快速响应直线电机及控制方法与集成控制芯片的制作方法_3

文档序号:9827787阅读:来源:国知局
控制磁场,再通过导磁臂41导向,进而可以与定子20的导磁环21相互作用,从而不仅可以起到减速使用,还可以根据定子和转子相对位置来实现加速作用,实现准确调节,并且在驱动线圈32断电后,可以将导磁臂41定位,进而将转子30定位,从而可以实现控制转子30的位置。
[0043]在其它实施例中,也可以在定子20的导电套的相对内侧间隔设置若干导磁环21,以便与控制机构40的导磁臂41配合实现磁吸合,进而控制转子30的位置。
[0044]快速响应直线电机10a的定子20使用交替层叠设置的导磁环21与隔离环22,而隔离环22导电而不导磁,则可以将定子20的体积制作较小,而转子30的驱动线圈32产生沿支撑轴13轴向的驱动磁场,当向驱动线圈32通过电流脉冲时,定子20中会产生的感应电流,进而产生与上述驱动磁场相反的磁场,以驱动转子30移动,因而该快速响应直线电机10a可以实现快速响应;另外,使用较大瞬时脉冲电流时,可以产生较大的动力;而设置与支撑骨架31相连的导磁臂41,并在导磁臂41上缠绕控制线圈42,可以通过控制线圈42的磁力与定子20的导磁环21的吸合来控制转子30的位置,控制简单、方便;由于驱动线圈32产生沿支撑轴13轴向,因而可以将转子30的体积制作较小,则可以将该快速响应直线电机10a的体积制作较小。
[0045]导磁环21可以为铁环、钢环、硅钢、电工纯铁、坡莫合金、金属纳米合金材料等导磁材料制作的环片。隔离环22可以为铜环、铝环等导电而不导磁的材料制作的环片。
[0046]进一步地,导磁臂41包括若干导磁片411和若干绝缘片412,导磁片411和绝缘片412交替层叠设置,且沿支撑轴13的轴向:设置一层导磁片411、一层绝缘片412、一层导磁片411、一层绝缘片412这样交替设置。各绝缘片412隔离相邻两片导磁片411。该结构设置的导磁臂41可以通过控制线圈42产生的控制磁场。进一步地,导磁片411可以为铁片、钢片、硅钢、电工纯铁、坡莫合金、金属纳米合金材料等导磁材料制作的片。绝缘片412可以为塑料片、树脂片等绝缘材料制作的片。当然,也可以在导磁片411上包裹绝缘漆等绝缘包层,再将这些包有绝缘包层的导磁片411叠合起来,形成导磁臂41。
[0047]请参阅图4-图8,进一步地,相邻的一片导磁片411与一片绝缘片412的厚度之和与相邻的一片导磁环21与一片隔离环22的厚度之和相等。当导磁片411的厚度为Dn,绝缘片412的厚度为D12,导磁环21的厚度为D21,隔离环22的厚度为D22,贝ljDn+D12 = D21+D22,则当向控制线圈42通电时,该结构可以实现自动定位锁定的功能。具体地,当导磁臂41中通过控制磁场B时,定子20的导磁环21中也会通过相应的磁场B,以与导磁臂41相吸合。请参阅图7,当导磁臂41的导磁片411位于定子20邻近的导磁环21的左侧时,受到控制磁场向右的吸力F使用,则会向右移动。请参阅图8,当导磁臂41的导磁片411位于定子20邻近的导磁环21的右侧时,受到控制磁场向左的吸力F使用,则会向左移动。请参阅图9和图10,当导磁臂41的导磁片411的中部与定子20邻近的导磁环21的中部对齐时,如与图7中So、S2、S4位置对应时,导磁臂41的导磁片411受到控制磁场的吸力左右平衡或磁力F最小,此时导磁臂41的导磁片411处于稳态。而当导磁臂41的导磁片411的中部与定子20邻近的绝缘环的中部对齐时,如与图7中S^S3位置对应时,导磁臂41的导磁片411受到控制磁场的吸力也会左右平衡,但此时若导磁片411稍有偏移或受到外力作用,则会打破该平衡,使导磁臂41的导磁片411移动至邻近的导磁环21对应处。则当控制线圈42中通电时,可以起到减速,进而将转子30定位,还可以根据定子与转子的相对位置来使转子进行加速,调节更为准确。
[0048]请参阅图4、图5和图6,进一步地,导磁臂41成对设置,且导磁臂41为至少一对,每对的两个导磁臂41分别设于支撑轴13的相对两侧。将导磁臂41成对设置,可以使转子30两侧的受力平稳,以使转子30可以更平稳地沿支撑轴13移动。本实施例中,导磁臂41为两对,即导磁臂41为四个,且均匀分布支撑轴13的四周。在其它实施例中,导磁臂41也可以为其它对数,如三对、四对等等。在还有一些实施例中,导磁臂41也可以呈环形。
[0049]进一步地,定子20呈圆筒状,导磁臂41远离支撑轴13的一端415呈与定子20配合的圆弧形。将导磁臂41远离支撑轴13的一端415设置呈圆弧形,可以增大与定子20的导磁环21配合的面积,提高控制线圈42产生控制磁场的磁吸力。在其它实施例中,定子20也可以呈椭圆形或定子20的横截面呈框状。
[0050]进一步地,可以将导磁臂41与定子20间的间隙设置较小,进而减少磁力损失,提高控制线圈42产生控制磁场的磁吸力。
[0051 ]进一步地,控制线圈42产生的控制磁场的垂直于支撑轴13的轴向。将控制磁场垂直于支撑轴13的轴向,则控制磁场垂直驱动磁场,从而可以防止控制磁场与驱动磁场之间的相互影响。
[0052]进一步地,导磁臂41上靠近支撑轴13的一端设有永磁体45。在导磁臂41上靠近支撑轴13的一端设置永磁体45,可以使导磁臂41上始终具有磁力,则当转子30停止移动时,可以实现自动锁定作用。本实施例中,永磁体45呈套筒状,而导磁臂41固定在永磁体45上。
[0053]请参阅图4-图10,该实施例的快速响应直线电机10a断电时,导磁臂41上的磁场B在轴向上被定子20和导磁臂41的磁路部分的导磁材料和不导磁材料分割,即被定子20的导磁环21和导磁臂41的导磁片411分割。当定子20和导磁臂41的导磁材料之间的距离足够小,即定子20的导磁环21和导磁臂41的导磁片411之间的距离足够小时,如果导磁环21与邻近的导磁片411的轴向相对位置有偏移,磁场B将产生静态的磁力F使导磁臂41的保持在磁阻最小的位置上,这个位置也就是图4和图5中虚线所示的位置,偏离虚线位置的距离S和磁力F的大小关系如图9所不。图9和图10中Si和S3位置虽然作用力为O,但该位置为不稳定状态,只要外界有一点干扰,&和&的位置不能够保持。而So、S2、S4这些位置为稳定状态,只要施加在该快速响应直线电机10a上的外部作用力小于最大静态的磁力F,快速响应直线电机10a的定子20和转子30将保持这个相对位置,因此快速响应直线电机10a断电后有位置自动保持的功能。
[0054]当控制机构40的控制线圈42通电后,产生磁场和永磁体45的磁场相互叠加,将增强或者减弱定子20与导磁臂41之间整个磁路中的磁场。叠加磁场产生力的大小方向和叠加磁场的大小、定子20转子30之间的相对位置、定子20导磁臂41之间的间隙大小有关,选择好快速响应直线电机1 Oa磁路部分的长度、永磁体45磁场的大小、控制线圈4 2的Bi数,使叠加磁场产生的最大作用力大于快速响应直线电机10a工作时承受的最大负荷。该作用力用于控制快速响应直线电机10a轴向直线运动的位置和速度。当快速响应直线电机10a结构确定后,静止时根据定子20和转子30相对位置偏离磁阻最小位置的距离、控制线圈42电流的大小可以计算出外界施加在快速响应直线电机10a作用力的大小。快速响应直线电机10a定子20和转子30及导磁臂41的磁路的结构可知,该快速响应直线电机10a轴向位置精度为D21+D22,轴向位置控制没有累积误差。而产生过程中,通过调节定子20和导磁臂41磁路材料的厚度,即定子20的导磁环21和导磁臂41的导磁片411的厚度和隔离环22与绝缘片412的厚度,来满足快速响应直线电机10a的轴向位置控制精度要求。为了达到较高的控制性能,定子20和导磁臂41之间的安装间隙要求尽量小。而当定子20和导磁臂41和导磁材料和不导磁材料的厚度设置尽量小时,可以使该快速响应直线电机10a的精度达到较高的精度,甚至可以达到IMi的精度,当然,对于Ιμπι精度要求定子转子的间隙也要Ιμπι,否则间隙太大的话,控制线圈产生的控制力矩移动时几乎没有变化,导致电机性能影响,所以快速响应直线电机10a实际的运动控制精度受限于定子与导磁臂之间的间隙
当前第3页1 2 3 4 5 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1