一种锂铝双离子可充电电池的制作方法

文档序号:16323056发布日期:2018-12-19 05:47阅读:665来源:国知局
一种锂铝双离子可充电电池的制作方法

本发明涉及一种高平台电压、高能量密度的可充电电池,尤其是一种锂铝双离子可充电电池。

背景技术

近年来,高能量密度的锂离子二次电池的应用潜力越来越大,但是受限于锂离子电池工作时所依赖的单价锂离子,锂离子二次电池的能量密度的提升存在严重瓶颈。有鉴于此,引入多价离子在理论上能有效地提升能量密度;但是在实际应用中却一直难有突破。主要原因是多价离子的离子半径大,导致离子很难嵌入石墨或其他碳基材料内部;同时由于固态电解质界面膜(sei)的存在,多价离子无法通过sei达到负极表面进行下一步还原反应。

在这些问题面前,需要改变多价离子在正负极片之间的迁移机制,才能有效地提高电池的能量密度。除了在负极里添加高活性物质离子,如碱金属离子li+;非水系电解液中同时还需添加多价金属离子,如钇(y)、镧(la)或碱土金属;正极中含有能够可逆地嵌入脱出多价金属离子的过渡金属化合物,以此来平衡碱金属离子在负极内的可逆脱出嵌入反应。

中国专利公告号为cn103928659a公开了一种可反复充放电的铜-锌电

池,由正极、负极、隔膜、外壳组成,正极包括含铜化合物的溶液、溶液中含有一种或多种锂盐或钠盐和集流体;负极包括含锌化合物的溶液、溶液中含有一种或多种锂盐或钠盐和集流体;隔膜仅允许钠离子或锂离子通过。该电池主要是通过铜-锌电池体系来完成电池的充电和放电,铜-锌在实际的使用过程中投入的成本并不低。



技术实现要素:

本发明的目的是为了解决现有技术存在的缺陷,提供一种锂铝双离子可充电电池。

为了实现上述目的,本发明采用的技术方案是:

一种锂铝双离子可充电电池,包括正极极片、负极极片、位于正极极片和负极极片之的隔膜以及位于隔膜内的电解液,电解液溶液由多价铝离子溶质和非水系溶剂组成,正极极片由能够可逆地脱出和嵌入多价阳离子的活性物质组成,负极极片由能够可逆地从上述溶剂中嵌入和脱出第二种离子的活性物质组成,第二种离子为碱金属离子。其中隔膜具有电子绝缘性和离子通透性;电解液中含有非水系溶剂和能提供多价铝离子al3+且不会产生电化学沉积的溶质,例如:氟化铝[alf3]、高氯酸锂[al(clo4)3]、四氟硼酸铝[al(bf4)3]、六氟磷酸铝[al(pf6)3]等。

正极极片的活性物质为过渡金属氧化物、硫化物、氟化物、碳氟化物中的一种或多种。

上述的一种锂铝双离子可充电电池,正极极片的活性物质为钒的氧化物、硫化物、钼的氧化物、硫化物中的一种或多种,正极极片的活性物质具体可以为v2o5或mosx

上述的一种锂铝双离子可充电电池,所述负极极片活性物质为能够嵌入碱金属离子的碱金属、碱金属合金、碳质材料中的一种或多种,具体为:负极极片的活性物质为金属锂、金属钠、锂合金、钠合金中的一种或多种。

上述的一种锂铝双离子可充电电池,正极极片的多价阳离子为al3+,第二种离子为li+、na+、k+、rb+、cs+中的一种或多种。

本发明的具体技术方案如下:一种锂铝双离子可充电电池中包含了v2o5正极、lixsi负极、配方为0.5mal(clo4)3,ec(碳酸乙烯酯)∶dmc(碳酸二甲酯)=2∶1的电解液以及硼硅酸盐玻璃纤维隔膜。电池的首次放电过程中,电解液中的al3+迁移至正极发生反应,同时负极中的li+释放到电解液中。由于高浓度al3+更靠近正极,且总体插入电位更高,上述反应主要发生在对应的极片内。

在电池的充电过程中,逆向反应发生:正极中的al3+和电解液中的li+迁移至负极进行还原反应。但是由于负极表面快速形成的钝化膜只能让li+通过并在-3.0v(标准氢电位)被还原,所以尽管充电电压上升,负极表面的钝化膜和电解液组分都能够阻止al3+的还原,从而保证相对低的负极电位和较高的工作电压。

电池可采用目前成熟的卷绕结构;可供参考的正极配方如下:35-60%的纳米尺寸的钒的氧化物/硫化物或钼的氧化物/硫化物,5-10%的导电碳黑,以及15-25%的聚偏氟乙烯(pvdf)粘结剂和20-30%的邻苯二甲酸二丁酯(dbp)增塑剂溶解在25-35%的丙酮溶剂中。

浆料可涂覆在集流体上,在室温下干燥后形成薄膜,随后分切成合适的宽度,并与隔膜和对电极进行叠片组装,组装好之后的电芯在注液之前需要先用聚合物惰性溶剂(如乙醚等)将之前的增塑剂提取出来。

本发明的有益效果为:本发明中公开了一种性能优异,经济适用的双离子二次电池;其所使用的电解液中多价金属离子完全不包括背景技术中提及的碱土金属离子,能够更有效地进行充放电,改变了多价离子在正负极片之间的迁移机制,有效地提高电池的能量密度。除了在负极里添加高活性物质离子,如碱金属离子li+;正极中含有能够可逆地嵌入脱出多价金属离子的过渡金属化合物,以此来平衡碱金属离子在负极内的可逆脱出嵌入反应。

附图说明

图1为本发明的实施方案中叠片电池的横切面结构示意图;

图2为首次放电电压对克容量的特征曲线对比图,其中包括了现有的锂离子电池(li+)和双离子电池(钇y3+和铝al3+);

图3为现有的锂离子电池的循环电压对相对容量的曲线图;

图4为本发明实施方案的双离子电池(y3+)的循环电压对相对容量的曲线图;

图5为本发明实施方案的双离子电池(al3+)的循环电压对相对容量的曲线图;

图6为对比实施方案中现有的锂离子电池和铝al3+双离子电池的首次放电和克容量的特种曲线对比图;

图7为图6中的实施方案中的循环电压特征曲线。

具体实施方式

下面结合附图和具体实例对本发明作进一步的说明。

在图1中,一种叠片结构的电池(锂铝双离子可充电电池)10包含正极13、负极17、介于两者之间的隔膜15内含有电解液。正极集流体11、负极集流体19以及正极极耳12、负极极耳16用于为电池提供完整的电回路连接。为了方便实验室的半电池测试,可以在隔膜15中内置一个类参比电池的银线14。

通常来说,正极13包含一层偏二乙烯基共聚物基质膜,其中分散着能够插入或吸收多价阳离子的过渡金属氧化物/硫化物,如v2o5或mosx(纳米颗粒最佳);对应的负极17包含一层类似的共聚物基质膜或金属箔,能够可逆地插入或与单价碱金属离子反应。隔膜15可以如前文所述,是一层能够吸收非水系电解液的高分子微孔薄膜或玻璃纤维。电解液也可额外加入少量的能够促进负极反应速率的碱金属盐。参比电池14可以用来方便地测定对应极片组分的电化学活性,从而有效地确定电极和电解液的组合。

实际的电池组装过程如下:正极、浸润了电解液的隔膜和负极以及对应的集流体按照顺序进行压片组装。组装完成后,将电池置于能够自动控制循环及数据记录的测试柜中,按照7ma/g的电流进行恒流循环,从而获取电池的特征电压-容量曲线。

下面将进一步通过具体实例来阐述本发明。

实施例1

制作一款单离子锂嵌入式样品电池来展示现有锂离子电池的工作电压和容量等特性参数。正极组分包括:28%(直径20-60nm)v2o5,6%导电碳黑,15%pvdf粘结剂,23%dbp增塑剂以及28%丙酮。正极组分在22℃下干燥0.5小时后形成了一层稳定薄膜,随后从薄膜中裁取面积的1cm2的圆形正极极片,再用乙醚将正极极片内的增塑剂提取出来。一张典型的正极极片内含有5-20mg的v2o5活性物质。

负极极片的制作流程与正极极片类似,仅仅是用硅粉替代了v2o5粉,将干燥提纯之后的硅粉薄膜覆盖在金属锂箔上便形成了锂硅合金lixsi负极极片,最后将负极极片分切成与正极极片对应大小的圆片,其中lixsi的比表面积为0.5m2/g以上。

将正负极片在露点-80℃的手套箱内与事先浸润过电解液的硼硅酸盐玻璃纤维膜进行组装,其中的电解液配方为1mlipf6,ec(碳酸乙烯酯)∶dmc(碳酸二甲酯)=2∶1。之后将组装好的电池进行充放电测试:电解液中的li+在放电过程中嵌入正极活性物质,充电过程中则在负极中被还原。如图2中的li+首次放电特征曲线所示,电池的首次放电容量为150mah/g。

实施例2

采用与实施例1中相同的制作流程,制作另一款双离子电池作为对比组测试:正负极的活性物质分别为v2o5和mosx,电解液的配方为0.5my(clo4)3,ec(碳酸乙烯酯)∶dmc(碳酸二甲酯)=2∶1。将组装好的电池按照例1中相同的条件测试并记录数据:如图2中的y3+首次放电特征曲线所示,电池的首次放电容量提升至200mah/g。

实施例3

采用与实施例2中类似的制作流程和活性物质,制作本发明的具体实施方案中的双离子电池:双离子中至少有一种离子是al3+。具体来说,虽然正负极的活性物质与例1中相同,但是电解液中的活性阳离子不同:解液的配方为0.5mal(clo4)3,ec(碳酸乙烯酯)∶dmc(碳酸二甲酯)=2∶1。如图2中的al3+首次放电特征曲线所示,电池的首次放电容量提升显著,达到了300mah/g。

实施例4

采用与上述例子相同的制作流程制作另一组对比测试电池,将对应的电解液组分和活性物质更换为三氟甲基磺酸盐(cf3so3-)和粒径更大(60-90nm)的v2o5。将组装好的电池按照与上述例子中相同的条件测试并记录数据:如图3-5中的单离子li+和双离子y3+、al3+首次放电特征曲线所示,不仅电池的首次放电容量提升,工作电压范围也得到了提升。

实施例5

本发明的另一个具体实施方案采用了与上述例子相同的制作流程,将对应正极活性物质更换为通过热分解四硫代钼酸铵[(nh4)2mos4]所得到的mosx;电解液中分别使用了1.0mli(cf3so3)和0.5mal(cf3so3)3,同时采用7ma/h的电流进行充放电循环测试。图6为首次放电容量的特征曲线,可以看出双离子(al3+)电池的放电容量明显高于现有的单离子(li+)电池。图7为循环特征曲线,可以看出在循环之后双离子(al3+)电池的放电容量依然能够保持在525mah/g左右。

本发明中公开了一种性能优异,经济适用的双离子二次电池;其所使用的电解液中多价金属离子完全不包括背景技术中提及的碱土金属离子,能够更有效地进行充放电,改变了多价离子在正负极片之间的迁移机制,有效地提高电池的能量密度。除了在负极里添加高活性物质离子,如碱金属离子li+;正极中含有能够可逆地嵌入脱出多价金属离子的过渡金属化合物,以此来平衡碱金属离子在负极内的可逆脱出嵌入反应。

以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。本发明要求的保护范围由所附的权利要求书及其等同物界定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1