电池模组和大容量电池的制作方法

文档序号:11290108阅读:263来源:国知局
电池模组和大容量电池的制造方法与工艺

本申请涉及电池技术领域,尤其是一种电池模组和大容量电池,特别是一种圆柱形锂离子电池模组以及由多个这种电池模组构成的圆柱形锂离子大容量电池。



背景技术:

锂离子可充电池是当前比能量最高,使用寿命最长的蓄电池,其技术已经成熟,生产量巨大,已走入人民生活的各个领域。现有的圆柱形锂离子电池模组一般包括全绝缘材质的且其上开设众多电池插装孔的电池夹具、分别嵌入各个电池插装孔中的众多电池串联片、同时嵌入各个电池插装孔中且与各个电池串联片接触连接的一张并联网、分别插设在各个电池插装孔中且与对应电池串联片相连(直接接触连接或焊接)的众多电池单体。实际应用时,这些电池单体依靠前述并联网相互并联,依靠前述串联片与插入电池夹具另一侧的电池单体实现串联,如此将多个电池模组组装在一起而形成大容量的锂离子电池。

但是锂离子电池模组的一些致命弱点并未从根本上彻底解决,如安全性,仍有起火爆炸的危险。从事该行业的工程技术人员正在采取多种措施消除这种危险。例如中国专利申请cn101369649a中提出了一种电池连接机构,用一种弹性连接片夹持圆柱电池的负极壳实现电连接,从而免除了对负极的焊接加工,消除了焊接热可能对电池核心构件造成的伤害。不仅提高了安全性,而且提高了电池组的加工性能和刚性,更适合于机械化操作。2012年河南科隆集团也提出了相似的专利,说明了此方法的有效性。但是此方法的弹簧片触点少,电阻仍嫌大。而且,向外扩展不方便,散热也不理想。

目前大多数企业做电池组装的方法依然是用薄金属连接片和电池的正负极焊接,达到串联和并联。连接片很薄,窄而长,导电能力差,连接电阻高,能耗大。而且能耗转为发热,促进电池温度上升。温度升高会缩短电池的使用寿命。更不要说负极焊接带来的潜在危险。

为了提高电池的散热能力也创造出很多很好的方法。例如张恒运等在中国专利申请cn201610144883.2中提出给电池加导热套筒和导热管,并用调温气体或液体将热量排出。使不同位置的电池在大电流充电时最高温度温差缩小到只有1.5℃.古焕隆等在中国专利申请cn2009102097104中提出在电池组内灌注导热胶,也有很好的效果。

王怀云在中国专利申请cn201220400944.4中提出,用薄金属板拉伸出多个电池插孔的并联框架,插孔周边带弹性爪固定电池负极,实现多电池并联。不仅连接方便且导热性良好。

用连接片焊接正负极做组合连接,连接电阻高。尤其是对负极焊接,焊接热传到电池内部,靠近焊接处有隔膜极板等核心构件,它们都怕热。若将它们烫伤,有可能在使用中发展成为内短路。而内短路有转化为热失控的危险,热失控是引起失火爆炸的重要原因。而且用连接片焊接的组件松散,操作中移动困难,大件更难于加工,不适合于机械化作业。

用弹簧片(带有弹爪的串联片)的方法去掉了负极焊接,但是用燕尾和燕尾槽向外扩展很麻烦,而且散热不太好。加导热套导热管和导热胶的散热效果很好,但这些附加件除了调温没有其他用处,提高了成本和复杂性。多孔并联框架既导电好又散热好,但是几十个孔同时冲压、拉伸,加工困难。而且由于结构限制,弹性爪很短,因此弹力很难控制,插入的电池也容易歪斜。



技术实现要素:

本申请目的是:针对上述技术问题,本申请提出一种结构紧凑而稳固、装配方便且散热良好的电池模组,同时还提出了一种由这种电池模组组装而成的大容量电池。

本申请的技术方案是:

一种电池模组,包括:

其上设置有呈矩阵分布的若干电池插装孔的电池夹具,

分别嵌设于各个所述电池插装孔中的若干电池串联片,

分别插设在所述各个所述电池插装孔中、且与所述电池串联片相连的若干电池单体;

所述电池夹具包括位于下层的绝缘层和位于上层的导电层,所述绝缘层为绝缘支架,所述绝缘支架上设置有呈矩阵分布的若干支架孔,所述导电层由若干个并列布置的金属并联条构成,所述金属并联条上贯通设置有一排沿着该金属并联条长度方向间隔分布的并联条孔,所述金属并联条与绝缘支架固定连接,所述支架孔和并联条孔共同形成所述电池插装孔,所述电池串联片与所述并联条孔的孔壁弹性接触连接。

本申请在上述技术方案的基础上,还包括以下优选方案:

构成所述导电层的各个所述金属并联条相互电连接。

相邻金属并联条之间的缝隙中填充有导电胶。

所述电池单体与所述并联条孔的孔壁接触连接。

所述金属并联条具有不小于5mm的厚度。

所述金属并联条为整体式结构,其由若干个成排布置的金属管焊接固定或烧结固定而成。

所述金属并联条由分体式结构的左半条和右半条对接而成,所述左半条和右半条的相对侧均设置有一排间隔布置的半圆形凹槽,所述左半条上的半圆形凹槽与所述右半条上的半圆形凹槽共同形成所述并联条孔。

所述金属并联条与绝缘支架是通过压紧连接块固定连接在一起的,所述压紧连接块包括条形的压条以及连接在该压条同一侧且沿压条长度方向间隔分布的若干固定塞,所述绝缘支架上开设有若干塞孔,所述固定塞穿过相邻金属并联条之间的间隙而固定插设于所述塞孔中,所述压条压在所述金属并联条的上部,从而实现金属并联条与绝缘支架的固定连接。

所述电池串联片包括环形的环片以及固定连接在该环片轴向底端的底片,所述环片的四周形成有径向向外凸出的外翻弹片和径向向内凸出的内翻弹片,所述环片顶端形成有电池插装导向片,所述外翻弹片与所述电池插装孔的孔壁弹性抵靠连接,所述内翻弹片与所述电池单体的外壁弹性抵靠连接。

一种大容量电池,包括至少两个上述结构的电池模组。

本申请的优点是:

1、本申请一改传统电池模组中电池夹具的结构,将其设置成上下分布的绝缘层和金属导电层两层结构,电池串联片装入电池插装孔中后与导电层自然接触而且接触面积大,从而借助金属导电层实现模组中各个电池的并联连接,而且金属导电层不同于传统的并联网,其具有一定的厚度,与电池及电池串联片的接触面积较大,可迅速吸收并传递电池的热量。同时,在电池温度较低时,金属导电层也能够将外界加热设备的热量迅速传输至电池。

2、取消了对电池负极端的焊接(负极端直接与电池串联片弹性卡紧接触连接),消除了焊接可能带来的伤害,提高了电池的安全性,并可以延长寿命。

3、电池模组中同层多个电池并联,有很高的容量。而两个电池模组上下插接,实现上下层电池的串联,可以无限增高,电压随之提高,组装使用十分方便。

4、本申请的电池模组结构紧凑而稳固,强度好,便于移动。用多个这种电池模组串并联组合而成的大容量电池(大模组)也有很好的刚性。由于在电池的外部有强度较高的金属材质的并联条防护固定,抗冲击震动能力强。

5、电池串联片上设置有多个外翻弹片和多个内翻弹片,多个内翻弹片和电池卡紧连接,接触点很多,导电截面大,电阻很小。多个外翻弹片与金属并联条卡接连接,接触点很多,导电截面和传热截面大,电阻很小,传热速度快。

6、金属并联条和每个电池单体连接不仅有好的导电性,且导热好。通过金属并联条可以将中间电池的热量迅速的传递到最末端,并且末端有散热引出片,可以和其他散热机构连接,提高了散热能力。在相邻的并联条之间通过导电胶体进行固定,增加了接触的可靠性,同时每个电池模组的一体性得到增强。

7、电池串联片和并联条的加工都是基于目前成熟的加工技术可以直接量产并且加工成本低。

8、适合于机械化作业,生产效率高。

附图说明

为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本申请实施例一中电池模组的总装图;

图2为本申请实施例一中电池模组的分解图;

图3为本申请实施例一中绝缘支架第一视角的立体结构示意图;

图4为本申请实施例一中绝缘支架第二视角的立体结构示意图;

图5为本申请实施例一中并联条的立体结构示意图;

图6为本申请实施例一中电池串联片的立体结构示意图;

图7为本申请实施例一中压紧连接块的立体结构示意图;

图8为本申请实施例二中电池模组的总装图;

图9为本申请实施例二中电池模组的分解图;

图10为本申请实施例二中绝缘支架第一视角的立体结构示意图;

图11为本申请实施例二中绝缘支架第二视角的立体结构示意图;

图12为本申请实施例二中并联条的分解结构示意图;

图13为本申请实施例二中电池串联片的立体结构示意图;

图14为本申请实施例二中压紧连接块的立体结构示意图;

其中:1-电池串联片,101-环片,101a-外翻弹片,101b-内翻弹片,101c-电池插装导向片,101d-下爪片,102-底片,102a-凸起,2-电池单体,3-绝缘支架,301-支架孔,302-塞孔,4-并联条,401-并联条孔,402-左半条,403-右半条,404-散热引出片,5-压紧连接块,501-压条,502-固定塞,502a-变形缝。

具体实施方式

以下结合具体实施例对上述方案做进一步说明。应理解,这些实施例是用于说明本申请而不限于限制本申请的范围。实施例中采用的实施条件可以根据具体厂家的条件做进一步调整,未注明的实施条件通常为常规实验中的条件。

本文中所说的上、下、左、右等指示方位的字词仅是针对所示结构在对应附图中位置而言。本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。

实施例一:

图1至图7示出了本申请这种电池模组的一个优选实施例,该电池模组为圆柱形的锂离子电池模组,其与传统电池模组相同的是,也包括电池夹具(行业内也称电池支架),电池夹具上制有呈矩阵分布的众多电池插装孔,每个电池插装孔中均嵌设有一个电池串联片1,而且每个电池插装孔中均插设一颗圆柱形的锂离子电池单体2。具体的,本实施例中,电池单体2的负极端插设在电池夹具的电池插装孔中,并且与电池插装孔中的电池串联片1直接接触连接(未焊接)。

本实施例的关键改进在于上述电池夹具采用了一种全新的结构形式,其包括位于下层的绝缘层和位于上层的导电层。其中:绝缘层为近似矩形的绝缘支架3,该绝缘支架3上设置有呈矩阵分布的众多支架孔301。导电层3由众多个并列布置且相互平行的金属并联条4构成,金属并联条4上贯通设置有一排沿着金属并联条长度方向间隔分布的并联条孔401。金属并联条4与绝缘支架3固定连接。支架孔301和并联条孔401共同形成所述电池插装孔,电池串联片1与并联条孔401的孔壁弹性接触连接。

上述绝缘支架3通常采用塑料材质。金属并联条4通常为铝制。

电池串联片1与金属并联条4的孔壁接触连接,而电池串联片1又与对应的电池单体2相连,如此使得连接在同一金属并联条4中的各个电池单体借助金属并联条4并联连接,从而省去了传统的并联网结构。而且,由于金属并联条4为金属材质且具有一定的厚度,其具有很好的导热和散热能力,能够快速吸收并向外传递各电池单体2的热量,从而大大提高了该电池模组的散热性能。

并且,金属并联条4的长度两端部具带有一平板结构的散热引出片404,实际应用时将该散热引出片404与外界散热机构(比如电池箱的箱体内壁)相连,以将其吸收的热量向外传递出去。而且,散热引出片404采用平板状结构,使得多个这种结构的电池模组串并联组合在一起而构成大容量电池时,相邻两电池模组依靠散热引出片相互支撑,保证大容量电池的结构稳定性。

进一步地,上述绝缘支架3的外轮廓为矩形,装配完成后,上述散热引出片404与绝缘支架3的外缘边平齐布置。

为了进一步提升该电池模组的散热性能,最好将电池单体2与并联条孔401的孔壁接触连接,而且最好保证金属并联条4的厚度(即沿上述电池插装孔轴线方向的厚度)不小于5mm。

为了使得图1中连接在同一电池夹具上的各个电池单体均并联连接,本实施例中,构成所述导电层的各个金属并联条4相互电连接。这些金属并联条4具体是以下述方式相互电连接的:在相邻金属并联条4之间的缝隙中填充有导电胶。当然,我们也可以通过相应的导电连接件将这些金属并联条4相互电连接,或者使这些金属并联条4相互紧靠而实现电连接。

本实施例中,每一根金属并联条4均为一整体式结构,其由成排布置的多个金属管烧结固定或者焊接固定而成。

本实施例中,所述金属并联条4与绝缘支架3是通过压紧连接块5固定连接在一起的。具体地,所述压紧连接块5包括长条形的压条501以及连接在该压条同一侧且沿压条长度方向间隔分布的众多固定塞502,绝缘支架3上开设多个塞孔302,所述固定塞502穿过相邻金属并联条4之间的间隙而固定插设于所述塞孔302中,压条501压在金属并联条4的上部,从而实现金属并联条4与绝缘支架3的固定连接。

上述固定塞502的头部为半球型结构,且该半球型结构上开设有至少一条变形缝502a。半球型结构的直径略大于塞孔302孔径。变形缝使得固定塞502头部的半球型结构具有一定的弹性变形能力,从而保证固定塞502头部的半球型结构能够顺利塞入塞孔内,而且使得半球型结构与塞孔紧密结合而很难拔出。

固定塞502具有与金属并联条4外表面相对应的外表面——内凹弧形面,如此使得固定塞能够与金属并联条4紧密贴合,固定塞刚好紧紧支撑在相邻两金属并联条4之间,以防止金属并联条4晃动。

上述压紧连接块5为塑料材质。压紧连接块5和绝缘支架3均为注塑成型。

而且,本实施例中电池串联片1也采用了一种全新的结构形式,其包括环形的环片101以及固定连接在该环片轴向底端的底片102,所述环片101的四周形成有径向向外凸出的多个外翻弹片101a以及径向向内凸出的多个内翻弹片101b。环片101轴向顶端还形成有电池插装导向片101c。在图1和图2中,所述外翻弹片101a与电池插装孔的孔壁弹性抵靠连接,所述内翻弹片101b与图中电池单体2的外壁弹性抵靠连接。电池插装导向片101c用于引导电池单体插入电池插装孔中。

更具体地,上述外翻弹片101a和内翻弹片101b通过环片101冲压而形成,外翻弹片101a的长度两端与环片101的本体结构连为一体,而外翻弹片101a的中部径向向外凸出。内翻弹片101b的长度两端与环片101的本体结构连为一体,而内翻弹片101b的中部径向向内凸出。

本文所说的“径向”,如无特别说明,均以环片101为参照。

上述的众多外翻弹片101a和众多内翻弹片101b沿圆周方向彼此交替布置。

为了方便上述电池串联片1的制作,本实施例中电池串联片1的环片101和底片102为分体式焊接结构,即环片101和底片102并非整体式结构,二者通过焊接方式固定连接在一起。具体地,环片101轴向底端形成有多个径向向内折弯的下爪片101d,下爪片101d与底片102焊接固定。

实际应用时,可配置多个图1所示的电池模组,将其中一个电池模组上各电池单体2的上端(正极端)插入另一个电池模组上电池夹具的下部、并与该另一个电池模组上电池夹具中的串联片连接(必要时可将二者焊接固定),如此实现两电池模组的串联连接。多个图1所示的电池模组串并联组合在一起而构成大容量锂离子电池。

这些图1中电池模组中的各个电池单体2依靠金属并联条4相互并联,依靠前述串联片与插入电池夹具另一侧的电池单体实现串联,如此将多个电池模组组装在一起而形成大容量的锂离子电池。

为了防止电池串联片1受到电池单体2的轴向抵压力而脱离电池插装孔,本实施例中,绝缘支架3上的支架孔301的孔壁处形成有一圈径向向内凸起的凸缘(支架孔301一端孔径较小而另一端孔径较大,对比图3和图4),该凸缘用于对电池单体和电池串联片进行限位,防止电池串联片1受到电池单体2的轴向抵压力而脱离电池插装孔。

因为上述凸缘的存在,如果底片102为平面结构,则其很难与电池正极端相接触(可参照图8和图9)。对此,本实施例在底片102的中部冲制有向下凸出的凸起102a,该凸起为圆形,以便插入图1中电池夹具下方的电池极端(通常为正极端)与该凸起102a良好接触。

实施例二:

图8至图14示出了本实施例这种电池模组的另一个优选实施例,其结构与实施一基本相同,主要不同之处在于:

第一,本实施例中,各电池单体2的正极端(而非实施例一中电池单体的负极端)插设在电池夹具的电池插装孔中,并且与电池插装孔中的电池串联片1焊接连接(而非实施例一中单独的接触连接),具体的,电池单体2的正极端与电池串联片1的底片102上的凸起102a焊接连接。

第二,本实施例中,金属并联条4不再采用实施一中的一体式结构,而是由分体式结构的左半条402和右半条403对接而成,所述左半条402和右半条403的相对侧均设置有一排间隔布置的半圆形凹槽,所述左半条402上的半圆形凹槽与所述右半条403上的半圆形凹槽共同形成所述并联条孔401。不难理解,将金属并联条4设置成由左半条402和右半条403对接而成的分体式结构,更加方便其在电池模组中的装配。

第三,本实施例中,金属并联条4的长度两端不再额外设置平板结构的散热引出片,而是将金属并联条4的长度两端制成平面结构,该平面与绝缘支架3的外缘边平齐布置。

上述实施例只为说明本申请的技术构思及特点,其目的在于让人们能够了解本申请的内容并据以实施,并不能以此限制本申请的保护范围。凡根据本申请主要技术方案的精神实质所做的等效变换或修饰,都应涵盖在本申请的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1