新型无主栅高效率背接触太阳能电池和组件及制备工艺的制作方法

文档序号:8488996阅读:472来源:国知局
新型无主栅高效率背接触太阳能电池和组件及制备工艺的制作方法
【技术领域】
[0001]本发明涉及太阳能电池领域,特别涉及新型无主栅高效率背接触太阳能电池和组件及制备工艺。
【背景技术】
[0002]能源是人类活动的物质基础,随着人类社会的不断发展和进步,对能源的需求与日俱增。传统的化石能源属于不可再生能源已经很难继续满足社会发展的需求,因此全球各国近年来对新能源和可再生源的研宄和利用日趋火热。其中太阳能发电技术具有将太阳光直接转化为电力、使用简单、环保无污染、能源利用率高等优势尤其受到普遍的重视。太阳能发电是使用大面积的P-N结二极管在阳光照射的情况下产生光生载流子发电。
[0003]太阳能是太阳中的氢原子核在超高温时聚变释放的巨大能量,人类所需能量的绝大部分都直接或间接地来自太阳。生活所需的煤炭、石油、天然气等化石燃料都是因为各种植物通过光合作用把太阳能转变成化学能在植物体内贮存下来后,再由埋在地下的动植物经过漫长的地质年代形成。此外,水能、风能、潮沙能、海流能等也都是由太阳能转换来的。照射在地球上的太阳能非常巨大,大约40分钟照射在地球上的太阳能,足以供全球人类一年能量的消费。可以说,太阳能是真正取之不尽、用之不竭的可再生能源,而且太阳能发电绝对安全、无污染是理想的能源。
[0004]现有技术中,占主导地位并大规模商业化的晶体硅太阳电池,其发射区和发射区电极均位于电池正面(向光面),即主栅、辅栅线均位于电池正面。由于太阳能级硅材料电子扩散距离较短,发射区位于电池正面有利于提高载流子的收集效率。但由于电池正面的栅线阻挡了部分阳光(约为8%),从而使太阳能电池的有效受光面积降低并由此而损失了一部分电流。另外在电池片串联时,需要用镀锡铜带从一块电池的正面焊接到另一块电池的背面,如果使用较厚的镀锡铜带会由于其过于坚硬而导致电池片的碎裂,但若用细宽的镀锡铜带又会遮蔽过多的光线。因此,无论使用何种镀锡焊带都会产生串联电阻带来的能量损耗和光学损耗,同时不利于电池片的薄片化。为了解决上述技术问题,本领域技术人员将正面电极转移到电池背面,开发出背接触太阳能电池,背接触太阳电池是指电池的发射区电极和基区电极均位于电池背面的一种太阳电池。背接触电池有很多优点:①效率高,由于完全消除了正面栅线电极的遮光损失,从而提高了电池效率。②可实现电池的薄片化,串联使用的金属连接器件都在电池背面,不存在从正面到背面的连接可以使用更薄的硅片,从而降低成本。③更美观,电池的正面颜色均匀,满足了消费者的审美要求。
[0005]背接触太阳电池包括MWT、EffT和IBC等多种结构。背接触太阳电池大规模商业化生产的关键是在于如何高效而低成本的将背接触太阳电池串联起来并制作成太阳能组件。MWT组件通常的制备方法是使用复合导电背板,在导电背板上施加导电胶,在封装材料上对应的位置冲孔使导电胶贯穿封装材料,将背接触太阳电池准确地放置于封装材料上使导电背板上的导电点与背接触太阳电池上的电极通过导电胶接触,然后在电池片上铺设上层EVA和玻璃,再将整个层叠好的模组翻转进入层压机进行层压。此工艺存在以下几个缺陷:1、所使用的复合导电背板是在背板中复合导电金属箔,通常为铜箔,且需要对铜箔进行激光刻蚀或化学刻蚀。由于激光刻蚀对于简单图形尚可操作,对于复杂图案则刻蚀速度慢,生产效率低,而化学刻蚀则存在需要预先制备形状复杂且耐腐蚀的掩膜、环境污染和腐蚀液对高分子基材的腐蚀问题。所以此方式制造的导电型背板制造工艺复杂,成本极高。2、需要对太阳电池片后层的封装材料进行冲孔以便使导电胶贯穿封装材料,由于封装材料通常是粘弹体,要进行精确冲孔难度极大。3、需要精确的点胶设备将导电胶涂覆在背板的相应位置,对MWT这种背接触点较少的电池还可以操作,对IBC等背接触点面积小、数量大的背接触电池使用点胶设备根本无法实现。
[0006]IBC技术将P-N结放置于电池背面,正面无任何遮挡同时又减少了电子收集的距离,因此可大幅度提高电池片效率。IBC电池在正面使用浅扩散、轻掺杂和S12钝化层等技术减少复合损失,在电池背面将扩散区限制在较小的区域,这些扩散区在电池背面成点阵排列,扩散区金属接触被限制在很小的范围内呈现为数量众多的细小接触点。IBC电池减少了电池背面的重扩散区的面积,掺杂区域的饱和暗电流可以大幅减小,开路电压和转换效率得以提高。同时通过数量众多的小接触点收集电流使电流在背表面的传输距离缩短,大幅度降低组件的串联内阻。
[0007]IBC背接触电池由于具有常规太阳能电池难以达到的高效率而备受业界关注,已经成为新一代太阳能电池技术的研宄热点。但现有技术中IBC太阳能电池模块P-N结位置相邻较近且均在电池片背面,难以对IBC电池模块进行串联并制备成组件。为解决上述问题,现有技术也出现了多种对IBC背接触太阳能电池的改进,Sunpower公司曾发明将相邻的P或N发射极通过银浆丝网印刷细栅线相连最终将电流导流至电池边缘,在电池片边缘印刷较大的焊点再使用连接带进行焊接串联。
[0008]然而,使用细栅线进行电流收集,在5寸电池片上尚可使用,但在现有技术中普遍流行的6寸或更大的硅片上就会遇到串联电阻上升和填充因子下降等问题,导致所制造的组件功率严重降低。在现有技术中的IBC电池也可以在相邻的P或N发射极之间丝网印刷比较宽的银浆栅线来降低串联电阻,但由于用银量的增加会带来成本的急剧上升,金属化面积过大还会带来太阳能电池开路电压降低,同时宽的栅线也会产生P-N之间的绝缘效果变差,易漏电的问题。
[0009]专利US20110041908A1公开了一种背面具有细长交叉指状发射极区域和基极区域的背接触式太阳能电池及其生产方法,具有半导体衬底,半导体衬底的背面表面上设有细长基极区域和细长发射极区域,基极区域为基极半导体类型,发射极区域设有与所述基极半导体类型相反的发射极半导体类型;细长发射极区域设有用于电接触发射极区域的细长发射极电极,细长基极区域设有用于电接触基极区域的细长基极电极;其中细长发射极区域具有比细长发射极电极小的结构宽度,并且其中细长基极区域具有比所述细长基极电极小的结构宽度。但是需要有设置大量的导电件来有效收集电流,因此导致制造成本增加,工艺步骤复杂。
[0010]专利EP2709162A1公开了一种太阳能电池,运用于背接触太阳能电池,公开了彼此分开并交替排列的电极接触单元,电极接触单元为contact island (块状接触),并且限定了块状接触的宽度为10 μπι?1_。通过纵向的连接体连接电极接触单元;但是该种结构在电池片上进行了两次连接,第一次是电池片与电极接触单元连接,然后还需要通过连接体连接电极接触单元,两次连接带来了工艺上的复杂性,以及造成过多的电极接触点,可能造成“断连”或者“错连”,不利于背接触太阳能电池的整体性能。
[0011]专利W02011143341A2公开了一种背接触太阳能电池,包括衬底,多个相邻的P掺杂层和N掺杂层位于衬底背面,P掺杂层和N掺杂层与金属接触层层叠,并且P掺杂层和N掺杂层与金属接触层之间设置有钝化层,所述钝化层上具有大量的纳米连接孔,所述纳米连接孔连接P掺杂层和N掺杂层与金属接触层;但该发明利用纳米孔连接金属接触层会使电阻增大,况且制造工艺复杂,对制造设备有较高的要求。该发明不能把多片太阳能电池与电连接层集成为一个模块,而把电池片集成为太阳能电池模块之后不仅便于组装成组件,而且便于调整模块间的串并联,从而有利于调整太阳能电池模块中电池片的串并联方式,减小组件的连接电阻。
[0012]综上所述,在无主栅太阳能电池领域,完全使用细栅线进行电流收集,会遇到串联电阻上升和填充因子下降等问题,导致所制造的组件功率严重降低;丝网印刷比较宽的银浆栅线来降低串联电阻,但由于用银量的增加会带来成本的急剧上升,同时宽的栅线也会产生P-N之间的绝缘效果变差,易漏电的问题。如果完全使用金属导电线收集背接触太阳能电池的导电粒子,由于普通太阳能电池的厚度仅为180微米,为了精确定位,焊接金属导电线时,一般需要施加一个张力再进行焊接,此时薄硅片将会受到导电线纵向的应力,容易弯曲,阻碍了太阳能电池的薄片化发展(太阳能电池片理论上的厚度45微米就可以)。

【发明内容】

[0013]本发明的目的在于针对现有技术的不足,提供一种结构简单、组装电池片方便、用银量低、低串联电阻、耐隐裂、高效率、高稳定性、低应力的新型无主栅高效率背接触太阳能电池和组件及制备工艺。
[0014]本发明提供的新型无主栅高效率背接触太阳能电池,其技术方案为:
[0015]新型无主栅高效率背接触太阳能电池,该太阳能电池包括太阳能电池片和电连接层,所述太阳能电池片背光面具有与P型掺杂层连接的P型电极和与N型掺杂层连接的N型电极,其特征在于:所述电连接层包括若干的第一
当前第1页1 2 3 4 5 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1