包括凹陷的半导体器件及其制作方法与流程

文档序号:20000723发布日期:2020-02-22 03:09阅读:238来源:国知局
包括凹陷的半导体器件及其制作方法与流程

本公开涉及包括凹陷的半导体器件以及用于制作这种半导体器件的方法。



背景技术:

半导体器件可以包括又被称为管芯载体的衬底以及通过诸如(软)焊料或粘合剂的耦合剂而附接至管芯载体的半导体。理想地,半导体管芯被附接至管芯载体,使得半导体管芯的背侧或底侧(面向管芯载体的一侧)完全被耦合剂覆盖,以使耦合剂的渗出最小,以使由硬化的耦合剂引入到半导体管芯中的应力最小,以使硬化的耦合剂包括最少的孔隙,并且使半导体管芯相对于管芯载体的倾斜最小。与这些要求的偏差可能(例如)导致半导体器件表现出亚最佳的电气、热或机械特性,导致有缺陷的器件,或者导致寿命缩短的器件。

这些和其它问题由独立权利要求的主题解决。从属权利要求进一步描述了有利的示例。



技术实现要素:

本公开的第一方面涉及一种半导体器件,其包括:管芯载体,其包括位于管芯载体的第一表面上的x形凹陷;布置在所述管芯载体的第一表面之上并且至少部分地覆盖所述x形凹陷的半导体管芯;以及将所述半导体管芯附接至所述管芯载体的耦合剂,其中,所述耦合剂至少部分地布置在所述x形凹陷中,其中,所述x形凹陷的四个臂中的每者指向所述半导体管芯的拐角,并且在投射到管芯载体的第一表面上的正交投影中在所述半导体管芯的轮廓之上延伸。

本公开的第二方面涉及一种半导体器件,其包括:管芯载体,其包括位于管芯载体的第一表面上的x形凹陷;布置在所述管芯载体的所述第一表面之上并且至少部分地覆盖所述x形凹陷的半导体管芯;以及将所述半导体管芯附接至所述管芯载体的耦合剂,其中,所述x形凹陷的四个臂中的每者指向所述半导体管芯的拐角,并且其中,所述x形凹陷的每个臂的主要部分由相应臂的直边形成。

本公开的第三方面涉及一种用于制作半导体器件的方法,其中,所述方法包括:提供管芯载体,所述管芯载体包括位于管芯载体的第一表面上的x形凹陷;在所述x形凹陷的中心之上沉积耦合剂;以及将半导体管芯附接至所沉积的耦合剂,其中,所述x形凹陷的四个臂中的每者指向所述半导体管芯的拐角,并且在投射到管芯载体的第一表面上的正交投影中在所述半导体管芯的轮廓之上延伸。

附图说明

附图示出了示例,并且连同文字描述一起用于解释本公开的原理。其它示例以及本公开的预期优点中的很多优点将被容易地认识到,因为通过参考下文的具体实施方式,这些优点将得到更好的理解。附图中的元件未必是相对于彼此按比例绘制的。类似的附图标记表示对应的类似部分。

图1包括图1a-1c,并且在图1a和图1b中示出了半导体器件的自顶向下视图,并且在图1c中示出了图1a的半导体器件的截面图。

图2示出了可以包括在诸如图1a-1c中所示的半导体器件之类的半导体器件中的管芯载体的透视图。

图3示出了可以包括在诸如图1a-1c中所示的半导体器件之类的半导体器件中的另一管芯载体以及具有非方形的矩形形状的半导体管芯。

图4包括图4a-4c,并且在图4a和图4b中示出了处于各种制作阶段中的半导体器件。图4c示意性地示出了在将半导体管芯向下压到管芯载体上时耦合剂被按压的方向。

图5示意性地示出了管芯载体中的凹陷的可以突出到半导体管芯的轮廓之外的部分可以如何充当逸气通道。

图6示出了用于制作半导体器件的方法的流程图。

具体实施方式

下文进一步描述的半导体管芯可以具有不同类型,可以是由不同技术制造的,并且可以包括(例如)集成的电路、光电回路或者机电回路和/或无源器件、逻辑集成电路、控制电路、微处理器、存储器件等。

下文描述的管芯载体可以是用于封装的(永久性)器件载体。所述载体可以包括任何种类的材料或由其构成,所述材料例如是陶瓷或金属材料、铜或铜合金或者铁/镍合金。所述载体可以与半导体管芯的一个接触元件机械和电连接。半导体管芯可以通过焊接或者借助于粘合剂的粘附而连接至载体。

图1a示出了包括管芯载体110以及布置在管芯载体110的第一表面111之上的半导体管芯120的半导体器件100的自顶向下视图。半导体管芯120通过耦合剂140附接至管芯载体110的第一表面111(比较图1c)。

管芯载体110包括布置在第一表面111上的x形凹陷130。半导体管芯120被布置在第一表面111之上,以使其至少部分地覆盖x形凹陷。半导体管芯120被布置在第一表面111之上,以使x形凹陷130的四个臂131中的每者指向半导体管芯120的拐角121。

管芯载体110可以(例如)具有与半导体管芯120大致相同的横向尺寸,或者其可以(例如)大约是半导体管芯120的两倍大、三倍大乃至更大。

x形凹陷130的外形尺寸可以被设定为使得在投射到管芯载体110的第一表面111上的正交投影中,四个臂131中的每者在半导体管芯120的轮廓122之上延伸。具体而言,四个臂131中的每者的突出部分132可以在轮廓122处被暴露。

半导体管芯120可以被布置在x形凹陷130之上,以使得在投射到管芯载体110的第一表面111上的正交投影中,半导体管芯120的中心和x形凹陷130的中心重合。半导体管芯120可以是任何种类的管芯,例如,功率管芯、逻辑管芯、晶体管等。

管芯载体110可以包括金属、金属合金、塑料或层合物,或者由金属、金属合金、塑料或层合物构成。管芯载体110可以(例如)是引线框架、dcb(直接铜接合)、dab(直接铝接合)、amb(活性金属钎焊)衬底(的部分)。根据示例,管芯载体110可以是本领域已知的被配置为承载半导体管芯的任何稳定零件。

耦合剂140可以被部分地或者完全地布置在轮廓122内,处于半导体管芯120之下。根据示例,耦合剂140可以在第一表面111上略微延伸到轮廓122之外。耦合剂140至少部分地布置在x形凹陷130中。耦合剂140可以是焊料,例如软焊料,或者可以是粘合剂,例如导电焊膏或非导电焊膏。耦合剂140可以被配置为将半导体管芯120的底侧上的电极电耦合至管芯载体110。

x形凹陷130的宽度w(特别是,x形凹陷130的四个臂131的宽度w)可以小于或者大于50μm、大于100μm、大于300μm、大于500μm、大于700μm、大于1mm乃至大于2mm。x形凹陷130的深度d(比较图1c)可以处于20μm到100μm的范围内,特别是大约40μm、大约60μm、或者大约80μm。深度d也可以大于100μm。突出部分132可以突出至少50μm、至少100μm或者至少200μm的最小突出距离p。

根据示例,x形凹陷130覆盖半导体管芯120的轮廓122之下的面积的至少10%、或者至少30%、或者至少50%。

根据示例,x形凹陷130的每个臂131的至少主要部分由相应臂131的直边133形成,如图1a所示。具体而言,直边133可以在相应臂的长度的至少50%-100%的范围内是直的,如图1a所示。根据示例,直边133可以是平行直边,仍然如图1a所示。

半导体器件100可以还包括包封半导体管芯120的包封主体(未示出)。包封主体可以包括模制件或由模制件构成。包封主体可以被布置在管芯载体110的第一表面111之上,并且其可以填充x形凹陷130的突出部分132(至少在突出部分132未被耦合剂140填充的情况下)。

图1b示出了另一半导体器件200的自顶向下视图,半导体器件200可以与半导体器件100等同,除了下文描述的差异之外。

在图1a中所示的半导体器件100的示例中,x形凹陷130的四个臂131在x形凹陷130的中心处连接。在图1b的半导体器件200的示例中,四个臂131在x形凹陷130的中心处不连接。相对的臂131之间的间隔s可以为大约20μm、大约50μm、大约100μm、大约200μm、大约500mm,大约1mm、乃至超过1mm。

图1c示出了图1a的半导体器件100的沿线a-a’的侧视图。半导体管芯120可以被布置在管芯载体110上,以使得半导体管芯120和第一表面111几乎、乃至完全平行。换言之,半导体管芯120可以被布置在管芯载体110上而没有任何倾斜,或者至少没有任何显著倾斜。

耦合剂140可以完全填充x形凹陷130,至少在半导体管芯120的轮廓122下方。半导体管芯120的侧面123可以没有耦合剂140,或者耦合剂140可以至少部分地覆盖侧面123。

深度d可以在整个x形凹陷130之上是等同或者至少大体上等同的。根据示例,所述深度在每个臂131的端部处(在突出部分132处)可以比在x形凹陷的其余部分中更小。这可能归因于x形凹陷130的制作工艺。

图2示出了除了下文提及的差异之外可以与管芯载体110等同的管芯载体300的透视图。

在管芯载体300中,x形凹陷包括四个臂131以及布置在四个臂131的中心处的盆凹(basin)134。盆凹134和四个臂131可以具有等同的深度d。盆凹134可以具有任何适当的横向尺寸,例如处于100μm到5mm乃至更大的范围内。盆凹134可以(例如)具有矩形、方形或圆形形状,参见上文。在盆凹134具有矩形或方形形状的情况下,四个臂131可以从盆凹134的拐角延伸,如图2所示。

盆凹134的尺寸可以被设定为使得处于半导体管芯120下方的面积的仅部分被盆凹134占据,例如,所述面积的10%、30%或50%。

图3示出了除了下文所述的差异之外可以分别与管芯载体110和半导体管芯120等同的管芯载体410和半导体管芯420的另一示例的透视图。

半导体管芯420可以具有矩形的非方形覆盖区,其中,半导体管芯420的长度x大于宽度y。具体而言,半导体管芯420可以具有大约1.5:1或者2:1或者3:1乃至更大的高的长宽比(x:y)。

管芯载体410包括x形凹陷130并且另外包括条形凹陷430,所述条形凹陷430从x形凹陷130的中心平行于非方形半导体管芯420的较长边延伸。与x形凹陷130类似,条形凹陷430可以延伸到半导体管芯420的轮廓之外。x形凹陷130和条形凹陷430可以具有等同的深度d和/或等同的宽度w。然而,x形凹陷130和条形凹陷430也可以具有不同的深度和/或不同的宽度。

根据示例,管芯载体410可以另外包括盆凹134,其中,条形凹陷可以从盆凹134的相对侧延伸。

如图4a所示,将半导体管芯120附接到管芯载体110可以包括在管芯载体110的第一表面111上沉积耦合剂140,特别是单滴的耦合剂140。为了沉积耦合剂140,和/或为了附接半导体管芯120,可以通过能量输入(例如通过加热)使耦合剂140液化。耦合剂140可以被沉积在x形凹陷130的中心之上。在管芯载体110包括盆凹134的情况下,耦合剂140可以被沉积在盆凹134之上。

接下来,可以通过(例如)选取和放置工艺将半导体管芯120布置在沉积的耦合剂140之上(比较图4a),并将半导体管芯120向下按压到沉积的耦合剂140上。可以采用预定义量的力将半导体管芯120向下按压。

如图4b所示,由于半导体管芯110的向下移动,耦合剂140被从沉积点向外挤压。半导体管芯110可以被向下按压直到耦合剂140完全或者几乎完全覆盖半导体管芯110的底侧为止。

随着耦合剂140被向外挤压,其可以具有从上方来看基本上圆形的形状(比较图4b)。在基本上平坦的管芯载体上,这使得耦合剂140的流动前沿抵达半导体管芯120的边缘402比抵达半导体管芯120的拐角403更快。换言之,耦合剂140被向外挤压的速度在朝向边缘402的方向a上和朝向拐角403的方向b上是各向同性的(比较图4c)。这可能引起耦合剂140沿边缘402的不期望的量的渗出。

x形凹陷130可以充当耦合剂140被挤压的引导结构,并且可以使朝向拐角403的方向a上的速度相对于朝向边缘402的方向b上的速度增大。因此,可以减少乃至完全避免耦合剂140的渗出。每个臂131的主要部分可以由相应臂131的直边(特别是至少在相应臂的长度的50%-100%的范围内平直的边)形成的这一事实可以改善作为这种引导结构的x形凹陷的效果,因为臂131的轮廓中的褶皱将充当耦合剂140的“减速带”。

由于耦合剂140在方向a上相对于方向b的加速,因而可以由耦合剂140使半导体管芯120的整个背侧(甚至拐角403处)润湿(并因此可以使半导体管芯120的整个背侧附接至管芯载体110)。因此,耦合剂140的接合线厚度t(比较图1c)可以具有非零最小值。例如,接合线厚度t可以具有10μm、30μm、50μm、100μm、200μm或更高的最小值。

耦合剂140向半导体管芯120的轮廓122之外的减少的渗出可以实现半导体管芯120的轮廓122与管芯载体110的边缘404之间的最小所需距离的减小。这可以减小半导体器件100或200的总尺寸。

耦合剂140上的x形凹陷130的引导作用可以使得在将半导体管芯110朝向图4a所示的耦合剂140的液滴按压之前使用拍打工具对所述液滴进行预先平坦化变得没有必要。

从上文可以看出的x形凹陷130的对称轮廓可以在耦合剂140的液滴由被向下按压的半导体管芯120压缩时,使得压力在耦合剂140的液滴中对称分布。压力围绕液滴中心的该对称分布需要半导体管芯120在管芯载体的第一表面111上的无倾斜或者接近无倾斜的取向。

在图3所示的非方形的矩形半导体管芯420的情况下,条形凹陷430可以类似地充当引导结构,其使得沿半导体管芯420的较长边x的速度相对于沿半导体管芯420的较短边y的速度增大。

盆凹134可以有助于在压缩期间抑制耦合剂140的流动中的湍流。这可以使得耦合剂140在半导体管芯120的整个底表面之上更加均匀地分布。

耦合剂140可以包括助熔剂,可以在将半导体管芯120附接至管芯载体110时使助熔剂蒸发(例如,通过加热)。这种蒸发工艺将液体助熔剂转化为气体,所述气体必须从处于半导体管芯120之下的耦合剂140向外扩散。由于突出部分132的原因,x形凹陷130的臂131可以充当使这种气体能够有效地从耦合剂140向外扩散的通道,如图5中的箭头501所示。未突出到半导体管芯120的轮廓122之外的凹陷的臂不能充当排气通道。

根据示例,x形凹陷130的每个臂131的主要部分是由相应臂131的直边133形成的。具体而言,每该臂131的主要部分可以由至少在相应臂的长度的50%-100%的范围内平直的边133形成。通过这种方式,可以更有效地从耦合剂140去除气体,因为气泡可能因表面张力而粘附到通道中的任何形式的褶皱。

有效地去除气体可以减少耦合剂140中的孔隙,并且因此可以提高半导体管芯120到管芯载体110的粘附。

图6示出了用于制作诸如半导体器件100和200的半导体器件的方法600的流程图。方法600包括:提供管芯载体的第一动作601,管芯载体包括位于管芯载体的第一表面上的x形凹陷;在x形凹陷的中心之上沉积耦合剂的第二动作602;以及将半导体管芯附接至所沉积的耦合剂的第三动作603,其中,x形凹陷的四个臂中的每者指向半导体管芯的拐角,并且在投射到管芯载体的第一表面上的正交投影中在半导体管芯的轮廓之上延伸。

根据方法600的示例,与x形凹陷之外的耦合剂的扩散相比,加快了x形凹陷中的耦合剂朝向半导体管芯的拐角的扩散。

根据方法600的示例,x形凹陷的四个臂在投射到管芯载体的第一表面上的正交投影中延伸到半导体管芯的轮廓之外,其中,方法600还包括使耦合剂通过x形凹陷的四个臂排气。

根据方法600的示例,附接半导体管芯包括将半导体管芯按压到所沉积的耦合剂上,直到耦合剂完全覆盖半导体管芯的面向管芯载体的表面为止。

根据方法600的示例,沉积耦合剂包括沉积软焊丝的焊料或者软焊膏的焊料或者胶水。

根据方法600的示例,在沉积之后执行附接,其间没有任何其它动作,特别是没有将所沉积的耦合剂拍打的动作。此外,可以在沉积耦合剂之后立即执行附接半导体管芯的动作。

附图标记列表

100半导体器件

110管芯载体

111第一表面

120半导体管芯

121半导体管芯的拐角

122半导体管芯的轮廓

130x形凹陷

131x形凹陷的臂

132x形凹陷的突出部分

133x形凹陷的直边

134盆凹

140耦合剂

200半导体器件

300管芯载体

401耦合剂的流动前沿

402半导体管芯的边缘

403半导体管芯的拐角

404管芯载体的边缘

410管芯载体

420半导体管芯

501扩散气体的方向

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1