高压金属氧化物半导体元件及其制造方法与流程

文档序号:17653397发布日期:2019-05-15 21:42阅读:128来源:国知局

本发明涉及一种高压金属氧化物(metaloxidesemiconductor,mos)半导体元件,特别是指一种可提高崩溃防护电压且不影响导通电阻的高压金属氧化物半导体元件。本发明还涉及高压金属氧化物半导体元件的制造方法。



背景技术:

图1a、1b与1c分别显示一种现有技术的高压金属氧化物半导体元件(n型高压mos元件100)的俯视图与对应的剖面图及立体图。如图1a、1b与1c所示,高压mos元件100形成于半导体基板11,其中该半导体基板11于纵向上,具有相对的上表面11’与下表面11”。高压mos元件100包含:p型阱区12、绝缘氧化区13、n型漂移区14、栅极15、n型源极16以及n型漏极16’。

图2a、2b与2c分别显示一种现有技术的高压金属氧化物半导体元件(n型高压mos元件200)的俯视图与对应的剖面图及立体图。如图2a、2b与2c所示,高压mos元件200形成于半导体基板11。高压mos元件200包含:p型阱区22、绝缘氧化区13、场氧化区13’、本体区24、栅极25、源极16、漏极16’以及本体极27。

图1a、1b与1c与图2a、2b与2c中所示的现有技术,其缺点在于,n型高压金属氧化物半导体元件100及200于操作时,由于导通电阻与崩溃防护电压,是两难的权衡(tradeoff)关系,提高崩溃防护电压,会导致导通电阻提高;降低导通电阻,会降低崩溃防护电压。此种状况,在高压mos元件,为本领域技术人员所熟知,在此不予赘述。

本发明相较于图1a、1b与1c与图2a、2b与2c的现有技术,可提高崩溃防护电压且不影响导通电阻,因而可降低成本或是增加效率,或扩大其应用范围。



技术实现要素:

本发明的目的在于克服现有技术的不足与缺陷,提出一种高压金属氧化物半导体元件及其制造方法,可提高崩溃防护电压且不影响导通电阻,因而可降低成本或是增加效率,或扩大其应用范围。

为了实现上述发明目的,就其中一个观点言,本发明提供了一种高压金属氧化物半导体(metaloxidesemiconductor,mos)元件,形成于一半导体基板,其中该半导体基板于一纵向上,具有相对的一上表面与一下表面,该高压mos元件包含:一阱区,具有一第一导电型,于该纵向上,形成于该上表面下方并连接于该上表面;一漂移区,具有一第二导电型,于该纵向上,形成于该上表面下方并连接于该上表面,且该漂移区完全位于该阱区上,且于一横向上,该漂移区与该阱区连接;一栅极,于该纵向上,形成于该上表面上,且部分该栅极堆叠并连接部分该阱区的正上方,且该栅极另一部分堆叠并连接部分该漂移区的正上方;一源极,具有该第二导电型,于该纵向上,形成于该上表面下方并接触于该上表面,于该横向上邻接于该阱区,且该源极连接于该栅极的一第一侧下方;一漏极,具有该第二导电型,于该纵向上,形成于该上表面下方并接触于该上表面,且于该横向上邻接于该漂移区,与该源极由该阱区以及该漂移区隔开,且于该横向上,该漏极位于该栅极的一第二侧外,与该源极位于该栅极的不同侧;以及多个埋柱(buriedcolumn),具有该第一导电型,于该纵向上,形成于该上表面下方一预设距离之下,并不接触于该上表面,且该漂移区包围每一埋柱的至少一部分,使该多个埋柱与该漂移区交错排列。

在一较佳实施例中,该高压mos元件还包含一深阱区,具有该第一导电型,于该纵向上,形成于该阱区与该漂移区之下,且该深阱区与该多个埋柱连接。

在一较佳实施例中,其中该多个埋柱与介于该阱区与该漏极间的该漂移区,于一不导通操作时,完全耗尽。

在一种较佳实施例中,该预设距离大于0.1微米(μm)。

就另一个观点言,本发明还提供了一种高压金属氧化物半导体(metaloxidesemiconductor,mos)元件制造方法,包含:提供一半导体基板,于一纵向上,具有相对的一上表面与一下表面;形成一阱区于该上表面下方并连接于该上表面,该阱区具有一第一导电型;形成一漂移区于该上表面下方并连接于该上表面,且该漂移区完全位于该阱区上,该漂移区具有一第二导电型,且于一横向上,该漂移区与该阱区连接;形成一栅极于该上表面上,且部分该栅极堆叠并连接部分该阱区的正上方,且该栅极另一部分堆叠并连接部分该漂移区的正上方;形成一源极于该上表面下方并接触于该上表面,该源极具有该第二导电型,且于该横向上邻接于该阱区,且该源极连接于该栅极的一第一侧下方;形成一漏极于该上表面下方并接触于该上表面,该漏极具有该第二导电型,且于该横向上邻接于该漂移区,且该漏极与该源极由该阱区以及该漂移区隔开,且于该横向上,该漏极位于该栅极的一第二侧外,与该源极位于该栅极的不同侧;以及形成多个埋柱(buriedcolumn)于该上表面下方一预设距离之下,并不接触于该上表面,该埋柱具有该第一导电型,且该漂移区包围每一埋柱的至少一部分,使该多个埋柱与该漂移区交错排列。

在一较佳实施例中,该高压mos元件制造方法还包含:形成一深阱区于该阱区与该漂移区之下,该深阱区具有该第一导电型,且该深阱区与该多个埋柱连接。

在一较佳实施例中,其中该多个埋柱与介于该阱区与该漏极间的该漂移区,于一不导通操作时,完全耗尽。

在一种较佳实施例中,该预设距离大于0.1微米(μm)。

就另一个观点言,本发明还提供了一种高压金属氧化物半导体(metaloxidesemiconductor,mos)元件,形成于一半导体基板,其中该半导体基板于一纵向上,具有相对的一上表面与一下表面,该高压mos元件包含:一本体区,具有一第一导电型,于该纵向上,形成于该上表面下方并连接于该上表面;一漂移阱区,具有一第二导电型,于该纵向上,形成于该上表面下方并连接于该上表面,且该本体区完全位于该漂移阱区上,且于一横向上,该漂移阱区与该本体区连接;一栅极,于该纵向上,形成于该上表面上,且部分该栅极堆叠并连接部分该本体区的正上方,且该栅极另一部分堆叠并连接部分该漂移阱区的正上方;一源极,具有该第二导电型,于该纵向上,形成于该上表面下方并接触于该上表面,于该横向上邻接于该本体区,且该源极连接于该栅极的一第一侧下方;一漏极,具有该第二导电型,于该纵向上,形成于该上表面下方并接触于该上表面,且于该横向上邻接于该漂移阱区,与该源极由该本体区以及该漂移阱区隔开,且于该横向上,该漏极位于该栅极的一第二侧外,与该源极位于该栅极的不同侧;以及多个埋柱(buriedcolumn),具有该第一导电型,于该纵向上,形成于该上表面下方一预设距离之下,并不接触于该上表面,且该漂移阱区包围每一埋柱的至少一部分,使该多个埋柱与该漂移阱区交错排列。

在一较佳实施例中,该高压mos元件还包含一深阱区,具有该第一导电型,于该纵向上,形成于该漂移阱区之下,且该深阱区与该多个埋柱连接。

在一较佳实施例中,该高压mos元件还包含一场氧化区,于该纵向上,形成于该上表面上,且部分该栅极堆叠并连接部分该场氧化区正上方。

在一较佳实施例中,该高压mos元件还包含一本体极,具有该第一导电型,于该纵向上,形成于该上表面下方并连接于该上表面,并连接于该本体区,以作为该本体区的电气接点。

在一较佳实施例中,其中该多个埋柱与介于该本体区与该漏极间的该漂移阱区,于一不导通操作时,完全耗尽。

在一种较佳实施例中,该预设距离大于0.1微米(μm)。

就另一个观点言,本发明还提供了一种高压金属氧化物半导体(metaloxidesemiconductor,mos)元件制造方法,包含:提供一半导体基板,于一纵向上,具有相对的一上表面与一下表面;形成一本体区于该上表面下方并连接于该上表面,该本体区具有一第一导电型;形成一漂移阱区于该上表面下方并连接于该上表面,该漂移阱区具有一第二导电型,且该本体区完全位于该漂移阱区上,且于一横向上,该漂移阱区与该本体区连接;形成一栅极于该上表面上,且部分该栅极堆叠并连接部分该本体区的正上方,且该栅极另一部分堆叠并连接部分该漂移阱区的正上方;形成一源极于该上表面下方并接触于该上表面,该源极具有该第二导电型,且于该横向上邻接于该本体区,且该源极连接于该栅极的一第一侧下方;形成一漏极于该上表面下方并接触于该上表面,该漏极具有该第二导电型,且于该横向上邻接于该漂移阱区,且该漏极与该源极由该本体区以及该漂移阱区隔开,且于该横向上,该漏极位于该栅极的一第二侧外,与该源极位于该栅极的不同侧;以及形成多个埋柱(buriedcolumn)于该上表面下方一预设距离之下,并不接触于该上表面,该埋柱具有该第一导电型,且该漂移阱区包围每一埋柱的至少一部分,使该多个埋柱与该漂移阱区交错排列。

在一较佳实施例中,该高压mos元件制造方法还包含以下步骤:形成一深阱区于该漂移阱区之下,该深阱区具有该第一导电型,且该深阱区与该多个埋柱连接。

在一较佳实施例中,该高压mos元件制造方法还包含以下步骤:形成一场氧化区于该上表面上,且部分该栅极堆叠并连接部分该场氧化区正上方。

在一较佳实施例中,该高压mos元件制造方法还包含以下步骤:形成一本体极于该上表面下方并连接于该上表面,并连接于该本体区,以作为该本体区的电气接点。

在一较佳实施例中,该多个埋柱与介于该本体区与该漏极间的该漂移阱区,于一不导通操作时,完全耗尽。

以下通过具体实施例详加说明,应当更容易了解本发明的目的、技术内容、特点及其所实现的功效。

附图说明

图1a、1b与1c分别显示一种现有技术的高压金属氧化物半导体元件的俯视示意图与对应的剖面示意图及立体图;

图2a、2b与2c分别显示本发明的高压金属氧化物半导体元件的一种实施例的俯视示意图与对应的剖面示意图及立体图;

图3a-3c显示本发明的第一个实施例;

图4a-4c显示本发明的第二个实施例;

图5a-5c显示本发明的第三个实施例;

图6a与6b显示本发明的第四个实施例;

图7a与7b显示本发明的第五个实施例;

图8a与8b显示本发明的第六个实施例;

图9a与9b显示本发明的第七个实施例;

图10a-10l显示本发明的第八个实施例;

图11a-11l显示本发明的第九个实施例。

图中符号说明

100,200,300,400,500,600,700,800,900,1100高压mos元件

11半导体基板

11’上表面

11”下表面

12阱区

13绝缘氧化区

13’场氧化区

13a操作区

14漂移区

15,25栅极

16源极

16’漏极

22漂移阱区

24本体区

27本体极

38深阱区

39,49埋柱

a-a’剖线

d预设距离

s1第一侧

s2第二侧

具体实施方式

本发明中的附图均属示意,主要意在表示工艺步骤以及各层之间的上下次序关系,至于形状、厚度与宽度则并未依照比例绘制。

请参阅图3a-3c,图中分别显示根据本发明的高压金属氧化物半导体元件的一种实施例(高压mos元件300)的俯视图与对应的剖面图(图3b对应于俯视图的剖线a-a’)及立体图图3c。如图3a、3b与3c所示,高压mos元件300形成于一半导体基板11,其于一纵向上(如图3b中的虚线箭头方向,下同),具有相对的一上表面11’与一下表面11”。高压mos元件300包含:阱区12、绝缘氧化区13、漂移区14、栅极15、源极16、漏极16’以及埋柱39。

请继续参阅图3a、3b与3c,其中阱区12具有第一导电型,形成于半导体基板11中,且于纵向上,位于上表面11’下方并连接于该上表面11’。绝缘氧化区13形成于上表面11’上,用以定义高压mos元件300的操作区13a,其中,操作区13a是指在导通与不导通的操作中,施加电压与电流的主要范围。漂移区14具有第二导电型,于纵向上,位于上表面11’下方并连接于该上表面11’,且漂移区14完全位于阱区12上;且于横向上(如图3b中的实线箭头方向,下同),漂移区14与阱区12连接。栅极15形成于上表面11’上,且于纵向上,部分栅极15堆叠并接触于部分阱区12的正上方,且另一部分栅极15堆叠于部分漂移区14的正上方;需说明的是,栅极15在纵向垂直投影仅与阱区12重叠之处,为高压mos元件300的沟道区。源极16具有第二导电型,于纵向上,形成于上表面11’下方并接触于上表面11’,于横向上邻接于阱区12,且源极16连接于栅极15的第一侧s1下方。漏极16’具有第二导电型,于纵向上,形成于上表面11’下方并接触于上表面11’,且于横向上邻接于漂移区14,与源极16由阱区12以及漂移区14隔开,且于横向上,漏极16’位于栅极15的第二侧s2外,与源极16位于栅极15的不同侧。

请继续参阅图3a、3b与3c,多个埋柱39具有第一导电型,于纵向上,形成于上表面11’下方一预设距离d之下,并不接触于上表面11’,如图所示,且漂移区14包围每一埋柱39的至少一部分,使多个埋柱39与漂移区14交错排列。一种较佳的实施方式,多个埋柱39与介于阱区12与漏极16’间的漂移区14,于不导通操作时,完全耗尽。

值得注意的是,本发明优于现有技术的其中一个技术特征在于:根据本发明,以高压mos元件300为例,第一导电型多个埋柱39与第二导电型漂移区14在具有高反偏电压差(reversebiasvoltage)时,可通过相邻的两埋柱39与其间隔中的漂移区14的耗尽(depletion)效应,而产生超结(superjunction),也就是,两相邻的埋柱39与其间隔中的漂移区14在此情况下全部成为耗尽区,如此一来,可承受较高的电压,提高崩溃防护电压;且在另一方面,由于埋柱39与上表面11’间具有预设距离d,使得高压mos元件300在导通操作时的导通电流不因埋柱39而降低,这使得导通电阻不受影响,即,根据本发明的高压mos元件300相较于现有技术,可以提高崩溃防护电压又不致影响导通电阻,因而可降低成本或是增加效率,或扩大其应用范围。一种较佳的实施方式中,埋柱39与阱区12电连接,或埋柱39由阱区12提供偏压。一种较佳的实施方式中,预设距离d大于0.1微米(μm)。

需说明的是,前述的“第一导电型”与“第二导电型”是指于高压mos元件中,以不同导电型的杂质掺杂于半导体组成区域(例如但不限于前述的漂移区、本体区、本体连接区、源极、漏极与栅极等区域)内,使得半导体组成区域成为第一或第二导电型(例如但不限于第一导电型为n型,而第二导电型为p型,或反之亦可)。另外需说明的是,上表面11’是指半导体基板11在纵向上的上缘的表面,高压mos元件导通操作时会有电流流经,上表面11’会受到高压mos元件各部分区域影响,如氧化区位置,而在形貌上会有高低起伏。

此外需说明的是,所谓的高压mos元件,是指于正常操作时,施加于漏极的电压高于一特定的电压,例如5v或其他更高的电压;本实施例中,高压mos元件的漏极16’与前述的通道区之间,以漂移区14隔开,且漂移区14与漏极16’的横向距离根据正常操作时所承受的操作电压而调整,因而可操作于前述较高的特定电压。

图4a-4c显示本发明的第二个实施例。图4a-4c分别显示根据本发明的高压金属氧化物半导体元件的一种实施例(高压mos元件400)的俯视图与对应的剖面图(图4b对应于俯视图的剖线a-a’)及立体图图4c。如图4a、4b与4c所示,高压mos元件400形成于半导体基板11,其于纵向上(如图4b中的虚线箭头方向,下同),具有相对的上表面11’与下表面11”。高压mos元件400包含:阱区12、绝缘氧化区13、漂移区14、栅极15、源极16、漏极16’、深阱区38以及埋柱49。

请继续参阅图4a、4b与4c,其中阱区12具有第一导电型,形成于半导体基板11中,且于纵向上,位于上表面11’下方并连接于该上表面11’。绝缘氧化区13形成于上表面11’上,用以定义高压mos元件400的操作区13a,其中,操作区13a是指在导通与不导通的操作中,施加电压与电流的主要范围。漂移区14具有第二导电型,于纵向上,位于上表面11’下方并连接于该上表面11’,且漂移区14完全位于阱区12上;且于横向上(如图4b中的实线箭头方向,下同),漂移区14与阱区12连接。栅极15形成于上表面11’上,且于纵向上,部分栅极15堆叠并接触于部分阱区12的正上方,且另一部分栅极15堆叠于部分漂移区14的正上方;需说明的是,栅极15在纵向垂直投影仅与阱区12重叠之处,为高压mos元件400的沟道区。源极16具有第二导电型,于纵向上,形成于上表面11’下方并接触于上表面11’,于横向上邻接于阱区12,且源极16连接于栅极15的第一侧s1下方。漏极16’具有第二导电型,于纵向上,形成于上表面11’下方并接触于上表面11’,且于横向上邻接于漂移区14,与源极16由阱区12以及漂移区14隔开,且于横向上,漏极16’位于栅极15的第二侧s2外,与源极16位于栅极15的不同侧。

请继续参阅图4a、4b与4c,深阱区38具有第一导电型,于纵向上,形成于阱区12与漂移区14之下并与阱区12上下连接,且深阱区38与多个埋柱49连接。多个埋柱49具有第一导电型,于纵向上,形成于上表面11’下方一预设距离d之下,并不接触于上表面11’,如图所示,且漂移区14包围每一埋柱49的一部分,使多个埋柱49与漂移区14交错排列。一种较佳的实施方式中,预设距离d大于0.1微米(μm)。

本实施例与第一个实施例不同之处,首先,在于第一个实施例的多个埋柱39沿着横向上平行排列,而在本实施例的多个埋柱49则是沿着宽度方向(如图4a与4c图中的虚线箭头方向,下同)平行排列。此外,本实施例高压mos元件400相较于高压mos元件300还包含深阱区38,可以与埋柱49电连接,以偏压埋柱49。一种较佳的实施方式,多个埋柱49与介于阱区12与漏极16’间的漂移区14,于不导通操作时,完全耗尽。

图5a-5c显示本发明的第三个实施例。图5a-5c分别显示根据本发明的高压金属氧化物半导体元件的一种实施例(高压mos元件500)的俯视图与对应的剖面图(图5b对应于俯视图的剖线a-a’)及立体图图5c。如图5a、5b与5c所示,高压mos元件500形成于半导体基板11,其于纵向上(如图5b中的虚线箭头方向,下同),具有相对的上表面11’与下表面11”。高压mos元件500包含:漂移阱区22、绝缘氧化区13、本体区24、栅极15、源极16、漏极16’、本体极27、深阱区38以及埋柱39。

请继续参阅图5a、5b与5c,其中漂移阱区22具有第二导电型,形成于半导体基板11中,且于纵向上,位于上表面11’下方并连接于该上表面11’。绝缘氧化区13形成于上表面11’上,用以定义高压mos元件500的操作区13a,其中,操作区13a是指在导通与不导通的操作中,施加电压与电流的主要范围。本体区24具有第一导电型,于纵向上,位于上表面11’下方并连接于该上表面11’,且本体区24完全位于漂移阱区22上,且于横向上(如图5b图中的实线箭头方向,下同),漂移阱区22与本体区24连接。栅极15形成于上表面11’上,且于纵向上,部分栅极15堆叠并接触于部分漂移阱区22的正上方,且另一部分栅极15堆叠于部分本体区24的正上方;需说明的是,栅极15在纵向垂直投影仅与本体区24重叠之处,为高压mos元件500的沟道区。源极16具有第二导电型,于纵向上,形成于上表面11’下方并接触于上表面11’,于横向上邻接于本体区24,且源极16连接于栅极15的第一侧s1下方。漏极16’具有第二导电型,于纵向上,形成于上表面11’下方并接触于上表面11’,且于横向上邻接于漂移阱区22,与源极16由漂移阱区22以及本体区24隔开,且于横向上,漏极16’位于栅极15的第二侧s2外,与源极16位于栅极15的不同侧。

请继续参阅图5a、5b与5c,深阱区38具有第一导电型,于纵向上,形成于漂移阱区22与本体区24之下并与漂移阱区22上下连接,且深阱区38与多个埋柱39连接。多个埋柱39具有第一导电型,于纵向上,形成于上表面11’下方一预设距离d之下,并不接触于上表面11’,如图所示,且漂移阱区22包围每一埋柱39的至少一部分,使多个埋柱39与漂移阱区22交错排列。一种较佳的实施方式中,埋柱39与深阱区38电连接,或埋柱39由深阱区38提供偏压。一种较佳的实施方式中,预设距离d大于0.1微米(μm)。在一种较佳的实施例中,多个埋柱39与介于本体区24与漏极16’间的漂移阱区22,于不导通操作时,完全耗尽。本体极27具有第一导电型,于纵向上,形成于上表面11’下方并连接于上表面11’,并连接于本体区24,以作为本体区24的电气接点。

本实施例与第一个实施例不同之处,首先,在于第一个实施例具有阱区12与漂移区14,漂移区14完全位于阱区12上,而在本实施例的本体区24完全位于漂移阱区22上。此外,本实施例高压mos元件500相较于高压mos元件300还包含深阱区38,可以与埋柱39电连接,以偏压埋柱39。

图6a与6b显示本发明的第四个实施例。图6a与6b分别显示根据本发明的高压金属氧化物半导体元件的一种实施例(高压mos元件600)的俯视图与对应的剖面图(图6b对应于俯视图的剖线a-a’)。如图6a与6b所示,高压mos元件600形成于半导体基板11,其于纵向上(如图6b图中的虚线箭头方向,下同),具有相对的上表面11’与下表面11”。高压mos元件600包含:漂移阱区22、绝缘氧化区13、本体区24、栅极15、源极16、漏极16’、本体极27以及埋柱39。

请继续参阅图6a与6b,其中漂移阱区22具有第二导电型,形成于半导体基板11中,且于纵向上,位于上表面11’下方并连接于该上表面11’。绝缘氧化区13形成于上表面11’上,用以定义高压mos元件600的操作区13a,其中,操作区13a是指在导通与不导通的操作中,施加电压与电流的主要范围。本体区24具有第一导电型,于纵向上,位于上表面11’下方并连接于该上表面11’,且本体区24完全位于漂移阱区22上,且于横向上(如图6b中的实线箭头方向,下同),漂移阱区22与本体区24连接。栅极15形成于上表面11’上,且于纵向上,部分栅极15堆叠并接触于部分漂移阱区22的正上方,且另一部分栅极15堆叠于部分本体区24的正上方;需说明的是,栅极15在纵向垂直投影仅与本体区24重叠之处,为高压mos元件600的沟道区。源极16具有第二导电型,于纵向上,形成于上表面11’下方并接触于上表面11’,于横向上邻接于本体区24,且源极16连接于栅极15的第一侧s1下方。漏极16’具有第二导电型,于纵向上,形成于上表面11’下方并接触于上表面11’,且于横向上邻接于漂移阱区22,与源极16由漂移阱区22以及本体区24隔开,且于横向上,漏极16’位于栅极15的第二侧s2外,与源极16位于栅极15的不同侧。

请继续参阅图6a与6b,多个埋柱49具有第一导电型,于纵向上,形成于上表面11’下方一预设距离d之下,并不接触于上表面11’,如图所示,且漂移阱区22包围每一埋柱49的至少一部分,使多个埋柱49与漂移阱区22交错排列。一种较佳的实施方式中,埋柱49与本体区24电连接,或埋柱39由本体区24提供偏压。一种较佳的实施方式中,预设距离d大于0.1微米(μm)。在一种较佳的实施例中,多个埋柱49与介于本体区24与漏极16’间的漂移阱区22,于不导通操作时,完全耗尽。本体极27具有第一导电型,于纵向上,形成于上表面11’下方并连接于上表面11’,并连接于本体区24,以作为本体区24的电气接点。

本实施例与第三个实施例不同之处,首先,在于第三个实施例具有深阱区38,而在本实施例的高压mos元件600不包含深阱区。此外,本实施例高压mos元件600相较于高压mos元件500,本体区24与埋柱49在横向上连接,可以与埋柱49电连接,以偏压埋柱49。再者,第三个实施例的多个埋柱39沿着横向上平行排列,而在本实施例的多个埋柱49则是沿着宽度方向平行排列。

图7a与7b显示本发明的第五个实施例。图7a与7b分别显示根据本发明的高压金属氧化物半导体元件的一种实施例(高压mos元件700)的俯视图与对应的剖面图(图7b对应于俯视图的剖线a-a’)。如图7a与7b所示,高压mos元件700形成于半导体基板11,其于纵向上(如图7b图中的虚线箭头方向,下同),具有相对的上表面11’与下表面11”。高压mos元件700包含:漂移阱区22、绝缘氧化区13、本体区24、栅极15、源极16、漏极16’、本体极27、深阱区38以及埋柱49。

请继续参阅图7a与7b,深阱区38具有第一导电型,于纵向上,形成于漂移阱区22与本体区24之下并与漂移阱区22上下连接,且深阱区38与多个埋柱49连接。其中漂移阱区22具有第二导电型,形成于半导体基板11中,且于纵向上,位于上表面11’下方并连接于该上表面11’。绝缘氧化区13形成于上表面11’上,用以定义高压mos元件700的操作区13a,其中,操作区13a是指在导通与不导通的操作中,施加电压与电流的主要范围。本体区24具有第一导电型,于纵向上,位于上表面11’下方并连接于该上表面11’,且本体区24完全位于漂移阱区22上,且于横向上(如图7b中的实线箭头方向,下同),漂移阱区22与本体区24连接。栅极15形成于上表面11’上,且于纵向上,部分栅极15堆叠并接触于部分漂移阱区22的正上方,且另一部分栅极15堆叠于部分本体区24的正上方;需说明的是,栅极15在纵向垂直投影仅与本体区24重叠之处,为高压mos元件700的沟道区。源极16具有第二导电型,于纵向上,形成于上表面11’下方并接触于上表面11’,于横向上邻接于本体区24,且源极16连接于栅极15的第一侧s1下方。漏极16’具有第二导电型,于纵向上,形成于上表面11’下方并接触于上表面11’,且于横向上邻接于漂移阱区22,与源极16由漂移阱区22以及本体区24隔开,且于横向上,漏极16’位于栅极15的第二侧s2外,与源极16位于栅极15的不同侧。

请继续参阅图7a与7b,深阱区38具有第一导电型,于纵向上,形成于漂移阱区22与本体区24之下并与漂移阱区22上下连接,且深阱区38与多个埋柱49连接。多个埋柱49具有第一导电型,于纵向上,形成于上表面11’下方一预设距离d之下,并不接触于上表面11’,如图所示,且漂移阱区22包围每一埋柱49的至少一部分,使多个埋柱49与漂移阱区22交错排列。一种较佳的实施方式中,埋柱49与深阱区38电连接,或埋柱49由深阱区38提供偏压。一种较佳的实施方式中,预设距离d大于0.1微米(μm)。在一种较佳的实施例中,多个埋柱49与介于本体区24与漏极16’间的漂移阱区22,于不导通操作时,完全耗尽。本体极27具有第一导电型,于纵向上,形成于上表面11’下方并连接于上表面11’,并连接于本体区24,以作为本体区24的电气接点。

本实施例与第三个实施例不同之处,在于第三个实施例的多个埋柱39沿着横向上平行排列,而在本实施例的多个埋柱49则是沿着宽度方向平行排列。

图8a与8b显示本发明的第六个实施例。图8a与8b分别显示根据本发明的高压金属氧化物半导体元件的一种实施例(高压mos元件800)的俯视图与对应的剖面图(图8b对应于俯视图的剖线a-a’)。如图8a与8b所示,高压mos元件800形成于半导体基板11,其于纵向上(如图8b中的虚线箭头方向,下同),具有相对的上表面11’与下表面11”。高压mos元件800包含:漂移阱区22、绝缘氧化区13、场氧化区13’、本体区24、栅极25、源极16、漏极16’、本体极27以及埋柱49。

请继续参阅图8a与8b,其中漂移阱区22具有第二导电型,形成于半导体基板11中,且于纵向上,位于上表面11’下方并连接于该上表面11’。绝缘氧化区13形成于上表面11’上,用以定义高压mos元件800的操作区13a,其中,操作区13a是指在导通与不导通的操作中,施加电压与电流的主要范围。场氧化区13’于纵向上,形成于上表面11’上,且部分栅极25堆叠并连接部分场氧化区13’正上方。本体区24具有第一导电型,于纵向上,位于上表面11’下方并连接于该上表面11’,且本体区24完全位于漂移阱区22上,且于横向上(如图8b中的实线箭头方向,下同),漂移阱区22与本体区24连接。栅极25形成于上表面11’上,且于纵向上,部分栅极25堆叠并接触于部分漂移阱区22的正上方,且另一部分栅极25堆叠于部分本体区24的正上方;需说明的是,栅极25在纵向垂直投影仅与本体区24重叠之处,为高压mos元件800的沟道区。源极16具有第二导电型,于纵向上,形成于上表面11’下方并接触于上表面11’,于横向上邻接于本体区24,且源极16连接于栅极15的第一侧s1下方。漏极16’具有第二导电型,于纵向上,形成于上表面11’下方并接触于上表面11’,且于横向上邻接于漂移阱区22,与源极16由漂移阱区22以及本体区24隔开,且于横向上,漏极16’位于栅极15的第二侧s2外,与源极16位于栅极15的不同侧。

请继续参阅图8a与8b,多个埋柱49具有第一导电型,于纵向上,形成于上表面11’下方一预设距离d之下,并不接触于上表面11’(上表面11’如图8b中粗黑虚线所示意),如图所示,且漂移阱区22包围每一埋柱49的至少一部分,使多个埋柱49与漂移阱区22交错排列。一种较佳的实施方式中,埋柱49与本体区24电连接,或埋柱39由本体区24提供偏压。一种较佳的实施方式中,预设距离d大于0.1微米(μm)。在一种较佳的实施例中,多个埋柱49与介于本体区24与漏极16’间的漂移阱区22,于不导通操作时,完全耗尽。本体极27具有第一导电型,于纵向上,形成于上表面11’下方并连接于上表面11’,并连接于本体区24,以作为本体区24的电气接点。

本实施例与第四个实施例不同之处,首先,在于相较第三个实施例,本实施例的高压mos元件800还包含场氧化区13’。此外,本实施例高压mos元件800中,部分栅极25堆叠并连接部分场氧化区13’正上方。

图9a与9b显示本发明的第七个实施例。图9a与9b分别显示根据本发明的高压金属氧化物半导体元件的一种实施例(高压mos元件900)的俯视图与对应的剖面图(图9b对应于俯视图的剖线a-a’)。如图9a与9b所示,高压mos元件900形成于半导体基板11,其于纵向上(如图9b中的虚线箭头方向,下同),具有相对的上表面11’与下表面11”。高压mos元件900包含:漂移阱区22、绝缘氧化区13、场氧化区13’、本体区24、栅极25、源极16、漏极16’、本体极27、深阱区38以及埋柱39。

请继续参阅图9a与9b,其中深阱区38具有第一导电型,于纵向上,形成于漂移阱区22与本体区24之下并与漂移阱区22上下连接,且深阱区38与多个埋柱39连接。漂移阱区22具有第二导电型,形成于半导体基板11中,且于纵向上,位于上表面11’下方并连接于该上表面11’。绝缘氧化区13形成于上表面11’上,用以定义高压mos元件900的操作区13a,其中,操作区13a是指在导通与不导通的操作中,施加电压与电流的主要范围。场氧化区13’于纵向上,形成于上表面11’上,且部分栅极25堆叠并连接部分场氧化区13’正上方。本体区24具有第一导电型,于纵向上,位于上表面11’下方并连接于该上表面11’,且本体区24完全位于漂移阱区22上,且于横向上(如图9b中的实线箭头方向,下同),漂移阱区22与本体区24连接。栅极25形成于上表面11’上,且于纵向上,部分栅极25堆叠并接触于部分漂移阱区22的正上方,且另一部分栅极25堆叠于部分本体区24的正上方;需说明的是,栅极25在纵向垂直投影仅与本体区24重叠之处,为高压mos元件900的沟道区。源极16具有第二导电型,于纵向上,形成于上表面11’下方并接触于上表面11’,于横向上邻接于本体区24,且源极16连接于栅极15的第一侧s1下方。漏极16’具有第二导电型,于纵向上,形成于上表面11’下方并接触于上表面11’,且于横向上邻接于漂移阱区22,与源极16由漂移阱区22以及本体区24隔开,且于横向上,漏极16’位于栅极15的第二侧s2外,与源极16位于栅极15的不同侧。

请继续参阅图9a与9b,多个埋柱39具有第一导电型,于纵向上,形成于上表面11’下方一预设距离d之下,并不接触于上表面11’(上表面11’如图9b中粗黑虚线所示意),如图所示,且漂移阱区22包围每一埋柱49的至少一部分,使多个埋柱39与漂移阱区22交错排列。一种较佳的实施方式中,埋柱39与深阱区38电连接,或埋柱39由深阱区38提供偏压。一种较佳的实施方式中,预设距离d大于0.1微米(μm)。本体极27具有第一导电型,于纵向上,形成于上表面11’下方并连接于上表面11’,并连接于本体区24,以作为本体区24的电气接点。

本实施例与第六个实施例不同之处,首先,在于本实施例高压mos元件900相较于高压mos元件800还包含深阱区38,可以与埋柱39电连接,以偏压埋柱39。此外,本实施例的多个埋柱39沿着横向上平行排列,而在第六实施例的多个埋柱49则是沿着宽度方向平行排列。

图10a-10l显示本发明的第八个实施例。图10a-10l显示根据本发明的高压mos元件(高压mos元件300)制造方法的俯视及剖视示意图。首先,如俯视示意图图10a与剖视示意图图10b所示(图10b对应于俯视图图10a的剖线a-a’),提供半导体基板11并形成阱区12。其中,半导体基板11例如但不限于为p型硅基板,当然也可以为其他半导体基板。半导体基板11于一纵向(如图中的虚线箭头方向)上,具有相对的一上表面11’与一下表面11”。阱区12具有第一导电型,形成于半导体基板11中,且于纵向上,位于上表面11’下方并连接于该上表面11’,形成阱区12的方式,例如但不限于以离子植入工艺步骤所形成。

接着,如俯视示意图图10c与剖视示意图图10d所示(图10d对应于俯视图图10c的剖线a-a’),形成绝缘氧化区13于上表面11’上(上表面11’如图10d中粗黑虚线所示意),用以定义高压mos元件300的操作区13a,其中,操作区13a是指在导通与不导通的操作中,施加电压与电流的主要范围。

接着,如俯视示意图图10e与剖视示意图图10f所示(图10f对应于俯视图图10e的剖线a-a’),形成漂移区14于上表面11’下方并连接于上表面11’,漂移区14具有第二导电型,且漂移区14完全位于阱区12上;且于横向上(如图10f中的实线箭头方向,下同),漂移区14与阱区12连接。其中,形成漂移区14的方法,例如但不限于以微影工艺、离子植入工艺、与热工艺形成,此为本领域技术人员所熟知,在此不予赘述。

接着,如俯视示意图图10g与剖视示意图图10h所示(图10h图对应于俯视图图10g的剖线a-a’),形成多个埋柱(buriedcolumn)39于上表面11’下方预设距离d之下,并不接触于上表面11’,埋柱39具有第一导电型,且漂移区14包围每一埋柱39的至少一部分,使多个埋柱39与漂移区14交错排列。其中,形成埋柱39的方法,例如但不限于以微影工艺、离子植入工艺、与热工艺形成,此为本领域技术人员所熟知,在此不予赘述。一种较佳的实施方式,多个埋柱39与介于阱区12与漏极16’间的漂移区14,于不导通操作时,完全耗尽。须说明的是,形成埋柱39的方法,例如其中的离子植入工艺步骤中,可以设定植入的深度以控制预设距离d;也可以在后续的步骤中,以另外的离子植入工艺步骤,在上表面11’至上表面11’下预设距离d的范围中,植入第二导电型杂质,以将上表面11’至上表面11’下预设距离d的范围,在漂移区14的范围内,形成第二导电型区域,以避免该区域具有第一导电型。

接着,如俯视示意图图10i与剖视示意图图10j所示(图10j对应于俯视图图10i的剖线a-a’),形成栅极15于上表面11’上,且于纵向上,部分栅极15堆叠并接触于部分阱区12的正上方,且另一部分栅极15堆叠于部分漂移区14的正上方;需说明的是,栅极15在纵向垂直投影仅与阱区12重叠之处,为高压mos元件300的沟道区。其中,栅极15包含了介电层、导体层、与间隔层,此为本领域技术人员所熟知,在此不予赘述。

接着,如俯视示意图图10k与剖视示意图图10l所示(图10l对应于俯视图图10k的剖线a-a’),形成源极16与漏极16’。其中源极16具有第二导电型,于纵向上,形成于上表面11’下方并接触于上表面11’,于横向上邻接于阱区12,且源极16连接于栅极15的第一侧s1下方。漏极16’具有第二导电型,于纵向上,形成于上表面11’下方并接触于上表面11’,且于横向上邻接于漂移区14,与源极16由阱区12以及漂移区14隔开,且于横向上,漏极16’位于栅极15的第二侧s2外,与源极16位于栅极15的不同侧。其中,形成源极16与漏极16’的方法,例如但不限于以微影工艺、离子植入工艺、与热工艺形成,此为本领域技术人员所熟知,在此不予赘述。一种较佳的实施方式中,埋柱39与阱区12电连接,或埋柱39由阱区12提供偏压。一种较佳的实施方式中,预设距离d大于0.1微米(μm)。

图11a-11l显示本发明的第九个实施例。图11a-11l显示根据本发明的高压mos元件(高压mos元件1100)制造方法的俯视及剖视示意图。首先,如俯视示意图图11a与剖视示意图图11b所示(图11b对应于俯视图图11a的剖线a-a’),提供半导体基板11并形成深阱区38与漂移阱区22。其中,半导体基板11例如但不限于为p型硅基板,当然也可以为其他半导体基板。半导体基板11于一纵向(如图中的虚线箭头方向)上,具有相对的一上表面11’与一下表面11”。深阱区38具有第一导电型,于纵向上,形成于漂移阱区22与后续步骤所形成的本体区24之下,并与漂移阱区22上下连接,且深阱区38与后续步骤所形成的多个埋柱39连接。漂移阱区22具有第二导电型,形成于半导体基板11中,且于纵向上,位于上表面11’下方并连接于该上表面11’,形成漂移阱区22与深阱区38的方式,例如但不限于以离子植入工艺步骤所形成。

接着,如俯视示意图图11c与剖视示意图图11d所示(图11d对应于俯视图图11c的剖线a-a’),形成绝缘氧化区13与场氧化区13’于上表面11’上(上表面11’如图11d中粗黑虚线所示意)。绝缘氧化区13用以定义高压mos元件1100的操作区13a,其中,操作区13a是指在导通与不导通的操作中,施加电压与电流的主要范围。后续步骤所形成的栅极25中,部分栅极25堆叠并连接部分场氧化区13’正上方。

接着,如俯视示意图图11e与剖视示意图图11f所示(图11f对应于俯视图图11e的剖线a-a’),形成多个埋柱(buriedcolumn)49于上表面11’下方预设距离d之下,并不接触于上表面11’,埋柱49具有第一导电型,且漂移阱区22包围每一埋柱49的至少一部分,使多个埋柱49与漂移阱区22交错排列。一种较佳的实施方式中,埋柱49与深阱区38电连接,或埋柱49由深阱区38提供偏压。一种较佳的实施方式中,预设距离d大于0.1微米(μm)。在一种较佳的实施例中,多个埋柱49与介于本体区24与漏极16’间的漂移阱区22,于不导通操作时,完全耗尽。其中,形成埋柱49的方法,例如但不限于以微影工艺、离子植入工艺、与热工艺形成,此为本领域技术人员所熟知,在此不予赘述。须说明的是,形成埋柱49的方法,例如其中的离子植入工艺步骤中,可以设定植入的深度以控制预设距离d;也可以在后续的步骤中,以另外的离子植入工艺步骤,在上表面11’至上表面11’下预设距离d的范围中,植入第二导电型杂质,以将上表面11’至上表面11’下预设距离d的范围,在漂移阱区22的范围内,形成第二导电型区域,以避免该区域具有第一导电型。须说明的是,本实施例的多个埋柱49是沿着宽度方向平行排列,且埋柱49与深阱区38连接。

接着,如俯视示意图图11g与剖视示意图图11h所示(图11h对应于俯视图图11g的剖线a-a’),形成本体区24,其具有第一导电型,于纵向上,位于上表面11’下方并连接于该上表面11’,且本体区24完全位于漂移阱区22上,且于横向上(如图11h中的实线箭头方向,下同),漂移阱区22与本体区24连接。

接着,如俯视示意图图11i与剖视示意图图11j所示(图11j对应于俯视图图11i的剖线a-a’),形成栅极25于上表面11’上,且于纵向上,部分栅极25堆叠并接触于部分本体区24的正上方,且另一部分栅极25堆叠于部分漂移阱区22的正上方;需说明的是,栅极25在纵向垂直投影仅与本体区24重叠之处,为高压mos元件1100的沟道区。其中,栅极25包含了介电层、导体层、与间隔层,此为本领域技术人员所熟知,在此不予赘述。

接着,如俯视示意图图11k与剖视示意图图11l所示(图11l对应于俯视图图11k的剖线a-a’),形成源极16、漏极16’与本体极27。其中源极16具有第二导电型,于纵向上,形成于上表面11’下方并接触于上表面11’,于横向上邻接于本体区24,且源极16连接于栅极15的第一侧s1下方。漏极16’具有第二导电型,于纵向上,形成于上表面11’下方并接触于上表面11’,且于横向上邻接于漂移阱区22,与源极16由本体区24以及漂移阱区22隔开,且于横向上,漏极16’位于栅极25的第二侧s2外,与源极16位于栅极25的不同侧。本体极27具有第一导电型,于纵向上,形成于上表面11’下方并连接于上表面11’,并连接于本体区24,以作为本体区24的电气接点。其中,形成源极16、漏极16’与本体极27的方法,例如但不限于以微影工艺、离子植入工艺、与热工艺形成,此为本领域技术人员所熟知,在此不予赘述。

以上已针对较佳实施例来说明本发明,但以上所述,仅为使本领域技术人员易于了解本发明的内容,并非用来限定本发明的权利范围。所说明的各个实施例,并不限于单独应用,也可以组合应用。此外,在本发明的相同精神下,本领域技术人员可以想到各种等效变化以及各种组合,例如,在不影响元件主要的特性下,可加入其他工艺步骤或结构,如临界电压调整区、高压阱区、或是埋层等;再如,微影技术并不限于光罩技术,也可包含电子束微影技术;又如,埋柱的形式,以长板状为主,排列也以平行排列为主,也可以有不同的形状,只要在埋柱与阱区或漂移阱区为反向偏压时,形成超级结的形式,具有提高崩溃防护电压;且埋柱上缘与半导体基板上表面具有预设距离,使高压mos元件在导通操作时,埋柱不明显影响导通电流在上表面的电流即可。本发明的范围应涵盖上述及其他所有等效变化。以上已针对较佳实施例来说明本发明,以上所述,仅为使本领域技术人员易于了解本发明的内容,并非用来限定本发明的权利范围。在本发明的相同精神下,本领域技术人员可以想到各种等效变化。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1