双极型晶体管、振荡电路及电压控制型振荡器的制作方法

文档序号:7534142阅读:226来源:国知局
专利名称:双极型晶体管、振荡电路及电压控制型振荡器的制作方法
技术领域
本发明涉及双极型晶体管,特别涉及电压控制型振荡器(VCOVoltage Controled Oscillator)中使用的双极型晶体管、应用该双极型晶体管的振荡电路及应用该振荡电路的电压控制型振荡器。
背景技术
随着近10年来移动电话的迅速普及,高频器件技术、高频电路技术有了快速的发展,由此高频装置、例如移动电话终端等在高性能化、小型化以及低成本化上每年都有进展。
这些通讯装置的主要部分之一就是电压控制型振荡器。电压控制型振荡器一般具备谐振电路、振荡电路、及缓冲电路,是有温度变化也能提供稳定的通信所需要的载波的高频信号的电路。其构成如图11所示。
在图11中,电压控制型振荡器的构成具有由电容值通过施加电压Vt变化的可变电容和感应器等构成的谐振电路111、产生与谐振电路111的谐振频率相应的频率信号的震荡电路112、及增幅所得到的振荡信号并输出高频信号RFout的缓冲电路113。图11所示的电压控制型振荡器是其中一例,虽然可以提出晶体管方向不同等各种电路,但一般以这个电路作为代表。
其中,在震荡电路112中需要与双极型晶体管T1连接的平衡电容Cce、Ccb。这些平衡电容Cce、Ccb原来用于振荡频率的微调整和输出的调整,还用于调整电源电压的变动和振荡电路的重要系数C/N(载波对噪声的比)。
这些电路在移动电路中为了小型化进行模块化、IC化。特别是在模块中,小型化同时为了低成本化,在小型封装中实装分立(单体)的双极型晶体管。用图9及图10说明已有的双极型晶体管。
图9是从芯片上面看已有双极型晶体管的俯视图,图10是沿图9的c-c’线的剖面图。如图9与图10所示,1是作为半导体衬底的N+/N型集电极衬底,2是形成了双极型晶体管的晶体管工作区域,3是在集电极衬底1及晶体管工作区域2表面上形成的绝缘膜,4和6分别是从晶体管工作区域2贯穿到绝缘膜3而在绝缘膜3上形成的发射极引线及基极引线,5和7是分别与发射极引线4和基极引线6连接、且在组装时进行引线接合的发射极焊盘(pad)及基极焊盘,8是在集电极衬底1背面形成的集电极电极。另外,在晶体管工作区域2,形成了P型扩散基极21、P+基极连接部分22以及N+发射极23。这种芯片结构称为衬底集电极结构。
但是,在已有例中,为了构成图11所示的振荡电路112,作为分立器件的平衡电容Cce、Ccb外接在作为分立器件的双极型晶体管T1上。这样,振荡电路112的Q值(电感系数或电容量成分与电阻成分之比)降低,结果存在振荡电路112的C/N劣化的问题。

发明内容
本发明是鉴于上述问题而提出来的,其目的在于提供一种在半导体制造工序将构成振荡电路的平衡电容的至少一部分装入的双极型晶体管、使用这种双极型晶体管得到所期望的高频率性能的振荡电路、及应用这种振荡电路的高性能且谋求小型化及低成本化的电压控制型振荡器。
为达到上述目的,本发明的双极型晶体管,其特征在于,具有半导体衬底;在半导体衬底上形成的晶体管工作区域;以覆盖半导体衬底表面上的方式形成的绝缘膜;从晶体管工作区域贯穿绝缘膜、且引出至绝缘膜上的引线;与引线连接的引线接合用焊盘;及与焊盘连接的电容调整用布线。
有关本发明的双极型晶体管,其特征在于,半导体衬底是N+/N型集电极衬底,在集电极衬底背面形成集电极电极,焊盘在集电极衬底表面上作为发射极焊盘及基极焊盘形成。
此时,所述的双极型晶体管,其特征在于,通过调整与基极焊盘和发射极焊盘的至少一方连接的电容调整用布线的面积,调整相对应的集电极-基极间电容和集电极-发射极间电容的至少一方的电容值。
所述的双极型晶体管,其特征还在于,通过调整与发射极焊盘连接的电容调整用布线、及与基极焊盘连接的电容调整用布线相对的布线长度,调整发射极-基极间电容的电容值。
此时,优选与发射极焊盘连接的电容调整用布线、及与基极焊盘连接的电容调整用布线布置成梳形。
另外,有关本发明的双极型晶体管,其特征在于半导体衬底是N+/N型发射极衬底,在衬底背面形成发射极电极,焊盘在发射极衬底表面上作为集电极焊盘及基极焊盘形成。
所述的双极型晶体管,其特征在于,与集电极焊盘连接的电容调整用布线、及与基极焊盘连接的相对的电容调整用布线夹着绝缘膜,形成集电极-基极间电容作为金属-绝缘体-金属(MIM)型电容,通过调整电容调整用布线的相对的面积,调整集电极-基极间电容的电容值。
为达到上述目的,本发明的第1振荡电路,将本发明的双极型晶体管作为振荡放大器使用,其中,对振荡工作起作用的电容的至少一部分由电容调整用布线和相对的集电极之间形成的寄生电容构成。
为达到上述目的,本发明的第2振荡电路,将本发明的双极型晶体管作为振荡放大器使用,其中,对振荡工作起作用的电容的至少一部分由与发射极焊盘连接的电容调整用布线、及与基极焊盘连接的电容调整用布线之间形成的寄生电容构成。
为达到上述目的,本发明的第3振荡电路,将本发明的双极型晶体管作为振荡放大器使用,其中,对振荡工作起作用的电容的至少一部分由金属-绝缘体-金属型电容构成。
为达到上述目的,本发明的电压控制型振荡器,其特征在于,具有对应输入电压可以改变谐振频率值的谐振电路、发生与谐振频率相对应的频率信号的第1振荡电路至第3振荡电路中的任意一个、及该放大来自该振荡电路的振荡信号后输出的缓冲电路。
根据上述构成,可以使电容调整用布线与N+型集电极衬底之间形成的集电极-基极间电容、及集电极-发射极间电容增加,可以使与发射极焊盘连接的电容调整用布线、及与基极焊盘连接的电容调整用布线之间形成的射-集间电容增加,可以将这些电容作为构成振荡电路用平衡电容的至少一部分,在半导体制造工序,装入晶体管工作区域小的双极型晶体管中。
另外,上述端子间电容的值,可以使用电容调整用布线容易地调整,在振荡电路中可以得到所期望的好的高频率性能。
另外,通过使用这种振荡电路,可以实现电压控制型振荡器的高性能且小型化及低成本。


图1是表示本发明实施例1的双极型晶体管一构造例的俯视图。
图2是沿图1的a-a’线的剖面图。
图3是表示本发明实施例2的双极型晶体管一构造例的俯视图。
图4是表示本发明实施例3的双极型晶体管一构造例的俯视图。
图5是表示本发明实施例4的双极型晶体管一构造例的俯视图。
图6是表示本发明实施例5的双极型晶体管一构造例的俯视图。
图7是表示本发明实施例6的双极型晶体管一构造例的俯视图。
图8是沿图7的b-b’线的剖面图。
图9是表示已有双极型晶体管一构造例的俯视图。
图10是沿图9的c-c’线的剖面图。
图11是表示一般电压控制型振荡器的构成的电路图。
图12是用于比较说明本发明效果的集电极-基极间电容特性图。
图13是本发明其他实施例的双极型晶体管一构造例的俯视图。
具体实施例方式
以下,参照附图就本发明的较佳实施例进行说明。另外,在以下实施例中说明的双极型晶体管都适用于已有例中说明过的图11所示的振荡电路及电压控制型振荡器。
(1)实施例1图1所示是从芯片上面看本发明实施例1的双极型晶体管的俯视图,图2是沿图1的a-a’线的剖面图。另外,在图1及图2中,有关与图9及图10所示的已有例的相同部分,附加相同的标号且省略说明。
本实施例与已有例的不同之处是设置了与基极焊盘7连接的电容调整用布线11。
电容调整用布线11的一部分与基极焊盘7连接,其余部分只是覆盖在绝缘膜3的上部,所以不会影响电流放大倍数及耐压等直流电特性。在交流(高频率)方面,由于电容调整用布线11与N+集电极衬底间形成了寄生电容,所以导致双极型晶体管的集电极-基极间电容的电容值增加,可以将该集电极-基极间电容作为如图11所示的振荡电路112的平衡电容Ccb的至少一部分装入半导体芯片内部。
另外,通过调整电容调整用布线11的面积,可以容易地调整集电极-基极间电容的电容值。
(2)实施例2图3所示是从芯片上面看本发明实施例2的双极型晶体管的俯视图。图3所示的本实施例与实施例1不同之处在于,为增加集电极-发射极间电容而在设置了一端与发射极焊盘5连接的电容调整用布线31、32,来代替双极型晶体管的集电极-基极间电容。
由于在电容调整用布线31、32与N+集电极衬底间形成寄生电容,所以导致双极型晶体管的集电极-发射极间电容的电容值增加,可以将该集电极-发射极间电容作为如图11所示的振荡电路112的平衡电容Cce的至少一部分装入半导体芯片内部。
另外,通过调整电容调整用布线31、32的面积,可以容易地调整集电极-发射极间电容的电容值(3)实施例3图4所示是从芯片上面看本发明实施例3的双极型晶体管的俯视图,图4所示的本实施例与实施例1不同之处在于,为了增加双极型晶体管的集电极-发射极间电容和集电极-基极间电容,设置一端与发射极焊盘5连接的电容调整用布线41、及一端与基极焊盘7连接的电容调整用布线42。其他的构造与实施例1相同,这里就不重复说明了。
由于在电容调整用布线41、42与N+集电极衬底间形成寄生电容,所以导致双极型晶体管的集电极-发射极间电容和集电极-基极间电容的电容值增加,可以将这些集电极-发射极间电容和集电极-基极间电容作为如图11所示的振荡电路112的平衡电容Cce、Ccb的至少一部分装入半导体芯片内部。
另外,通过调整电容调整用布线41、42的面积,可以容易地调整集电极-发射极间电容和集电极-基极间电容的电容值。
(4)实施例4图5所示是从芯片上面看本发明实施例4的双极型晶体管的俯视图,图5所示的本实施例与实施例1的不同之处在于,为了增加双极型晶体管的集电极-基极间电容,设置一部分与基极焊盘7连接的电容调整用布线52,还为了增加发射极-基极间电容,将电容调整用布线52布置成梳形,并而分别设置一端与发射极焊盘5连接的电容调整用布线51、53。其他的构造与实施例1相同,这里就不重复说明了。
在图5中,与第1实施形态一样增加了集电极-基极间电容,另外,由于将一端与发射极焊盘5连接的电容调整用布线51、53、及一部分与基极焊盘7连接的电容调整用布线52布置成梳形,所以相互相对的布线长度变长,因此也增加了在梳形部分作为寄生电容形成的发射极-基极间电容。
如上所述,根据本实施例,可以将集电极-基极间电容和发射极-基极间电容作为振荡电路的平衡电容的至少一部分装入半导体芯片内部。
另外,通过调整电容调整用布线52的面积,可以容易地调整集电极-基极间电容的电容值,通过调整电容调整用布线51与52的梳形部分、电容调整用布线53与52的梳形部分的相对的布线长度,可以容易地调整发射极-基极间电容的电容值。
(5)实施例5图6所示是从芯片上面看本发明实施例5的双极型晶体管的俯视图。在图6中,本实施例与实施例4的不同之处在于,与实施例4增加双极型晶体管的集电极-基极间电容和发射极-基极间电容相对,本实施例主要为了增加发射极-基极间电容,将一部分与基极焊盘7连接的电容调整用布线62、及一端与发射极焊盘5连接的电容调整用布线61、63的梳形部分的相对的布线长,设置成比实施例4还要长。其他的构造与实施例4相同,这里省略其说明。
(6)实施例6图7所示是从芯片上面看本发明实施例6的双极型晶体管的俯视图,图8是沿图7的b-b’线的剖面图。在图7与图8中,71是作为半导体衬底的N+/N型发射极衬底,72是形成了双极型晶体管的晶体管工作区域,73是在发射极衬底71及晶体管工作区域72表面上形成的绝缘膜,74和76是分别从晶体管工作区域72贯穿绝缘膜73而在绝缘膜73上形成的集电极引线和基极引线,75和77是分别与集电极引线74和基极引线76连接、且组装时进行引线接合的集电极焊盘和基极焊盘,80是在发射极衬底71背面形成的发射极电极。这种芯片结构称为衬底发射极结构。
78是电容调整用布线,其一端与集电极引线74连接,和与基极焊盘77连接的电容调整用布线79一起,夹着绝缘膜73一部分而形成MIM(金属-绝缘体-金属)型电容。这样,可使集电极-基极间电容增加,可以将该集电极-基极间电容作为图11所示振荡电路112的平衡电容Ccb的至少一部分装入半导体芯片内部。但是,本实施例与实施例1至实施例5不同的是需要2层的布线结构。
还有,在实施例1至实施例5中,最上部的布线层作为电容调整用布线层,但在基本上使用不少于2层的布线工艺时,也可以使用任意一层布线作为电容调整用布线使用。但是,当然优选将最下部的布线层作为电容调整用布线。
另外,在实施例1至实施例5中虽然举例说明了衬底集电极结构,但本发明并不仅限于此,也适用于衬底发射极结构。同样,在实施例6中虽然举例说明了衬底发射极结构,但本发明也并不仅限于此,也适用于衬底集电极结构。
另外,在实施例1至实施例5中,虽然如图2所示,在N+/N型集电极衬底1上的晶体管工作区域2,横向晶体管形成了P型基极21、P+基极连接部分22、及N+发射极23,但本发明并不仅限于此,也适用于P型基极及N+发射极的纵向晶体管。
而且,在实施例1至实施例5中,虽然如图2所示,P型基极21、P+基极连接部分22及N+发射极23是通过扩散形成的,但本发明并不仅限于此,也可以如图13所示在N+/N型集电极衬底1301上依次外延生成P型基极1302、N+发射极1303。
接着,有关在振荡电路中采用第1到实施例6的双极型晶体管的优点,用图12的集电极-基极间电容的情况举例说明。
图12是表示集电极-基极间电容(Ccb)相对于集电极-基极间电压(Vcb)的特性的图。在图12中,121是在晶体管工作区域小时的电容特性,122是在晶体管工作区域大时的电容特性,另外,123是在晶体管工作区域小、且采用本发明的电容调整用布线时的电容特性。
为了提高振荡电路的振荡特性,一般将作为振荡放大器的双极型晶体管微细化,来提高截止频率等的高频率性能。另外,通过用于提高高频率性能的精细化,可以使晶体管原来具有的晶体管工作区域的电容变小(如图12所示的电容特性121)。接近于截止频率的高频率的振荡,如图11所示的平衡电容的电容值小也没有问题。这主要是因为当f为振荡频率、C为平衡电容的电容值时,在平衡电容的反馈值与阻抗Z成反比,即、Z=1/(2πfC),可以看出,如果振荡频率f值增大,则即使电容值C较小,阻抗Z也会增大,所以可以得到充分的反馈。
另一方面,如果以低振荡频率使用端子间电容小的高性能双极型晶体管,则阻抗Z变得非常大,反馈量变得不足。因此,虽然在已有例中使用增大外接平衡电容的处理,但如上所述,振荡电路的Q值的降低导致了C/N劣化。因此,重视C/N的情况,就会损失振荡功率或效率等其他特性,这里所采用过的对策也包括使用高频率性能低即截止频率较低、晶体管工作区域大的双极型晶体管(如图12所示的电容特性122)。
与此相对,根据实施例1至实施例6的结构,可以不损失被微细化的高性能的晶体管工作区域,如图12所示的电容特性123,使用大的晶体管工作区域,能够增加电容,因此,可以兼顾好的C/N特性及其他振荡功率和效率等的各种特性。
另外,其制造过程非常明显只是增加布线的部分面积,所以并没有增加工序数量或扩大芯片的面积。
如上所述,根据本发明,在作为分立器件的双极型晶体管上一体化振荡电路的平衡电容,并不会像IC那样增加制造成本,兼顾好的高频率性能及小型化、低成本,而且还可以兼顾好的C/N特性及其他振荡功率和效率等各种特性。
权利要求
1.一种双极型晶体管,其特征在于,具有半导体衬底;在上述半导体衬底上形成的晶体管工作区域;以覆盖上述半导体衬底表面上的方式形成的绝缘膜;从上述晶体管工作区域贯穿上述绝缘膜、且引出至上述绝缘膜上的引线;与上述引线连接的引线接合用焊盘;及与上述焊盘连接的电容调整用布线。
2.如权利要求1所述的双极型晶体管,其特征在于,上述半导体衬底是N+/N型集电极衬底,在上述集电极衬底背面形成集电极电极,上述焊盘在上述集电极衬底表面上作为发射极焊盘及基极焊盘而形成。
3.如权利要求2所述的双极型晶体管,其特征在于,通过调整与上述基极焊盘和上述发射极焊盘的至少一方连接的上述电容调整用布线的面积,调整相对应的集电极-基极间电容和集电极-发射极间电容的至少一方的电容值。
4.如权利要求2所述的双极型晶体管,其特征在于,通过调整与上述发射极焊盘连接的上述电容调整用布线、及与上述基极焊盘连接的上述电容调整用布线相对的布线长度,调整发射极-基极间电容的电容值。
5.如权利要求4所述的双极型晶体管,其特征在于,与上述发射极焊盘连接的上述电容调整用布线、及与上述基极焊盘连接的上述电容调整用布线布置成梳形。
6.如权利要求1所述的双极型晶体管,其特征在于,上述半导体衬底是N+/N型发射极衬底,在上述发射极衬底背面形成发射极电极,上述焊盘是在上述发射极衬底表面上作为集电极焊盘及基极焊盘形成的。
7.如权利要求6所述的双极型晶体管,其特征在于,与上述集电极焊盘连接的上述电容调整用布线、及与上述基极焊盘连接的相对的上述电容调整用布线夹着上述绝缘膜,形成集电极-基极间电容作为金属-绝缘体-金属(MIM)型电容,通过调整上述电容调整用布线的相对的面积,调整集电极-基极间电容的电容值。
8.一种振荡电路,双极型晶体管作为振荡放大器使用,其特征在于,上述双极型晶体管具有半导体衬底;在上述半导体衬底上形成的晶体管工作区域;以覆盖上述半导体衬底表面上的方式形成的绝缘膜;从上述晶体管工作区域贯穿上述绝缘膜、且引出至上述绝缘膜上的引线;与上述引线连接的引线接合用焊盘;及与上述焊盘连接的电容调整用布线;上述半导体衬底是N+/N型集电极衬底,在上述集电极衬底背面形成集电极电极,上述焊盘在上述集电极衬底表面上作为发射极焊盘及基极焊盘形成,通过调整与上述基极焊盘和上述发射极焊盘的至少一方连接的上述电容调整用布线的面积,调整相对应的集电极-基极间电容和集电极-发射极间电容的至少一方的电容值;对振荡工作起作用的电容的至少一部分由上述电容调整用布线和相对的上述集电极之间形成的寄生电容构成。
9.一种振荡电路,双极型晶体管作为振荡放大器使用,其特征在于,上述双极型晶体管具有半导体衬底;在上述半导体衬底上形成的晶体管工作区域;以覆盖上述半导体衬底表面上的方式形成的绝缘膜;从上述晶体管工作区域贯穿上述绝缘膜、且引出至上述绝缘膜上的引线;与上述引线连接的引线接合用焊盘;及与上述焊盘连接的电容调整用布线;上述半导体衬底是N+/N型集电极衬底,在上述集电极衬底背面形成集电极电极,上述焊盘在上述集电极衬底表面上作为发射极焊盘及基极焊盘形成,通过调整与上述发射极焊盘连接的上述电容调整用布线、及与上述基极焊盘连接的上述电容调整用布线相对的布线长度,调整发射极-基极间电容的电容值;对振荡工作起作用的电容的至少一部分是由与上述发射极焊盘连接的上述电容调整用布线、及与上述基极焊盘连接的上述电容调整用布线之间形成的寄生电容构成。
10.如权利要求9所述的振荡电路,其特征在于,上述双极型晶体管的与上述发射极焊盘连接的上述电容调整用布线、及与上述基极焊盘连接的上述电容调整用布线布置成梳形。
11.一种振荡电路,双极型晶体管作为振荡放大器使用,其特征在于,上述双极型晶体管具有半导体衬底;在上述半导体衬底上形成的晶体管工作区域;以覆盖上述半导体衬底表面上的方式形成的绝缘膜;从上述晶体管工作区域贯穿上述绝缘膜、且引出至上述绝缘膜上的引线;与上述引线连接的引线接合用焊盘;及与上述焊盘连接的电容调整用布线;上述半导体衬底是N+/N型发射极衬底,在上述发射极衬底背面形成发射极电极,上述焊盘是在上述发射极衬底表面上作为集电极焊盘及基极焊盘形成的,与上述集电极焊盘连接的上述电容调整用布线、及与上述基极焊盘连接的相对的上述电容调整用布线夹着上述绝缘膜,形成集电极-基极间电容作为金属-绝缘体-金属(MIM)型电容,通过调整上述电容调整用布线的相对的面积,调整集电极-基极间电容的电容值;对振荡工作起作用的电容的至少一部分由上述金属-绝缘体-金属型电容构成。
12.一种电压控制型振荡器,具有对应输入电压可以改变谐振频率值的谐振电路、使用双极型晶体管作为振荡放大器且发生与上述谐振频率相应的频率信号的振荡电路、及放大来自上述振荡电路的振荡信号后输出的缓冲电路,其特征在于,构成上述振荡电路的上述双极型晶体管,具有半导体衬底;在上述半导体衬底上形成的晶体管工作区域;以覆盖上述半导体衬底表面上的方式形成的绝缘膜;从上述晶体管工作区域贯穿上述绝缘膜、且引出至上述绝缘膜上的引线;与上述引线连接的引线接合用焊盘;及与上述焊盘连接的电容调整用布线;上述半导体衬底是N+/N型集电极衬底,在上述集电极衬底背面形成集电极电极,上述焊盘在上述集电极衬底表面上作为发射极焊盘及基极焊盘形成,通过调整与上述基极焊盘和上述发射极焊盘的至少一方连接的上述电容调整用布线的面积,调整相对应的集电极-基极间电容和集电极-发射极间电容的至少一方的电容值;对振荡工作起作用的电容的至少一部分由上述电容调整用布线和相对的上述集电极之间形成的寄生电容构成。
13.一种电压控制型振荡器,具有对应输入电压可以改变谐振频率值的谐振电路、使用双极型晶体管作为振荡放大器且发生与上述谐振频率相应的频率信号的振荡电路、及放大来自上述振荡电路的振荡信号后输出的缓冲电路,其特征在于,构成上述振荡电路的上述双极型晶体管,具有半导体衬底;在上述半导体衬底上形成的晶体管工作区域;以覆盖上述半导体衬底表面上的方式形成的绝缘膜;从上述晶体管工作区域贯穿上述绝缘膜、且引出至上述绝缘膜上的引线;与上述引线连接的引线接合用焊盘;及与上述焊盘连接的电容调整用布线;上述半导体衬底是N+/N型集电极衬底,在上述集电极衬底背面形成集电极电极,上述焊盘在上述集电极衬底表面上作为发射极焊盘及基极焊盘形成,通过调整与上述发射极焊盘连接的上述电容调整用布线、及与上述基极焊盘连接的上述电容调整用布线相对的布线长度,调整发射极-基极间电容的电容值;对振荡工作起作用的电容的至少一部分由与上述发射极焊盘连接的上述电容调整用布线、及与上述基极焊盘连接的上述电容调整用布线之间形成的寄生电容构成。
14.如权利要求13所述的电压控制型振荡器,其特征在于,上述双极型晶体管的与上述发射极焊盘连接的上述电容调整用布线、及与上述基极焊盘连接的上述电容调整用布线间布置成梳形。
15.一种电压控制型振荡器,具有对应输入电压可以改变谐振频率值的谐振电路、使用双极型晶体管作为振荡放大器且发生与上述谐振频率相应的频率信号的振荡电路、及放大来自上述振荡电路的振荡信号后输出的缓冲电路,其特征在于,构成上述振荡电路的上述双极型晶体管,具有半导体衬底;在上述半导体衬底上形成的晶体管工作区域;以覆盖上述半导体衬底表面上的方式形成的绝缘膜;从上述晶体管工作区域贯穿上述绝缘膜、且引出至上述绝缘膜上的引线;与上述引线连接的引线接合用焊盘;及与上述焊盘连接的电容调整用布线;上述半导体衬底是N+/N型发射极衬底,在上述发射极衬底背面形成发射极电极,上述焊盘是在上述发射极衬底表面上形成的集电极焊盘及基极焊盘,与上述集电极焊盘连接的上述电容调整用布线、及与上述基极焊盘连接的相对的上述电容调整用布线夹着上述绝缘膜,形成集电极-基极间电容作为金属-绝缘体-金属(MIM)型电容,通过调整上述电容调整用布线的相对的面积,调整集电极-基极间电容的电容值;对振荡工作起作用的电容的至少一部分由上述金属-绝缘体-金属型电容构成。
全文摘要
本发明提供双极型晶体管、振荡电路及电压控制型振荡器。本发明的双极型晶体管,作为振荡电路的振荡放大器使用时,能够得到所期望的好的高频率性能,且能实现小型化及低成本。与基极焊盘(7)连接的电容调整用布线(11)夹着绝缘膜(3)和N型集电极衬底,与N
文档编号H03B5/18GK1494163SQ03154690
公开日2004年5月5日 申请日期2003年8月22日 优先权日2002年8月22日
发明者太田顺道, 新井一浩, 浩, 丰田泰之, 之, 曾根高真一, 真一 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1