档序号:12513873阅读:305来源:国知局
半导体装置的制作方法

本申请基于2014年9月1日提出的日本专利申请第2014-177044号,这里援用其全部内容。

技术领域

本发明涉及半导体装置,其具备具有多个电极焊盘的半导体元件和连接部件,将多个电极焊盘分别经由键合线而与连接部件连接而成。



背景技术:

通常,作为这种半导体装置,提出了这样的结构,即:具备呈矩形板状的半导体元件、设在半导体元件的一面的由相同的金属构成的多个电极焊盘、和设在半导体元件的外侧的连接部件,电极焊盘分别通过由Au(金)构成的键合线(bonding wire)而与连接部件连接。

在这样的半导体装置中,近年来,为了降低键合线的材料成本,提出了取代Au而将键合线变更为Cu(铜)的技术(参照专利文献1)。

现有技术文献

专利文献

专利文献1:日本特开2010-199491号公报



技术实现要素:

本发明的目的在于,提供一种半导体装置,其适于提高电极焊盘的温度循环耐受性并且降低键合线的材料成本。

本发明的一个技术方案的半导体装置,具备:半导体元件,呈一面和另一面处于表面背面的板面关系的矩形板状;多个电极焊盘,设在半导体元件的一面,由相同的金属构成;以及连接部件,设在半导体元件的外侧;多个电极焊盘分别经由由金属构成的键合线而与连接部件连接;在多个电极焊盘的各自中,在该电极焊盘与键合线之间,形成有由包含该电极焊盘的金属和键合线的金属这两者的金属间化合物构成的金属间化合物层。

多个电极焊盘被划分为,在半导体元件的一面中位于角部侧的第1焊盘、和位于比第1焊盘距角部更远的位置的第2焊盘。

键合线中的连接于第1焊盘的第1线材的杨氏模量小于键合线中的连接于第2焊盘的第2线材的杨氏模量。

由第1线材和第1焊盘形成的金属间化合物层的厚度比由第2线材和第2焊盘形成的金属间化合物层的厚度厚。

根据上述半导体装置,关于距半导体元件的角部较近而容易产生裂纹的第1焊盘,能够使用比较软的第1线材,所以容易使从线材向焊盘的应力较小。此外,在该第1焊盘中,能够使线材和焊盘的金属间化合物层的厚度比较厚,所以容易使线材接合部处的第1焊盘的机械强度较大。因此,能够容易地抑制因温度循环引起的第1焊盘的裂纹产生。

此外,通过在第1焊盘和第2焊盘之间改变键合线的材质,不需要将全部的键合线一律用昂贵的较软的金属构成,所以容易进行材料成本的降低。由此,根据上述半导体装置,能够实现适合于兼顾电极焊盘的温度循环耐受性的提高和键合线的材料成本的降低的结构。

本发明的另一技术方案的半导体装置,具备:半导体元件,呈一面和另一面处于表面背面的板面关系的矩形板状;多个电极焊盘,设在半导体元件的一面,由相同的金属构成;以及连接部件,设在半导体元件的外侧;多个电极焊盘分别经由由相同的金属构成的键合线而与连接部件连接。

多个电极焊盘被划分为在半导体元件的一面位于角部侧的第1焊盘、和位于比第1焊盘距角部更远的位置的第2焊盘。

在第1焊盘上,接合有由杨氏模量比键合线的杨氏模量小的金属构成的凸点,在第1焊盘与凸点之间,形成有由包含该第1焊盘的金属和该凸点的金属这两者的金属间化合物构成的第1金属间化合物层;将第1焊盘与连接部件连接的键合线经由凸点而与第1焊盘键合。

在第2焊盘与连接于第2焊盘的键合线之间,形成有由包含该第2焊盘的金属和该键合线的金属这两者的金属间化合物构成的第2金属间化合物层;第1金属间化合物层的厚度比第2金属间化合物层的厚度厚。

根据上述半导体装置,由于第1焊盘经由比键合线软的凸点而与键合线连接,所以从键合线向第1焊盘施加的应力得以缓和。此外,由于能够将由第1焊盘和凸点形成的第1金属间化合物形成得较厚,所以容易使线材接合部处的第1焊盘的机械强度较大。

因此,作为键合线,可以不使用Au等柔软且昂贵的金属,容易进行材料成本的降低。由此,根据上述半导体装置,能够实现适合于兼顾电极焊盘的温度循环耐受性的提高和键合线的材料成本的降低的结构。

附图说明

关于本发明的上述目的及其他目的、特征及优点,一边参照附图一边通过下述详细的记述会变得明确。

图1是表示本发明的第1实施方式的半导体装置的概略平面图。

图2是表示图1中的半导体装置的概略剖视图。

图3是表示图1中的第1线材与第1焊盘之间的接合部处的金属间化合物层的状况的概略剖视图。

图4是表示图1中的第2线材与第2焊盘之间的接合部处的金属间化合物层的状况的概略剖视图。

图5是表示本发明的第2实施方式的半导体装置的一部分的概略平面图。

图6是表示本发明的第3实施方式的半导体装置的一部分的概略剖视图。

图7是表示图6中的凸点与第1焊盘之间的接合部处的金属间化合物层的状况的概略剖视图。

图8是表示本发明的其他实施方式的半导体装置的一部分的概略平面图。

具体实施方式

以下,基于附图对本发明的实施方式进行说明。另外,在以下的各实施方式中,对于相同或等同的部分,为了实现说明的简化而在图中赋予相同的标号。

在半导体装置中,在将键合线从Au替代为Cu的情况下,虽然能够降低线材的材料成本,但有发生温度循环耐受性的下降的问题。具体而言,在电极焊盘中产生基于温度循环的应力,电极焊盘产生裂纹。这样的电极焊盘的裂纹导致装置的电气功能的下降。

其原因是以下两点。第1个是,在物性上Cu比Au硬,所以由于键合线的硬度增加,从线材向基底的电极焊盘施加的应力增加。

第2个是因为,通过键合线的金属与电极焊盘的金属的相互扩散而在线材接合部在线材-焊盘间形成金属间化合物层,但与Au线材的情况相比,Cu线材的情况下的金属间化合物层的厚度较小。与电极焊盘的金属相比,该金属间化合物层在机械上更坚固,所以如果金属间化合物层变薄,则线材接合部的电极焊盘的机械强度下降。

如上述那样,在使所有的键合线一律为相同金属的现有结构的情况下,难以兼顾温度循环耐受性的提高和材料成本的降低。本发明者进行专门研究,发现:通过温度循环而在半导体元件中在角部发生应力集中,所以对于位于半导体元件的角部附近的电极焊盘,裂纹的发生变得显著。

并且,本发明者着眼于在该角部附近的电极焊盘和其以外的距角部较远的电极焊盘中更换键合线的金属的种类。本发明是基于这样的研究而做出的。

(第1实施方式)

参照图1~图3对本发明的第1实施方式的半导体装置S1进行说明。另外,在图1所示的平面图中,表示了模塑树脂60的外形,将位于该模塑树脂60的内部的构成要素透过模塑树脂60而表示。该半导体装置S1例如搭载在汽车等车辆中,作为用来驱动车辆用的各种电子装置的装置而应用。

本实施方式的半导体装置S1,大体上讲,是将搭载在岛(island)30上的半导体元件10和管脚40用键合线51、52接线后用模塑树脂60封固而成的,呈所谓的QFP(方型扁平封装)的形态。

半导体元件10呈一面11和另一面12处于表面背面的板面关系的矩形板状。即,半导体元件10具有作为表面背面的板面的一面11、另一面12、将这些表面背面的板面连结的4个侧面、和作为矩形的角部的4个角部13。

该半导体元件10由Si(硅)半导体等半导体构成,具体而言,由IC芯片、传感器芯片、晶体管元件等构成。这样的半导体元件10通过通常的半导体工艺制作。

并且,在半导体元件10的一面11,设有由相同的金属构成的多个电极焊盘21、22。在本实施方式中,如图1所示,这些电极焊盘21、22的配置图案是典型性的图案。

即,多个电极焊盘21、22被做成在半导体元件10的一面11的外缘附近的部位沿着该外缘的形状的矩形框状的配置图案。进一步讲,多个电极焊盘21、22成为在半导体元件10的一面11中从4个角部13各自的附近沿着各边排列的结构。

这里,在本实施方式中,多个电极焊盘21、22被划分为:在半导体元件10的一面11中位于半导体元件10的角部13侧的第1焊盘21、和位于比第1焊盘21距角部13更远的位置的第2焊盘22。

具体而言,如图1所示,设半导体元件10的一面11中的包括角部13及角部13附近的连续的区域为第1区域11A。这里,在图1中,第1区域11A是半导体元件10的一面11中的比单点划线更向角部13侧扩散的区域。并且,设半导体元件10的一面11中的第1区域11A以外的其余部分的区域、即处于比第1区域11A距角部13更远的位置的区域为第2区域11B。

在图1的例子中,如果对1个角部13的附近部分进行观察,则多个电极焊盘21、22中的位于角部13侧的两个的组为第1焊盘21,这两个第1焊盘21以外的组为第2焊盘22。

这些电极焊盘21、22作为半导体元件10的引线键合用的焊盘而由典型的材质构成。具体而言,第1焊盘21及第2焊盘22由Al(铝)或以Al为主成分的Al合金构成。虽然没有限定,但作为Al合金,通常使用含有90%以上程度的Al的合金。作为具体的Al合金,可以举出Al-Si及Al-Cu等。

另外,虽然没有图示,但在半导体元件10的一面11,在Si等半导体上设有由无机绝缘膜或有机绝缘膜构成的保护膜,这些电极焊盘21、22从该保护膜露出而设置。这样的电极焊盘21、22通过溅射或蒸镀等形成。

这样,半导体元件10在一面11具有多个电极焊盘21、22,该半导体元件10在另一面12侧相对于岛30通过未图示的芯片焊接材料(die bond)等固定。

岛30如图1、图2所示,呈一面31和另一面32处于表面背面的板面关系的板状,这里,呈平面尺寸比半导体元件10大一圈的矩形板状。并且,在岛30的一面31上搭载并支承着半导体元件10。

该岛30既可以与热沉等的引线框分体,也可以由与管脚40共通的引线框原材料制作。在后者的情况下,通过在用模塑树脂60封固后通常进行的引线切割,将岛30和管脚40相互分离。

管脚40成为经由键合线51、52而与电极焊盘21、22连接的连接部件,设在半导体元件10的外侧。这里,管脚40在半导体元件10的侧方设有多个,各个管脚40呈典型的细长的板状。

并且,多个管脚40如典型的QFP那样,呈将岛30包围的放射状而配置在岛30的外轮廓的外侧。这些岛30及管脚40例如由Cu或42合金等导电性良好的金属构成。

并且,如图1、图2所示,半导体元件10中的多个电极焊盘21、22分别经由由金属构成的键合线51、52而与管脚40连接。即,对于多个电极焊盘21、22,分别连接着独立的键合线51、52。

这些多个键合线51、52由材质不同的第1线材51和第2线材52构成,为了识别,在图1中将第1线材51用虚线表示,将第2线材52用实线表示。第1线材51连接于第1焊盘21,第2线材52连接于第2焊盘22。

这里,第1线材51由杨氏模量比第2线材52的杨氏模量小的材质构成。例如,第1线材51由Au(金)或以Au为主成分的Au合金构成,第2线材52由Cu(铜)或以Cu为主成分的Cu合金构成。

这里,虽然没有限定,但作为Au合金,通常使用含有90%以上程度的Au的合金。作为具体的Au合金,可以举出Au-Pd(钯)等。此外,作为Cu合金,通常使用含有90%以上程度的Cu的合金。作为具体的Cu合金,可以举出Cu-Pd等。如果举出杨氏模量的一例,则构成第1线材51的Au的杨氏模量是约80GPa,构成第2线材52的Cu的杨氏模量是约130GPa。

这些键合线51、52典型的是将半导体元件10的电极焊盘21、22侧作为一次侧而将线材的一端侧球焊(ball bonding)、将管脚40侧作为二次侧而将线材的另一端侧楔焊(wedge bonding)而成的结构。

这样的键合线51、52的连接形态是典型的形态,通过使用通常的毛细管(capillary)的引线键合法形成。即,是这样的方法:使用通过放电加工等而形成在线材前端的初始球,对一次连接部分进行球焊,接着,将线材引绕到二次连接部分进行楔焊。

并且,在本实施方式中,如图3、图4所示,在多个电极焊盘21、22的各个中,在电极焊盘21、22与键合线51、52之间,形成有金属间化合物层71、72。

金属间化合物层71、72由包含电极焊盘21、22的金属和键合线51、52的金属这两者的化合物即金属间化合物(intermetallic compound,通常略作IMC)构成。通过引线键合时的热等,键合线51、52与电极焊盘21、22的各金属原子在线材接合部相互扩散,从而形成该金属间化合物层71、72。

这里,将由第1线材51和第1焊盘21形成的金属间化合物层作为第1焊盘侧的金属间化合物层71(参照图3),将由第2线材52和第2焊盘22形成的金属间化合物层作为第2焊盘侧的金属间化合物层72(参照图4)。

例如,作为构成第1焊盘侧的金属间化合物层71的金属间化合物,可以举出由第1线材51的Au和第1焊盘21的Al形成的AuxAly。另一方面,作为构成第2焊盘侧的金属间化合物层72的金属间化合物,可以举出由第2线材的Cu和第2焊盘的Al形成的CuxAly

另外,这些化合物AuxAly及CuxAly的x及y是表示原子组成的数。这里,AuxAly例如是AuAl2,但也可以是包含其以外的原子组成的物质的混合物,CuxAly例如是CuAl2,但也可以是包含其以外的原子组成的物质的混合物。

并且,如图3、图4所示,在本实施方式中,使第1焊盘侧的金属间化合物层71的厚度d1比第2焊盘侧的金属间化合物层72的厚度d2厚。成为这样的厚度d1>厚度d2的关系是因为,例如构成第1线材51的Au相比于构成第2线材52的Cu而言向电极焊盘中的扩散系数较大。

这里,这些金属间化合物层71、72的厚度d1、d2如图3、图4所示,是沿着键合线-金属间化合物层-电极焊盘的层叠方向的金属间化合物层的尺寸、即层厚。

通常,使第1焊盘侧的金属间化合物层71的厚度d1比第2焊盘侧的金属间化合物层72的厚度d2大一位数以上。若举一例,则由AuxAly构成的第1焊盘侧的金属间化合物层71的厚度d1通常是约3μm,由CuxAly构成的第2焊盘侧的金属间化合物层72的厚度d2通常是约0.1μm。

此外,如图1、图2所示,在半导体装置S1中,模塑树脂60将半导体元件10、岛30、管脚40及键合线51、52以包入的方式封固。这里,如典型的QFP那样,管脚40的一部分作为外引线而比模塑树脂60突出,能够与装置的外部连接。

此外,在本实施方式中,如图2所示,岛30的作为与半导体元件10的搭载侧相反侧的面的另一面32因散热等理由而从模塑树脂60露出。

即,本实施方式的半导体装置S1为所谓的半模塑型的封装。该模塑树脂60由环氧树脂等典型的模塑材料构成,通过传递模塑法或压缩模塑法等成形。

这样的本实施方式的半导体装置S1的制造方法是以下这样的。首先,在岛30上搭载并固定半导体元件10。接着,在将管脚40配置在半导体元件10的外侧的状态下,在第1焊盘21与管脚40之间、以及第2焊盘22与管脚40之间进行引线键合,将它们之间分别用第1线材51、第2线材52接线。

另外,关于第1线材51和第2线材52,进行引线键合的顺序将哪个先进行都可以。在该引线键合工序后,通过模塑树脂60进行封固,然后,根据需要进行引线切割或引线成形等。这样,本实施方式的半导体装置S1完成。

此外,根据本实施方式,作为键合线而使用杨氏模量不同的第1线材51和第2线材52,对于距半导体元件10的角部13较近而容易发生裂纹的第1焊盘21,使用比较柔软的第1线材51。因此,容易使从第1线材51向第1焊盘21施加的应力变小。

此外,在该第1焊盘21中,由于能够使形成在线材-焊盘间的第1焊盘侧的金属间化合物层71的厚度d1比较厚,所以容易使线材接合部处的第1焊盘21的机械强度较大。由此,能够容易地抑制因温度循环引起的第1焊盘21的裂纹产生。

此外,通过在第1焊盘21和第2焊盘22间改变键合线51、52的材质,不再需要将全部的键合线51、52一律用昂贵的柔软的金属构成,所以容易进行线材材料的成本降低。由此,根据本实施方式,能够实现适合于兼顾电极焊盘21、22的温度循环耐受性的提高和键合线51、52的材料成本的降低的结构。

(第2实施方式)

参照图6,对于本发明的第2实施方式的半导体装置,以与上述第1实施方式的不同点为中心进行说明。通常,在半导体元件10的一面11,除了引线键合用的电极焊盘21、22以外,还设有用来检查装置特性的检查用的电极焊盘、即检查用焊盘23。

如图6所示,在本实施方式中,进一步将该检查用焊盘23设在半导体元件10的一面11上的比第1焊盘21更靠外缘的位置。这是因为,检查用焊盘23即使发生裂纹也对装置特性没有影响,所以即使位于比第1焊盘21更靠角部13的位置也没有问题。

(第3实施方式)

参照图6、图7,对于本发明的第3实施方式的半导体装置,以与上述第1实施方式的不同点为中心进行说明。另外,本实施方式当然也能够与上述第2实施方式组合。

在本实施方式中,半导体元件10也呈一面11和另一面12处于表面背面的板面关系的矩形板状,在一面11具备由相同的金属构成的多个电极焊盘21、22。此外,设在半导体元件10的外侧的作为连接部件的管脚40也与上述第1实施方式是同样的。

进而,在本实施方式中,也与上述第1实施方式同样,多个电极焊盘21、22被区分为位于角部13侧的第1焊盘21、和位于比第1焊盘21距角部更远的位置的第2焊盘22。

这里,在本实施方式中,与上述第1实施方式不同,第1焊盘21及第2焊盘22分别经由第2线材52而与管脚40连接。即,在本实施方式中,多个电极焊盘21、22全都经由由同一金属构成的键合线相对于管脚40进行连接。

进一步讲,在本实施方式中,关于第2焊盘22,与上述第1实施方式同样,经由第2线材52而与管脚40连接。本实施方式的第2焊盘22-第2线材52-管脚40的连接结构与上述图1及图2的结构是同样的。具体而言,第2线材52与上述第1实施方式同样,被与第2焊盘22球焊,并被与管脚40楔焊。

并且,当然,在本实施方式中,也与上述第1实施方式的图4同样,在第2焊盘22与第2线材52之间,形成有具有厚度d2的第2焊盘侧的金属间化合物层72。该第2焊盘侧的金属间化合物层72相当于在本发明中所述的第2金属间化合物层。

另一方面,在本实施方式中,如图6所示,关于位于角部13附近的第1区域11A的第1焊盘21,与上述第1实施方式不同,经由第2线材52而与管脚40接线。这里,在第1焊盘21上,接合有由杨氏模量比第2线材52的杨氏模量小的金属构成的凸点53。

具体而言,凸点53与上述第1实施方式的第1线材51同样,由Au或Au合金等金属构成。该凸点53通过通常的球焊法、即使用引线键合装置进行球焊并从球将线材切断的方法形成。如果观察半导体装置的凸点53的形状,则显然凸点53是通过球焊形成的。

并且,如图7所示,在第1焊盘21与凸点53之间,形成有由包含第1焊盘21的金属和凸点53的金属这两者的金属间化合物构成的第1金属间化合物层73。该第1金属间化合物层73例如由与上述第1实施方式中的第1焊盘侧的金属间化合物层71同样的材质构成。

并且,如图6所示,将第1焊盘21与管脚40连接的作为键合线的第2线材52直接与凸点53接合,成为经由凸点53而与第1焊盘21键合的结构。

在本实施方式中,关于与该第1焊盘21连接的第2线材52,将管脚40作为一次侧而球焊,将第1焊盘21的凸点53作为二次侧而楔焊。

关于采用这样的键合顺序,是因为:通常,在电极焊盘上预先形成凸点并对该凸点进行引线键合的情况下,进行作为二次键合的楔焊从连接性这一点来看是优选的。

并且,在本实施方式中,图7所示的第1金属间化合物层73的厚度d3比第2焊盘侧的金属间化合物层72的厚度d2厚。这里,关于本实施方式的第1金属间化合物层73、第2焊盘侧的金属间化合物层72,具体的材质及厚度分别能够设为与上述第1实施方式中的第1焊盘侧的金属间化合物层71、第2焊盘侧的金属间化合物层72同样的材质及厚度。

本实施方式的半导体装置的制造方法是以下这样的。首先,在岛30上搭载半导体元件10,在第1焊盘21与管脚40之间、以及第2焊盘22与管脚40之间进行引线键合,将它们之间通过第2线材52接线。

这里,关于第2焊盘22的引线键合,与上述第1实施方式是同样的,但关于第1焊盘21的引线键合,通过在第1焊盘21上用球焊形成凸点53后连接第2线材52来进行。在此情况下,也与上述第1实施方式同样,对第1线材51和第2线材52进行引线键合的顺序先进行哪一方都可以。

并且,在该引线键合工序后,通过模塑树脂60进行封固,然后,根据需要进行引线切割或引线成形等。这样,完成本实施方式的半导体装置。

此外,根据本实施方式,距半导体元件10的角部13较近而容易产生裂纹的第1焊盘21经由比第2线材52软的凸点53而与第2线材52连接。因此,从第2线材52向第1焊盘21施加的应力得以缓和。

此外,由于能够将由第1焊盘21和凸点53形成的第1金属间化合物层73形成得较厚,所以容易使线材接合部处的第1焊盘21的机械强度较大。由此,能够容易地抑制因温度循环引起的第1焊盘21的裂纹产生。

因此,作为第2线材52,可以不使用Au等软且贵的金属,容易进行线材材料的成本降低。由此,根据本实施方式,能够实现适合于兼顾电极焊盘21、22的温度循环耐受性的提高和键合线的材料成本的降低的结构。

(其他实施方式)

另外,在上述第1实施方式中,关于各电极焊盘21、22,将电极焊盘21、22侧作为一次侧而将键合线51、52的一端侧球焊,将管脚40侧作为二次侧而将键合线51、52的另一端侧楔焊。

相对于此,键合线51、52的连接顺序并不限定于上述第1实施方式中表示的顺序。例如,关于第1线材51及第2线材52,也可以将管脚40侧作为一次侧而进行球焊,将电极焊盘21、22侧作为二次侧而进行楔焊。

进而,在第1线材51和第2线材52中,也可以使与电极焊盘21、22和管脚40的键合顺序不同。另外,不论是球焊的情况还是楔焊的情况,金属间化合物层的成长速度、即形成的金属间化合物层的厚度是实质相同的程度。

此外,在上述第1实施方式中,第1线材51设为杨氏模量比较小的、由Au或Au合金构成的线材,第2线材52设为杨氏模量比较大的、由Cu或Cu合金构成的线材。但是,只要第1线材51比第2线材52杨氏模量小,则并不限定于这样的材质的组合。

作为其他组合,例如也可以是,第1线材51为Au或Au合金,第2线材52为Ag(银)或以Ag为主成分的Ag合金。另外,Ag的杨氏模量是约100GPa。此外,作为该Ag合金,通常使用含有90%以上程度的Ag的合金,例如可以举出Ag-Pd等。

进而,也可以是这样的组合,即:第1线材51为Ag或Ag合金,第2线材52为Cu或Cu合金。并且,在关于这些材质的其他组合的情况下,当然也使上述的第1焊盘侧的金属间化合物层71的厚度d1比第2焊盘侧的金属间化合物层72的厚度d2厚。

此外,在上述第3实施方式中,与第1焊盘21连接的第2线材52将管脚40作为一次侧而被球焊,将第1焊盘21上的凸点53作为二次侧而被楔焊。另一方面,与第2焊盘22连接的第2线材52与第2焊盘22球焊,与管脚40楔焊。

但是,关于上述第3实施方式中的第1焊盘21及第2焊盘22,第2线材52的键合顺序并不限定于此。例如,也可以是,与第1焊盘21连接的第2线材52将第1焊盘21的凸点53作为一次侧而被球焊,将管脚40作为二次侧而被楔焊。

进而,在上述第3实施方式中,并不限于与第1焊盘21连接的第2线材52的键合顺序,与第2焊盘连接的第2线材52也可以将管脚40作为一次侧而被球焊,将第2焊盘22作为二次侧而被楔焊。

此外,在上述第3实施方式中,凸点53设为杨氏模量比较小的、由Au或Au合金构成的结构,第2线材52设为杨氏模量比较大的、由Cu或Cu合金构成的结构。但是,只要凸点53与第2线材52相比杨氏模量较小,则并不限定于这样的材质的组合。

作为其他组合,例如也可以是,凸点53为Au或Au合金,第2线材52为Ag或Ag合金。或者,也可以是这样的组合:凸点53为Ag或Ag合金,第2线材52为Cu或Cu合金。并且,在这些其他组合的情况下,也能确保上述第3实施方式中的第1金属间化合物层73的厚度d3与第2焊盘侧的金属间化合物层72的厚度d2的大小关系。

此外,在上述第1实施方式中,如上述图1所示,半导体元件10的一面11之中位于1个第1区域11A的第1焊盘21是两个。但是,第1区域11A和第2区域11B的划分并不限定于此,也可以通过在确保第2区域11B的存在的范围下扩大第1区域11A,而使得位于1个第1区域11A的第1焊盘21为3个以上。

例如,在图8所示的另一例中,通过将第1区域11A相比上述图1扩大,关于1个第1区域11A,使得第1焊盘21为4个。

此外,在上述第1实施方式中,多个电极焊盘21、22设为在半导体元件10的一面11的外缘附近的部位沿着该外缘的形状的矩形框状的配置图案。但是,多个电极焊盘21、22只要被划分为位于角部13侧的第1焊盘21和位于比第1焊盘21距角部13远的位置的第2焊盘22,则配置图案并没有特别限定。

例如,如图8所示,多个电极焊盘21、22也可以具有在半导体元件10的一面11中从角部13附近配置到第2区域11B的图案。在此情况下,位于中央附近的第2区域11B的焊盘也被设为第2焊盘22。

此外,在上述各实施方式中,设第1焊盘21及第2焊盘22由Al或Al合金构成。但是,作为这些电极焊盘21、22的材质,只要在上述第1及第3实施方式中表示的关于金属间化合物层的厚度的大小关系,则也可以是其他的金属。

此外,作为经由键合线51、52而与电极焊盘21、22连接的连接部件,并不限定于上述的管脚40,例如也可以是其他的半导体元件或布线基板、或者总线条(bus bar)等。即,连接部件只要是能够引线键合的部件就可以。

此外,半导体装置也可以不是上述图2所示那样的半模塑型的封装。例如,在上述图2中,也可以是岛30的另一面32也被模塑树脂60封固的结构、所谓的全模塑型的封装。进而,也可以是不进行半导体元件10及键合线51、52的封固而将模塑树脂60省略的结构。

此外,在上述图1、图2中,作为搭载并支承半导体元件10的部件,除了上述的岛30以外,例如也可以是布线基板等。进而,只要可能,在半导体装置中,也可以是将支承半导体元件10的部件省略了的结构。此外,作为半导体装置,也可以是具有多个半导体元件10的结构。

本发明依据实施例进行了记述,但应理解的是本发明并不限定于该实施例或构造。本发明也包括各种各样的变形例或等价范围内的变形。除此以外,各种各样的组合或形态、还有在它们中仅包含一个要素、其以上或其以下的其他组合或形态也包含在本发明的范畴或思想范围中。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1