用于电动马达的噪音调制和噪音降低的方法与流程

文档序号:12514819阅读:4260来源:国知局
用于电动马达的噪音调制和噪音降低的方法与流程

本发明涉及一种具有权利要求1的前序部分的特征的、用于电动马达的噪音调制的方法。



背景技术:

就本发明而言,除了可听见的噪音以外,也将能够感知为振动的噪音归入术语“噪音”。

电动马达例如在机动车的助力转向装置或叠加转向装置中用于支持由驾驶员操作的方向盘手动力矩或用于施加附加转向角。在机电的转向装置中,在转向柱或转向传动机构处的电动马达支持并且叠加驾驶员的转向运动。

在运行中,例如在静止时的转向运动中的机电的转向装置产生声发射,所述声发射需归因于电动马达。电动马达的径向的磁场分量引起马达的周期性的变形,这引起声放射。

在现代的电的转向系统中,为了精确地设计同步马达的位置控制装置而使用磁场定向的向量控制(FOR)。为此,借助于同步马达的转子的位置、尤其磁极转子角将三相的电流系统转化为复数的、正交的转子坐标系统。由此得到旋转的电流分量d和q,其中d对应于同步马达的磁化电流以及q对应于同步马达的形成转矩的电流。在操纵同步马达时,尤其通过如下方式优化转矩:即在连接在下游的PI控制级中最优地设计相应的运行情况的d-q理论变量。在此,尤其在连接在下游的PI控制级中以波纹补偿的方式控制电流分量q,以振动-声学地优化转向系统。经由传统的方案利用辅助措施处理声学问题,如电动马达的典型的干扰噪音。由于辅助措施使得系统在重要的目标变量方面、例如轻质结构和坚固性方面变差。此外,由于附加的措施使得成本和制造耗费升高。

在电动马达驱动的车辆中,尤其在市内交通中存在如下问题:即车辆由于小的噪音生成而在声学方面相对难于被感知,这引起提高的风险。为了改进感知例如存在如下可能性:即在编组调度运行(Rangierbetrieb)中产生警告噪音。

从DE 10 2012 211 689A1中已知一种用于噪音产生的方法,其中改变电动马达的通电,使得马达轴旋转的由于改变而引起的变化在限定的公差之内。如何准确地调制电动马达的通电没有被公开。

在JPH04200294A中公开一种用于噪音调制的电动马达的调制方法,其中借助于载频调制马达电流,所述载频是期望的噪音形成的反映。在此提出,将马达的干扰噪音通过脉冲宽度调制转换为具有旋律的音程。在此不利的是,由电动马达输出的转速和输出的扭矩根据产生的噪音波动。



技术实现要素:

本发明基于的目的是,提出一种用于电动马达的噪音调制的方法,其中仅以非常小的程度影响由电动马达输出的转速和由电动马达输出的转矩。

所述目的由具有权利要求1的特征的方法实现。

由此,提出用于电动马达的噪音调制的方法,其中电动马达是多相的同步马达,所述同步马达利用借助于马达控制设备进行向量控制来驱动,其中在受控系统中得到旋转的电流分量id和iq的实际值,其中id对应于同步马达的磁化电流以及iq对应于同步马达的形成转矩的电流,并且其中将实际值与预设的指令变量iq_soll,id_soll比较,其中实际值与指令变量之间的差经由第一控制器和第一变换级在脉冲宽度调制发电机的占空比中换算为控制变量,以便将实际值iq、id调整到指令变量iq_soll、id_soll,其中根据由测量装置测量的且借助于信号输出端转发到马达控制设备上的声学状态将形成磁化电流的电流分量id借助于声学控制器匹配于期望声学状态。

所述方法优选用于三相的同步马达。

优选地,在声学控制器中根据预设函数将基准声学变量与声学状态比较,得到的偏差转换为电学变量并且在模型/特征曲线族中换算为dq电流目标变量。

借助于根据本发明的用于噪音调制的方法能够一方面有针对性地产生期望的噪音,而且在电动马达的运行中降低噪音。此外,在使用用于基准声学变量的相应的预设函数时也能够有针对性地影响在车辆中的其他噪音。在此也可考虑的以及可行的是,通过在电动马达中相应产生相移的声音排放——就静音而言——降低或去掉其他的车辆噪音。

在一个优选的实施方式中,将dq电流目标变量经由第二控制器和第二变换级转换为物理受控变量,该物理受控变量在第一变换级之后借助于受控系统系统的物理受控变量修正。

在此有利的是,在声学控制器中的声学变量换算为更高次的量纲。

优选地,电动马达是机动车的一部分和/或辅助转向装置的一部分。

优选地,根据本发明的用于噪音调制的方法用作在机动车中降低噪音的方法,其中借助于传感器装置确定声音值以及从中确定相移的基准声学变量,所述基准声学变量用作用于电动马达的噪音调制的、上文所描述的方法的基准值。

附图说明

在下文中根据附图详细说明本发明的一个实施例。附图示出:

图1示出电的辅助转向装置的示意图;以及

图2示出马达控制设备的控制回路。

具体实施方式

图1示出具有方向盘2的机动车的电的辅助转向装置1,所述方向盘与上部的转向轴3和下部的转向轴4抗扭地耦联。下部的转向轴4还抗扭地与转向机构主动齿轮5耦联。转向机构主动齿轮5以已知的方式与齿条6的齿区段啮合。齿条6在转向装置壳体中沿其纵轴线方向可移动地安装。齿条6在其自由端部上与转向横拉杆7连接。转向横拉杆7本身以已知的方式经由转向节与机动车的各一个被转向的轮8连接。方向盘2的转动经由转向轴3、4与主动齿轮5的连接引起齿条6的纵向移动进而引起被转向的轮8的枢转。被转向的轮8经由车道承受反作用,所述反作用与转向运动相反地作用。因此,为了枢转轮8需要力,所述力需要在方向盘2上产生相应的转矩。伺服装置100、101、102的伺服马达设为用于在这种转向运动中辅助驾驶员。在此,伺服装置100、101、102能够作为叠加转向装置设置在转向柱100上或作为助力增强装置设置在主动齿轮101或齿条102上。在转向轴上设有扭转传感器9,所述扭转传感器检测转向转矩10。所述转向扭矩10与其他的输入变量11、例如车辆速度和电动马达的测量信号54、例如瞬时转子位置19和/或在相绕组中的测量出的电流值传送到马达控制设备12上,所述马达控制设备从中借助于预设函数13确定指令变量或用于对伺服马达通电的理论电流。最后计算的控制变量或电流值51、52、53被转发给伺服装置100、101、102并且相应地运行电动马达。由电动马达产生的噪音14在测量装置15中被测量并且借助于信号输出端16转发给马达控制设备12。

在图2中阐述电动马达的根据本发明的噪音调制。

根据测量出的转向转矩10、其他的输入变量11和预设函数13,在马达控制设备12的第一装置17中确定dq理论电流idref、iqref和三相的理论电流iUVW。在控制装置30中进行已知的转向控制。在该实例中,PI控制器18、所谓的转向控制器根据这些借助于转子位置19和三相的理论电流iUVW已确定的dq状态变量id、iq和所述dq理论变量idref、iqref控制dq理论电压Udref、Uqref。接着,借助于转子角θ进行逆变换20,以便将电压命令值由共同转动的坐标系统传递到位置固定的坐标系统中。在装置21中,将电压命令值转换为电学变量。在此,通过如下方式根据电压命令值产生三个马达相位U、V、W的相电流:即在反向器MosFET开关中以特定的模式通过脉冲宽度调制操纵装置来进行开关。相电流51、52、53转发给伺服装置100、101、102以进行操纵。所述相电流具有适合于期望的转向辅助的数值。

装置22首先检查声学状态,所述声学状态由测量装置15测量并且借助于信号输出端16转发给马达控制设备12。在此,根据预设函数23将基准声学变量与信号输入端的实际值比较。得出的偏差经由NVH控制器24和坐标变换25转化为电学的、更高次谐波的变量并且在模型/特征曲线族26中换算为dq电流目标变量,所述dq电流目标变量重新经由装置28中的PI控制器27转变为物理受控变量。为了应对装置28中的PI控制器27的低通特性,将实际变量和理论变量根据声学问题换算成更高次的量纲,例如第n次马达阶数,其对应于马达转速的第n次谐波。因此,控制装置不再涉及转动坐标,而是涉及多倍的转动坐标,由此人工地降低控制频率。

在能够视为用于转向控制器18的旁路的装置28中,同样将电学更高次谐波的基准值用作理论变量。为此,首先将电动马达的状态变量提高至变压器31中的更高次的状态(高次谐波范围)。在变换器31中的新的坐标变换之后进行从装置22中输送的电流目标变量idrefn次、iqrefn次的补偿。随后的PI控制器27控制电压,接着必须将所述电压再向回变换。在所述逆变换29之后,装置20下游的电压馈入受控系统中进而使电压命令值在产生相电流之前匹配于期望声学状态。

如在图2中示出的,可变地调节d份额的基准值。由此,能够基本上自由地激励场向量的径向份额,这例如通过产生反相的声发射而引起现有的声发射和振动的降低,或者引起自由地产生声发射。

连接在上游的装置22和28称作声学控制器。声学控制器基于模型或特征曲线族工作。所述声学控制器能够检测振动-声学的干扰变量,并且转换为基准变量,所述基准变量引起干扰变量的校正或产生期望的激励,其中所述干扰变量来自转向装置或者经由转向装置传递。声学控制器与装置17、18、20和21共同地设置在马达控制设备12上。

能够分别彼此独立地变化d和q份额。然而,由于电动马达的电感将变量物理地彼此耦合。因此,必须防止由于马达中的切向力份额而引起的连接在上游的声学控制器对转向特性的影响。这例如能够通过充分利用转向线路中的衰减和弹性来确保。然而对此,能够遵守控制的最小频率。为了确保控制的该最小频率,不能够将声学控制器连接在转向控制器上游,因为所述转向控制器具有低通特性。由于该原因,首先单独地控制声学控制变量,并且然后在转向控制器下游借助于在旋转坐标中的电压命令变量来修正。

根据本发明的方法能够用于在转向装置中主动地补偿电动马达干扰噪音、用于主动地补偿经由转向线路传递的车道引起的震动、用于为乘客辅助系统产生信号以及用于电动车的行驶噪音的主动的且可靠的形成。

工作点相关的相位控制用于直接在电源处产生具有与干扰变量的限定的相位关系的激励。在此,能够不变地使用常规的转向系统的硬件(马达、马达控制设备)以及软件。能够省去用于主动措施的或耗费的次级措施的附加的执行器。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1