半导体装置用接合线的制作方法

文档序号:11636086阅读:212来源:国知局

本发明涉及为了将半导体元件上的电极和外部引线等的电路布线板的布线连接而被利用的半导体装置用接合线。



背景技术:

现在,作为将半导体元件上的电极与外部引线之间接合的半导体装置用接合线(以下称为接合线),主要使用线径15~50μm左右的细线。接合线的接合方法一般为并用超声波的热压接方式,可使用通用接合装置、将接合线通到其内部而用于连接的毛细管工具等。接合线的接合工艺通过下述过程来完成:通过电弧热输入将线尖端加热熔融,利用表面张力形成球部后,将该球部压接接合(以下称为“球接合”)于在150℃~300℃的范围内加热了的半导体元件的电极上,接着,形成环(线弧:loop)之后,将线部压接接合(以下称为“楔接合”)于外部引线侧的电极上。作为接合线的接合对象的半导体元件上的电极,大多使用在si基板上形成了以al为主体的合金膜的电极结构,作为外部引线侧的电极,大多使用施加了镀ag层、镀pd层等的电极结构。

对于接合线,要求良好的球形成性、球接合性、楔接合性、环形成性等性能。作为综合性地满足这些所要求的性能的接合线的材料,主要使用了au。另一方面,由于近年来的au价格的高涨,使用了比au廉价的材料的接合线的开发被活跃地进行着。最近,在使用au的接合线(以下称为au接合线)为主流的存储器领域中,正在进行着以由廉价材料替代au为目标的开发。

在存储器领域中使用au接合线是因为电阻低,能得到优异的楔接合性的缘故。电阻越低,在每1根接合线中能够流通的电流越大。由此,能够减少接合线的总数,能够将存储器小型化,能够得到高的生产率。另外,au为软质的,并且,对表面氧化等的表面劣化现象的抗性高。因此,au接合线,在低能量条件下的接合中也能够得到优异的楔接合性,因此能够降低在推进着薄型化的存储器用的半导体元件中成为问题的楔接合时的半导体元件的损伤。

作为满足上述的存储器用接合线的要求性能,相对于au实现低成本化的材料,ag受到注目。ag的电阻率为1.6μω·cm,比au的电阻率2.2μω·cm低,从低电阻率化的观点出发,ag比au有利。另外,ag的杨氏模量(约83×109n/m2)与au的杨氏模量(约80×109n/m2)大致相等。ag对表面劣化现象的抗性也高。因此,使用了ag的接合线(以下称为ag接合线)被期待着能得到与au接合线同等的优异的楔接合性。

但是,ag接合线,与au接合线相比,球接合部的接合可靠性(以下简称为球接合可靠性。)差,因此作为存储器用接合线的实用化变得困难。作为球接合可靠性评价,可使用高温放置试验、高温高湿试验等的加速评价半导体寿命的试验。ag接合线,由于在高温高湿试验中与au接合线相比在短时间内发生球接合部的剥离,因此作为存储器用接合线在以实用化为目标方面成为问题。这是由于,若发生球接合部的剥离,则在球接合部,电连接会受到损害,成为半导体装置的故障原因。

在专利文献1中,作为解决球接合可靠性的课题的方法,公开了一种向ag添加au和/或pd来进行合金化的技术。ag-au合金是含有0.01~30.00wt%的au和剩余量的ag的合金,ag-pd合金是含有0.01~10.00wt%的pd和剩余量的ag的合金,ag-au-pd合金是含有0.01~30.00wt%的au、0.01~10.00wt%的pd和剩余量的ag的合金。在专利文献2中,作为解决球接合可靠性的课题的方法,公开了一种在ag合金的外周设置了pd或pt的被覆层的结构。

在先技术文献

专利文献

专利文献1:日本特开2013-139635号公报

专利文献2:日本特开2013-33811号公报



技术实现要素:

本发明人对于在先专利文献中所公开的ag接合线进行了评价,结果是不能够满足对存储器用接合线所要求的球接合可靠性、楔接合性的基准。

首先,说明对存储器用接合线所要求的球接合可靠性。球接合可靠性,一般采用高温试验或者高温高湿试验来进行评价。在使用了ag接合线的情况下,特别是在高温高湿环境中球接合部的剥离成为问题。可以认为,高温高湿试验中的球接合部的剥离的原因是,ag与al的金属间化合物的一部分发生腐蚀,ag与腐蚀产物的界面的密着性降低。迄今为止,关于高温高湿试验,在温度为121℃、相对湿度为100%的条件下进行的被称为pct(pressurecookertest:压力锅蒸煮试验)的试验、和在温度为130℃、相对湿度为85%的条件下进行的被称为uhast(unbiasedhighlyacceleratedtemperatureandhumiditystresstest:无偏电压高加速温度和湿度应力试验)的试验是主流。近年来,对球接合可靠性的要求变得严格起来,要求在uhast的温度、湿度环境下进一步对球接合部施加3.6v的偏电压来加速劣化的被称为hast的试验中的性能。对于存储器用接合线,要求在hast中经过120小时后也能正常地工作。

接着,说明对存储器用接合线所要求的楔接合性。楔接合性,是将接合线接合,根据楔接合部中有无发生接合不良来进行评价。在此,所谓接合不良,定义为接合线从引线侧的电极剥离了的状态。对于存储器用接合线,要求针对外部引线侧的ag电极,在175℃以下的温度区域、低能量条件下进行楔接合时不发生接合不良。

上述专利文献1中所公开的向ag中添加了pd、au等的接合线,据记述能够使高温高湿环境中的球接合可靠性提高。但是,上述接合线,不能够满足对存储器用接合线所要求的球接合可靠性的基准。为了改善球接合可靠性,提高合金元素的浓度是有效的,但存在线硬质化、楔接合性降低的课题。因此,难以仅凭ag的合金设计来同时满足对存储器用接合线所要求的球接合可靠性和楔接合性。另外,由于ag容易吸附硫,因此存在吸附于线表面的硫在楔接合时阻碍ag的扩散从而楔接合性降低的课题。

上述专利文献2中所公开的在ag表面设置了pd、pt等的被覆层的结构的接合线,据记述能够使高温高湿环境中的球接合可靠性提高。但是,可以认为球接合可靠性根据被覆层的构成元素、厚度而变化,而上述接合线不能够满足对存储器用接合线所要求的球接合可靠性的基准。关于楔接合性,通过将与ag相比对硫的吸附性低的元素用于被覆层,能够看到改善,但存在被覆层与ag的界面的密着性低,在楔接合中被覆层从ag剥离的课题。

另外,在将ag的合金设计与在ag合金的表面设置被覆层的技术组合了的情况下,也不能够得到对存储器用接合线所要求的球接合可靠性。

由以上的原因判明了在先技术文献中所公开的ag接合线及其组合不能够同时地满足对存储器用接合线所要求的球接合可靠性和楔接合性。

本发明的目的是解决上述的课题,提供能够同时地满足对存储器用接合线所要求的球接合可靠性和楔接合性的接合线。

本发明涉及的接合线,其特征在于,具备芯材和形成于上述芯材的表面的被覆层,所述芯材含有总计为0.1~3.0原子%的ga、in和sn中的1种以上,余量包含ag和不可避免的杂质,所述被覆层含有pd和pt中的1种以上、或者pd和pt中的1种以上和ag,余量包含不可避免的杂质,上述被覆层的厚度为0.005~0.070μm。

根据本发明,能够同时地满足球接合可靠性和楔接合性。

具体实施方式

(球接合可靠性和楔接合性)

本发明人专心研究的结果发现,为了同时地满足球接合可靠性和楔接合性,需要适当控制芯材中所添加的元素和浓度、被覆层中使用的元素和被覆层的膜厚。

说明本实施方式涉及的接合线的对于球接合可靠性的有效性。关于向由ag形成的芯材中添加的元素,ga、in或者sn有效,关于其浓度,0.1原子%以上有效。关于用于被覆层的元素,pd或者pt有效,关于被覆层的厚度,0.005μm以上有效。即,如果使用本实施方式涉及的接合线,则在hast中经过120小时后在与al电极的球接合部中也不会发生剥离。另外,也不会丧失电连接。本实施方式涉及的接合线的芯材中所含的ga、in或者sn、和被覆层中所含的pd或者pt,能够抑制高温高湿试验中的球接合部中的ag与al的金属间化合物的生长。可以认为这是由于,以芯材中所含的元素和被覆层中所含的元素为主体的化合物层形成于球接合部的接合界面,有效地抑制了ag和al的扩散的缘故。由以上明确可知,本实施方式涉及的接合线满足针对存储器用接合线要求的球接合可靠性的基准。

接着,说明本实施方式涉及的接合线的对于楔接合性的有效性。关于芯材中所含的元素,ga、in或者sn有效,关于其浓度,ga、in和sn中的1种以上总计为0.05原子%以上3.0原子%以下有效。另外,关于用于被覆层的元素,pd或者pt有效,关于被覆层的厚度,0.003μm以上0.070μm以下有效。即,如果使用本实施方式涉及的接合线,则在低能量条件、175℃下进行了楔接合的情况下也不会发生接合不良。以下说明得到了优异的楔接合性的原因。第一个原因是由于,通过适当控制芯材中所含的ga、in和sn中的1种以上的总计浓度,能够维持软质的缘故。第二个原因是由于,通过在芯材的周围设置含有pd和pt中的1种以上、或者pd和pt中的1种以上和ag、且余量包含不可避免的杂质的被覆层,能够抑制硫吸附的缘故。第三个原因是由于,通过适当控制芯材中所添加的元素和用于被覆层的元素以及被覆层的厚度,能够提高芯材与被覆层的密着性、抑制楔接合时的被覆层的剥离的缘故。由以上明确可知,本实施方式涉及的接合线满足针对存储器用接合线要求的楔接合性的基准。

为了同时地满足针对存储器用接合线要求的球接合可靠性和楔接合性的基准,具备芯材和形成于上述芯材的表面的被覆层、且上述被覆层的厚度为0.005~0.070μm是有效的,所述芯材含有总计为0.1~3.0原子%的ga、in和sn中的1种以上,余量包含ag和不可避免的杂质,所述被覆层含有pd和pt中的1种以上、或者pd和pt中的1种以上和ag,余量包含不可避免的杂质。本实施方式涉及的接合线,满足对存储器用接合线所要求的性能,并且与au接合线相比,能够低成本化,因此明确可知能够替代au接合线。

在此,在ga、in和sn中的1种以上的总计低于0.1原子%的情况下,成为高温高湿试验中腐蚀的原因的ag与al的金属间化合物的生长抑制不充分,不能得到在存储器用途中所要求的球接合可靠性。含有总计超过3.0原子%的ga、in和sn中的1种以上的接合线,由于接合线的强度增加,楔接合性降低,因此不适于实用。如果上述总计浓度为0.2~1.5原子%,则能够兼具软质性和高的延展性,能够得到优异的楔接合性,因此是优选的。进而,接合线如果上述总计浓度为0.3~1.0原子%,则能够得到更优异的楔接合性,因此是更优选的。

芯材中所含的元素之中,in和sn中的1种以上的元素如果含有0.1~3.0原子%,则能够得到更优异的球接合可靠性的改善效果,因此是优选的。这是由于芯材中所含的in或者sn在抑制接合界面的ag与al的金属间化合物的生长的效果方面特别优异的缘故。

本实施方式涉及的接合线的芯材中所含的ga、in和sn的浓度,可采用俄歇电子能谱分析(aes:augerelectronspectroscopy)装置、扫描电镜(sem:scanningelectronmicroscope)或者透射电镜(tem:transmissionelectronmicroscope)中所装备的能量色散型x射线分析(edx:energydispersivex-rayspectrometry)装置等来对芯材的部分进行测定。使芯材露出的方法,可使用将接合线埋入树脂中,通过机械研磨而使截面露出的方法、利用ar离子束削除接合线的表面的方法。

本实施方式涉及的接合线的被覆层被定义为:在将接合线的表面和中心用直线连接了的区域之中的、pd、pt和au的总计浓度为50原子%以上的区域。接合线的被覆层的厚度和组成可使用俄歇电子能谱分析装置测定。具体的方法,首先,一边采用溅射等从接合线的表面进行削除一边进行浓度测定,获得深度方向的浓度廓线。作为浓度廓线的对象的元素,设为ag、ga、in、sn、pd和pt。接着,以所得到的浓度廓线为基础,算出pd和pt的总计浓度。被覆层的厚度可以是1处的测定值,但优选使用两处以上的测定值的平均值。

(球形成性)

接着,说明本实施方式涉及的接合线的对于球形成性改善的有效性。本实施方式涉及的接合线,通过在芯材与被覆层之间具有含有ga、in和sn中的1种以上、pd和pt中的1种以上、和ag,且余量包含不可避免的杂质的合金层,能够抑制直径小的球(以下称为小径球)中的、圆球性低的球(以下称为异形球)的发生。所谓小径球,定义为直径为接合线的线径的1.5~1.7倍的球。通常,球的直径为接合线的线径的1.7~2.5倍的范围。

在形成ag接合线的球时,为了使电弧放电稳定,喷吹氮气或者向氮气中添加3~5%的氢气而成的混合气体。异形是在接合线的表面通过电弧放电而熔融时,由于表面和内部熔化的时机错开而发生的。对于该课题,通过在芯材与被覆层之间具有含有ga、in和sn中的1种以上、pd和pt中的1种以上、和ag,且余量包含不可避免的杂质的合金层,能够抑制异形球的发生。这是因为,通过形成上述合金层,从接合线的表面向内部,熔点的梯度连续地变化,由此能够从线的表面向内部连续地进行熔融的缘故。不论是喷吹的气体使用了氮气的情况,还是没有使用气体的情况,都能够抑制异形球的发生。

上述合金层被定义为:在将接合线的表面和中心用直线连接了的区域之中的、pd和pt的总计浓度为5~50原子%且ga、in和sn的浓度比接合线的中心部分的浓度高的区域。如果上述合金层的厚度相对于被覆层的厚度为10~60%,则在小径球中,电弧放电稳定,能够抑制球的直径的离散,因此是优选的。合金层的组成可采用与被覆层的组成的测定方法同样的方法测定。具体的方法,首先,一边采用溅射等从接合线的表面进行削除一边进行浓度测定,来取得深度方向的浓度廓线。作为浓度廓线的对象的元素,设为ag、ga、in、sn、pd以及pt。接着,以所得到的浓度廓线为基础,算出pd和pt的总计浓度。合金层的厚度和组成可以是1处的测定值,但优选使用两处以上的测定值的平均值。

(毛细管寿命)

接着,说明本实施方式涉及的接合线的对于毛细管寿命的有效性。本实施方式涉及的接合线,通过在被覆层的最表面具有含有15~50原子%以上的au的含au区域,能够降低接合线的表面与毛细管的摩擦,改善毛细管的使用寿命。这是因为,au比被覆层的pd以及pt软,延展性也优异的缘故。如果含au区域的厚度为0.001~0.050μm,则能够得到优异的改善效果,因此是有效的。当au的浓度低于15原子%或者该厚度低于0.050μm时,改善效果不充分。当au的浓度超过50原子%或者含au区域的厚度超过0.050μm时,有时au堵塞毛细管,不能得到毛细管寿命的改善效果。含au区域的厚度和组成可采用俄歇电子能谱分析装置测定する。关于具体的方法,可采用与被覆层的组成的测定方法同样的方法测定。

(球压接形状)

接着,说明本实施方式涉及的接合线的对于球压接形状的有效性。随着存储器封装体的小型化,半导体元件的电极间的距离变短。以往,在ag接合线的球接合时,球在超声波的施加方向上优先地变形,因此有时与相邻的电极接触而引起短路。因此,需要在球接合中降低球变形的各向异性,控制成接近于正圆的压溃形状。由于存在晶体粒径越大,则球变形的各向异性越增加的倾向,因此将球部的晶粒细化的技术是有效的。本实施方式涉及的接合线,通过在上述芯材中还含有总计为0.1~0.7原子%的cu、pd、pt和au中的1种以上,能够将球的晶粒细化,得到更接近于正圆的球形状。在此,当上述浓度低于0.1原子%时,不能够得到球形状的改善效果。另外,当上述浓度超过0.7原子%时,球硬质化,接合时的芯片损伤成为问题,因此不适于实用。关于接合线的芯材中所含的pd、pt以及au的浓度,可使用aes、sem或tem中装备的edx装置等来对芯材的部分进行测定。使芯材露出的方法,可使用将接合线埋入树脂中,通过机械研磨而使截面露出的方法、利用ar离子束削除接合线的表面的方法。

(环形成性)

接着,说明本实施方式涉及的接合线的对于环形成性的有效性。本实施方式涉及的包含芯材、被覆层和合金层的接合线,通过在接合线中含有总计为80~500原子ppm的b、p、ca、la和se中的1种以上,能够改善环的直进性。随着近年来的存储器封装体的小型化,引线侧的电极狭间距化,接合线彼此的接合间隔也变得狭窄。对于接合线,为了防止由线彼此的接触引起的短路,要求高的直进性。本实施方式涉及的接合线,通过含有总计为80~500原子ppm的b、p、ca、la和se中的1种以上,能够提高弯曲强度,得到高的环的直进性。在此,当上述浓度低于80原子ppm时,不能够得到环的直进性的改善效果。另外,当上述浓度超过500原子ppm时,球硬质化,接合时的芯片损伤成为问题,因此不适于实用。接合线中所含的b、p、ca、la以及se的浓度,可采用电感耦合等离子体(icp:inductivelycoupledplasma)发射光谱分析装置测定。

(制造方法)

接着,说明上述实施方式涉及的接合线的制造方法。

(芯材)

接合线的芯材所用的ag合金,可通过将原料同时熔化来制造。关于熔化,可利用电弧加热炉、高频加热炉、电阻加热炉等。其步骤是通过向加工成直径为φ3~6mm的圆柱型的碳坩埚中装填原料,在真空中或者n2以及ar气等的惰性气氛中加热到1100~1500℃而使其熔化后,进行炉冷或空冷来完成。所得到的ag合金,通过反复进行使用拉模的拉拔加工,成形到最终线径为止。

(被覆层)

形成被覆层的方法,可采用在最终线径的ag合金线上形成作为被覆层的皮膜的方法,或者,在中间线径粗的ag合金线上形成上述皮膜后,进行拉丝从而达到最终线径的方法等。在前者的以最终线径形成皮膜的情况下,品质管理简便,在后者的以中间线径形成皮膜后进行拉丝的情况下,对提高与芯材的密着性有利。对于各个制造方法进行具体的说明。

在ag合金的表面形成pd、pt的皮膜的方法,可使用镀敷法、蒸镀法、熔融法等。在镀敷法中,可以采用电解镀敷法、无电解镀敷法中的任何方法来进行制造。被称为触击镀、闪镀的电解镀敷,其镀敷速度快,与基底的密着性也良好。用于无电解镀敷的溶液,可分类为置换型和还原型,在膜厚度薄的情况下仅采用置换型镀敷就足够了,但在要形成厚的膜的情况下,在置换型镀敷之后阶段性地实施还原型镀敷是有效的。在蒸镀法中,可以利用溅射法、离子镀法、真空蒸镀等的物理吸附、和等离子体cvd(化学蒸镀:chemicalvapordeposition)等的化学吸附。由于都是干式方法,因此在形成被覆层后不需要洗涤,不用担心洗涤时的表面污染等。

对在最终线径的ag合金线上形成皮膜的方法进行说明。对于通过熔化而得到的φ3~6mm的圆柱状的ag合金,进行拉拔加工,成形到φ0.9~1.2mm为止。其后,通过使用拉模连续地进行拉丝加工,来制作φ300~600μm的线。此时,若使用盐酸等进行酸洗处理,则能够除去表面的氧化物和硫化物等,对品质的提高有效。其后,反复进行拉丝加工,成形到最终线径φ15~25μm为止。拉丝时使用市售的润滑液,拉丝时的送线速度设为300~1000m/分。

在最终线径的ag合金线上形成皮膜的情况下,在ag合金线的表面形成0.010~0.140μm的含有pd和pt中的1种以上、或者pd和pt中的1种以上和ag的皮膜之后,进行最终热处理的方法等是有效的。若一边使线连续地扫掠一边进行最终热处理,则能够得到高的生产率,因此是有效的。最终热处理条件,需要设定为能够将被覆层的厚度控制在适当的范围的条件。具体而言,最终热处理温度设为200~600℃、热处理时间控制在0.2~1.0秒的范围是有效的。通过该最终热处理,ag合金线和形成于ag合金线表面的皮膜的元素相互扩散,能够将被覆层的厚度控制在0.005~0.070μm的范围。另外,如果采用该最终热处理条件,则能够使加工硬化了的ag合金再结晶,因此也能够同时实现对接合线所要求的软质化。

接着,对于在中间线径粗的ag合金线上形成皮膜后,进行拉丝来达到最终线径的方法进行说明。对于通过熔化而得到的φ3~6mm的圆柱状的ag合金进行拉拔加工,成形到φ0.9~1.2mm为止。其后,通过使用拉模连续地进行拉丝加工,来制作φ300~600μm的线。在φ300~600μm的ag合金线上,形成含有pd和pt中的1种以上、或者pd和pt中的1种以上和ag的皮膜。此时,皮膜的厚度需要根据形成皮膜的时间点的ag合金线的线径和接合线的最终线径来改变。具体而言,只要调整成在最终线径下皮膜的厚度为0.010~0.140μm即可。在此,当形成皮膜的时间点的ag合金线的线径记为r1、皮膜的厚度记为r1、最终线径下的ag合金线的线径记为r2时,最终线径下的皮膜的厚度r2用下式(1)~(3)表示。各自的单位为μm。

r2=(r2/r1)r1…(1)

0.010≤r2<0.140…(2)

由(1)、(2)式得到下式,即

0.010≤(r2/r1)r1<0.140…(3)

由于最终线径下的ag合金线的线径相对于皮膜的厚度充分大,因此当将接合线的最终线径记为r时,可近似为r2≒r。因此,式(3)可用下式(4)表示。

0.010≤(r/r1)r1<0.140…(4)

根据式(4),如果规定了形成皮膜的线径和最终线径,则能够决定在φ300~600μm的线径下形成的皮膜的厚度。其后,反复进行拉丝加工,成形到最终线径φ15~25μm为止,进行最终热处理。若一边使线连续地扫掠一边进行最终热处理,则能够得到高的生产率,因此是有效的。最终热处理条件,需要设定为能够将被覆层的厚度控制在适当的范围的条件。具体而言,最终热处理温度设为200~600℃、热处理时间控制在0.2~1.0秒的范围是有效的。ag合金线和形成于ag合金线表面的皮膜的元素相互扩散,能够将被覆层的厚度控制在0.005~0.070μm的范围。

(合金层)

为了在芯材与被覆层之间形成合金层,在最终热处理后进行追加热处理是有效的。由此,能促进ag合金中所含的ga、in以及sn向被覆层侧的扩散。追加热处理条件设为600~700℃,在控制合金层的厚度的情况下,改变热处理时间是有效的。通过在上述热处理温度范围下将热处理时间设为0.2~0.5秒,能够使上述合金层的厚度相对于被覆层的厚度成为10~60%的范围。追加热处理的方法,可采用一边使线连续地扫掠一边进行的方法。

(含au区域)

在被覆层的最表面设置含au区域的情况下,也可以利用与被覆层的形成方法同样的方法。另外,其厚度和组成的控制也可使用与被覆层的形成方法同样的方法。即,可利用:在加工到中间线径的阶段形成了被覆层后,形成au皮膜的方法;在加工到最终线径的阶段形成被覆层后,形成au皮膜的方法。例如,在最终线径的ag合金线上形成被覆层后形成au皮膜的情况下,形成0.0008~0.04μm的au皮膜后进行最终热处理的方法等是有效的。

实施例

以下对实施例进行详细说明。按照上述制造方法制造了接合线。作为原材料的ag使用了纯度为99.99原子%以上、且其余量由不可避免的杂质构成的ag。ga、in、sn、cu、pd、pt、au、b、p、ca、la以及se均使用了纯度为99.9原子%以上且其余量由不可避免的杂质构成的材料。在此,将10原子ppm以下的浓度的元素作为不可避免的杂质。采用在中间线径粗的ag合金线上形成pd、pt的皮膜后进行拉丝来达到最终线径的方法,形成了被覆层。在ag合金的表面形成pd、pt的皮膜的方法,使用了电解镀敷法。使线一边连续地扫掠通过一边浸渍在镀液中。在被覆层的最表面形成含au区域的方法也使用了电解镀敷法。该情况下,也是使线一边扫掠通过一边浸渍在镀液中。

(球接合可靠性的评价)

关于球接合可靠性,是评价了在温度为130℃、相对湿度为85%、偏电压为3.6v的条件下进行高温高湿试验后的接合寿命。样品是采用市售的接合装置对半导体元件接合接合线,用环氧系的密封树脂进行塑模而制作出。作为半导体元件的电极使用了厚度1μm的al电极。接合寿命,是每24小时就实施球接合部的剪切试验,剪切强度的值成为初始所得到的剪切强度的1/3的时间。高温高湿试验后的剪切试验,是通过酸处理来除去树脂,使球接合部露出后进行的。剪切试验机使用了市售的微小强度试验机。剪切强度的值使用了随机选择的球接合部的10处的测定值的平均值。在上述的评价中,如果接合寿命小于120小时,则判断为实用上有问题,标记为△符号;如果接合寿命为120小时以上且小于168小时,则判断为实用上没有问题,标记为○符号;如果接合寿命为168小时以上,则判断为优异,标记为◎符号。

(楔接合性的评价)

对于具有层叠有多个半导体元件的结构的器件,使用线径为φ15~20μm的接合线进行了楔接合。接合时的温度设为175℃、160℃、150℃,引线侧的电极材料使用了ag。接合条件设为相比于通常的条件降低了超声波的输出的低能量条件。对于接合后的样品,进行了1000处的楔接合部的观察,根据是否发生了不良来判定是否合格。在此,所谓不良,定义为接合线从电极剥离了的状态。在175℃下的楔接合中,如果发生了不良则判断为实用上有问题,标记为△符号;如果没有发生不良则判断为实用上没有问题,标记为○符号。在160℃下的楔接合中,如果没有发生不良则判断为优异,标记为◎符号,在150℃下的楔接合中,如果没有发生不良则判断为特别优异,标记为☆符号。

(球形成性的评价)

关于球形成性,使用市售的接合装置形成球,进行其外观观察来进行了评价。球的形成条件设为n2+5%h2气体。球的直径设为线的线径的1.5倍。在球的外观观察中使用了光学显微镜。球形成性,基于上述的评价方法,根据随机地选择的200个球之中的圆球性差的球的数量来判定。如果圆球性差的球的数量为3、4个,则判断为实用上没有问题,标记为○符号,如果为2个以下,则判断为优异,标记为◎符号。

(毛细管寿命的评价)

关于毛细管寿命的评价,是使用市售的接合装置将接合线接合后,进行毛细管的观察,根据磨损的有无来判定。接合线的线径设为20μm、接合的实行次数设为5000次。使用sem观察毛细管的尖端的孔,如果即使通过磨损而偏离了正圆形状也能够没有问题地使用,则判断为实用上没有问题,标记为○符号,如果维持了正圆形状,则判断为优异,标记为◎符号。

(球压接形状的评价)

球的压接形状,使用市售的焊线机对在si基板上成膜有厚度1.0μm的al膜的电极进行球接合,用光学显微镜从正上方观察,来进行评价。关于球的压溃形状的判定,如果压溃形状是接近于圆形的,则判定为良好;如果是椭圆形、花瓣状的形状,则判定为不良。用光学显微镜观察100处的球接合部,如果存在1~4个不良,则判断为实用上没有问题,标记为○符号;如果完全没有发生不良,则判断为特别优异,标记为◎符号。

(环形成性的评价)

环形成性,是使用市售的焊线机进行接合,观察环部分,来评价环彼此是否接触着。环长度设为2.5mm,环高度设为0.2mm。用光学显微镜观察所接合了的200根接合线的环部分,如果存在相邻的接合线接触了的部位,则判定为不良。如果存在1~4处的不良,则判断为实用上没有问题,标记为○,如果完全没有发生不良,则判定为特别优异,标记为◎符号。

表1示出记载了本发明涉及的接合线的组成等的特征和各个接合线的各评价结果的实施例。表2示出了比较例。

表1-3

与权利要求1相关的接合线是no.1、2、17~24、45、50~52、56、62~66、70~72、76~84。确认出能够满足对存储器用接合线所要求的球接合可靠性和楔接合性。

实施例1~84的接合线,具备芯材和形成于上述芯材的表面的被覆层,所述芯材含有总计为0.1~3.0原子%的ga、in和sn中的1种以上,余量包含ag和不可避免的杂质,所述被覆层含有pd和pt中的1种以上、或者pd和pt中的1种以上和ag,余量包含不可避免的杂质,上述被覆层的厚度为0.005~0.070μm,因此确认出同时满足球接合可靠性和楔接合性。与此相对,如比较例的no.1~14所示,在ga、in、sn的浓度在上述的范围以外、或者被覆层的厚度在上述的范围以外的情况下,确认出不能够同时满足球接合可靠性和楔接合性。

实施例3~6、8、10~15、17、19、20、22~32、35、36、38~65、67~80、82~84涉及的接合线,由于合金层的厚度相对于上述被覆层的厚度为10~60%,因此确认出球形成性优异。

实施例26、27、30、31涉及的接合线,由于含有15~50原子%的au的含au区域的厚度为0.001~0.050μm,因此确认出能够改善毛细管寿命。

实施例33~44、46~50、57~60涉及的接合线,由于在芯材中含有总计为0.1~0.7原子%的cu、pd、pt和au中的1种以上,因此确认出球压接形状的评价是特别优异的。

实施例3、4、9~16、34~38、48、49、54、55、68、69、74、75涉及的接合线,由于作为线整体含有总计为80~500原子ppm的b、p、ca、la、和se中的1种以上,因此确认出环形成性的评价是特别优异的。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1