动力电池连接器、动力电池模组、动力电池包、汽车的制作方法_2

文档序号:10159288阅读:来源:国知局
接片段40所在平面之间限定的角度为第二预定角度,第二预定角度的范围在大于0且小于180度之间。
[0041]由此,根据本实用新型实施例的动力电池连接器100,将主体连接片分成第一连接片段30和第二连接片段40,并且第一连接片段30相对于第二连接片段40翻折,另外,第一固定片10与第一连接片段30之间、第二固定片20与第二连接片段40之间分别形成大于0且小于180度的夹角,使得动力电池连接器100形成有至少三个方向的弯折,在至少三个方向都有柔性,大大提高了动力电池连接器100抗震动的可靠性,该动力电池连接器100结构简单,占用空间小,制备方便,成本低廉,并且取代了编织线结构,无需在连接处压线,减少了接触电阻。
[0042]如图1所示,连接器上设置有保护组件83。图2至图4中的保护组件未示出。如图5和图6所示,主体连接片上设置有熔断部80,熔断部80的横截面面积小于主体连接片的其它部分的横截面面积,当过载或短路电流通过熔断部80时,熔断部80自身发热而熔断,从而断开连接片,可以起到保险作用;由此控制电路发生异常时,熔断部80可以发生熔断,从而可将两个电池断开。
[0043]上述熔断部80的横截面为连接片的宽度方向上的横截面,具体的,如图5中的前后方向即为连接片的宽度方向或如图6所示的左右方向即为连接片的宽度方向;四个连接片的其他部分的是连接片上除熔断部80外的其它部分,包括以下具体方案中的第一片体81和第二片体82。
[0044]如图1所示和图5所示,保护组件83包覆在熔断部80外。由此可以将熔断部80熔断时产生的电弧限定在保护组件83内部,并快速熄灭电弧,避免电弧对连接片其它部位造成损坏,从而避免击穿电池,造成电池爆炸等。需要说明的是,“保护组件83包覆在熔断部80外”,可以是保护组件83的内表面与熔断部80的表面贴合,也可以是保护组件83的内表面限定出一个保护腔室86,熔断部80位于保护组件83限定的保护腔室86内。
[0045]电动车在行驶过程中,电池连接件会不断的晃动,而熔断部80的横截面面积小于其余部分的横截面面积,熔断部80在不断晃动的情况下,相比其余部分容易断裂。保护组件83与连接片上邻近熔断部80两端的部分连接,可以对熔断部起到一个外壳支撑的作用以加强熔断部80连接的可靠性,从而增加了连接片的可靠性。
[0046]根据本实用新型实施例的电动车的电池连接件,通过在连接片上设置横截面面积小于其余部分的横截面面积的熔断部80,并在熔断部80的外部包裹保护组件83,由此不仅可以实现电池之间的连接,还可以在控制电路出现异常时,及时切断电池之间的连接,对电池起到保护的作用,并且可以快速熄灭由于熔断产生的电弧,防止电弧击穿电池,造成燃烧、爆炸等风险,避免对乘客造成安全隐患。同时,保护组件83的安装还可以避免减小熔断部80的连接的可靠性,防止熔断部由于晃动而断裂。
[0047]如图5和图6所示,连接片包括第一片体81和第二片体82。其中,熔断部80位于第一片体81和第二片体82之间;第一片体81和第二片体82通过熔断部80电连接。由此,当控制电路出现异常时,熔断部80可以发生熔断,从而断开连接片,进而可将两个电池断开,避免损坏电池。例如,如图5和图6所示,熔断部80的一端与第一片体81连接,熔断部80的另一端与第二片体82连接,当熔断部80发生熔断时,第一片体81与第二片体82断开,从而可以有效地避免电池损坏。
[0048]可选地,如图5所示,熔断部80的宽度小于第一片体81和第二片体82。也就是说,熔断部80的宽度小于第一片体81宽度,同时熔断部80的宽度小于第二片体82的宽度。由此,可以使得熔断部80属于连接片中最薄弱的部位,熔断部80为连接片上最易发生熔断的部位,即可以将连接片熔断时产生的电弧限定在熔断部80处,从而方便对熔断部80做防护措施,以防止熔断时产生的电弧损坏连接片的其它部位,可以避免击穿电池而产生爆炸。例如,如图6所示,dl为第一片体81的宽度,d2为熔断部80的宽度,d3为第二片体82的宽度,dl、d2 和 d3 满足 dl < d2,dl < d3。
[0049]进一步地,熔断部80在宽度方向(如图5所示的前后方向的宽度)的一侧与第一片体81和第二片体82平齐,且另一侧与第一片体81和第二片体82之间限定出凹入部84,由此可以将熔断时产生的电弧可以在外力的作用下引向凹入部84,不但可以将电弧拉长,削弱电弧的能量,而且凹入部84没有连接片,电弧不会继续燃烧,从而快速熄灭电弧,降低对汽车和人身的安全隐患。
[0050]例如,如图5和图6所示,熔断部80在前后方向(如图5所示的前后方向)的宽度小于第一片体81和第二片体82的宽度,且熔断部80的前侧壁与第一片体81和第二片体82平齐,后侧壁与第一片体81和第二片体82之间限定出凹入部84,由此可以将熔断时产生的电弧可以在外力的作用下引向凹入部84,将电弧拉长,从而削弱电弧的能量。
[0051]可选地,如图5所示,保护组件83的两个外侧面上分别设有第一磁性件85和第二磁性件(图未示出),熔断部80位于第一磁性件85和第二磁性件之间,第一磁性件85和第二磁性件面向熔断部80的一面极性相反;第一磁性件85和第二磁性件之间的磁场方向、熔断部80上的电流方向、以及凹入部84的敞开方向通过左手法则对应。当熔断部80中有电流经过时,熔断部80在第一磁性件85和第二磁性件所限定的磁场的作用下产生力,该力可以将熔断部80熔断时产生的电弧拉向凹入部84,由此可以拉长电弧,并且让连接片远离电弧,从而加速灭弧。
[0052]例如,如图5所示,第一磁性件85安装在保护组件83的下表面,第二磁性件安装在保护组件83的上表面。其中,第一磁性件85的上端(如图5所示的第一磁性件85的朝向连接片的端面)和第二磁性件的上端(第二磁性件的远离连接片的端面)均为N极,第一磁性件85和第二磁性件的下端均为S极,凹入部84的开口向后敞开(如图5所示的后方),根据左手法则(这里“左手法则”是指:左手平展,大拇指与其余四指垂直,若磁力线垂直进入手心,四指指向电流方向,则大拇指所指方向为载流导体在外磁场中受力的方向),手掌的掌心向下,大拇指指向凹入部84的敞开方向,其余四指指向左,即熔断部80上的电流方向指向左(如图5所示的左方)。
[0053]再如,第一磁性件85和第二磁性件的安装方向不变,仍然为上端为N极,下端为S极,熔断部80上的电流方向指向右(如图5所示的右方),则根据左手法则,相应的凹入部84的敞开口向前。
[0054]在本实用新型的另一个示例中,第一磁性件85的下端和第二磁性件的下端均为N极,第一磁性件85的上端和第二磁性件的上端为S极。其中,如图5所示,凹入部84向后敞开,则根据左手法则(左手平展,大拇指与其余四指垂直,若磁力线垂直进入手心,四指指向电流方向,则大拇指所指方向为载流导体在外磁场中受力的方向),手掌的掌心向上,大拇指指向凹入部84的敞开方向,其余四指指向右,即熔断部80上的电流方向指向右(如图5所示的右方)。
[0055]电池连接件的安装方向与第一磁性件85、第二磁性件的N、S安装方向,和凹入部84的敞开方向同时相关。需要说明的是,第一磁性件85和第二磁性件的安装位置、第一磁性件85和第二磁性件的N极和S极方向、电流方向以及凹入部84敞开口的方向不做限制,只要可以根据左手法则可以将熔断时产生的电弧拉向凹入部84即可。
[0056]根据本实用新型的一个实施例,如图5所示,保护组件83可以包括第一壳体87和第二壳体88,第一壳体87和第二壳体88之间限定出密封的保护腔室86,其中熔断部80位于保护腔室86内,由此可以将熔断部80隔离在保护腔室86内,防止熔断时产生的电弧损坏连接片的其它部位,提高了电池连接件的安全性和可靠性。
[0057]进一步地,第一壳体87和第二壳体88的接合面通过卡扣连接,可以使得第一壳体87和第二壳体88进行连接。需要说明的是,第一壳体87的接合面上可以设有卡凸或/和卡槽,第二壳体88的接合面上可以设有与第一壳体87的接合面上的卡凸或/和卡槽相配合的卡槽或/和卡凸。
[0058]例如,第一壳体87的接合面上可以设有至少一个卡凸,第二壳体88的接合面上可以设有与第一壳体87的接合面上的卡凸相配合的卡槽;再如第一壳体87的接合面上可以设有至少一个卡槽,第二壳体88的接合面上可以设有与第一壳体87的接合面上的卡槽相配合的卡凸;又如第一壳体87的接合面上可以同时设有卡槽和卡凸,第二壳体88的接合面上可以设有与第一壳体87接合面上的卡槽和卡凸相配合的卡凸和卡槽。
[0059]根据本实用新型的一个实施例,第一壳体87和第二壳体88的接合面上设有钎料层(图未示出)以将第一壳体87和第二壳体88焊接以限定出保护腔室86,由此可以形成一个完全密闭的
当前第2页1 2 3 4 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1