一种低相位噪声频率合成器的制作方法

文档序号:12133007阅读:487来源:国知局
一种低相位噪声频率合成器的制作方法与工艺

本发明涉及频率合成领域,特别涉及一种低相位噪声频率合成器。



背景技术:

随着电子设备的发展,电子系统对频率源提出了愈来愈高的要求,特别是在相位噪声、跳频速度、杂散等关键指标上更是如此。

现代频率合成器主要采用直接数字合成和锁相环技术。其中,绝大部分频率合成器采用的是锁相环技术。采用锁相环(PLL)的频率合成器组成框图如图1所示:包括鉴相器(PD)、环路滤波器(LF)、压控振荡器(VCO),鉴相器把参考输入信号(XTAL)的相位与VCO信号的相位进行比较,由PD将这两个输入信号的相位误差转换为误差电压,该电压由环路滤波器滤波后作为VCO的控制电压,控制电压改变VCO的输出频率,当闭环系统稳定后,VCO的输出频率即达到所需要的频率,完成输出频率与参考频率的锁定。当输出频率高于参考频率时,一般还需要在反馈支路增加分频器(N),使得输入到PD的两路信号频率大致相等。同样,参考信号也可以使用一个分频器(R),来获得较小的鉴相频率。

在实际应用中,一般重点考虑输出频率的载波近端相位噪声,通过对PLL架构的数学推导,可以得到整个系统的输出近端相位噪声公式为:

PNtotal=PNREF+PN1Hz+10*log(fcomp)+20*log(N),

其中,PNref为参考频率的相位噪声,PN1Hz为鉴相器的等效噪声基底,当采用数字鉴相器时,该值是评估鉴相器相噪特性好坏的重要参数。fcomp为鉴相频率,fcomp=fout/N。N为反馈分频比。由于锁相环本质上是等同于倍频器,因此输出频率相对于鉴相频率或者参考频率的相噪恶化为20*log(N)。

从上式中可以看出,为了获得具有更低相位噪声的输出频率,目前现有以下几种方法:

1、采用更低相噪指标的参考频率,即降低PNREF。但该指标受系统底噪的影响而不能无限降低。

2、降低鉴相器的等效噪声基底,即降低PN1HZ。普遍的方法是采用取样鉴相器代替数字鉴相器。如申请日为2003.11.14,申请号为US71371703的美国发明与申请日为1993.5.12,申请号为US6075593的美国发明公开的内容即采用这种方式。

3、降低鉴相频率或降低分频比,即降低fcomp和N。但减小fcomp必然会增加N,反而会带来相噪的恶化。因此常用的办法是增大fcomp而使得N减小。但这样的坏处是无法获得比较小的频率步进。

4、架构上改变,通常是采用环内混频的方法,先将输出频率与一个频率f1相混频,得到一个比较低的反馈频率去同参考频率鉴相。这样,输出频率fout=f1+N2*fcomp=N1*fref+N2*fcomp。由于f1可以采用一个点源或者大步进的频综,因此f1的输出相噪式中可以采用前面3种方法相对容易的获得较好的相位噪声指标。从而改善第3点中无法获得小的频率步进的问题,即兼顾了相噪和小的频率步进。如申请日为2008.9.5,申请号为US20563208的美国发明专利公开的方案。

5、采用相噪对消技术,比如前馈技术等,参看申请日为2007.5.15,申请号为US80360207的美国发明专利公开的方案。

6、 利用不相关的相位噪声叠加仅仅是线性功率叠加的原理,获得10*log(N)的相噪改善。具体参看《Phase Noise Improvement for Array Systems》,Shilei Hao, Tongning Hu, Qun Jane Gu,P1~4,2016 IEEE MTT-S International Microwave Symposium (IMS)与《A High Frequency Low Phase-Noise Signal Source Generated Using a Self-Oscillating Mixer》,IET Microw. Antennas Propag., 2013, Vol. 7, Iss. 2, pp. 123–130,公开的方案。

根据对现有上述方案的分析可知,在前述的方法2-4中,并没有改变20*log(N)的相关相位噪声恶化因子,输出频率的相位噪声是按照20*log(N)的系数恶化的。当输出频率很高或者N很大时,输出频率的相位噪声恶化比较多。方法5在实现技术上有较大的困难,特别是在频率较高时,而且在输出频率不是点频而是需要有一定带宽时,更是非常难以实现,而且对消带来的相噪提升也非常有限。方法6基于非相关相噪叠加理论是真正能够较大的改善输出相噪指标。但是其使用的是相噪滤波器的方法获得非相关的多路信号,由于相噪滤波器本身具有一定的带宽,所以只能改善远端(如1M)的相噪,而近端相噪由于多路信号之间仍然具有相关性,所以不能对近端相噪进行改善。同时,由于滤波器是频率固定的器件,该方法也仅能适用于点频信号,对于输出信号需要一段频率变化带宽的频率合成器信号也不适用。

综上所述,现有方案对频率合成器输出信号的相位噪声改善有限、且电路结构复杂。



技术实现要素:

本发明在于克服现有技术的上述不足,提供一种能够有效改善相位噪声、电路结构简单的低相位噪声频率合成器。

为了实现上述发明目的,本发明采用的技术方案是:

一种低相位噪声频率合成器,包括参考晶振,用于产生参考信号,所述参考晶振连接功率分配器,所述功率分配器连接至少一个锁相合成单元的信号输入端,用于将所参考信号分配后发送到每个所述锁相合成单元,其中,所述锁相合成单元包括第一锁相环,用于对第一晶振进行锁相,第二锁相环,用于对第二晶振进行锁相,所述第一晶振输出第一信号到第四锁相环,所述第二晶振输出第二信号到第三锁相环,所述第三锁相环用于对所述第二信号进行锁相;所述第三锁相环、第四锁相环将输出的信号进行混频组合后输出。

进一步地,所述锁相环包括依次连接的鉴相器、环路滤波器、压控振荡器、分频器。

进一步地,所述鉴相器为数字鉴相器或模拟鉴相器。

进一步地,所述第一锁相环、第二锁相环均为窄带锁相环。

进一步地,所述窄带锁相环环路带宽小于10Hz。

与现有技术相比,本发明的有益效果

本发明的低相位噪声频率合成器利用非相关相噪叠加原理,采用窄带锁相技术来获得多路的非相关频率信号,并通过环内混频的架构和方法将这些信号进行频率组合,以获得需要的输出频率。由于采用了非相关相噪叠加,输出相噪的恶化相对于参考信号是按照10*log(N)的倍数恶化,而不是现有技术的20*log(N)倍数恶化,这样相对于现有技术可以得到10*log(N)的相噪提升,获得极低的相位噪声,同时,本发明电路结构简单、容易实现。

附图说明

图1所示为本发明的低相位噪声频率合成器模块框图。

图2所示为一个实施例中的两路低相位噪声频率合成器电路。

图3所示为另一个实施例中的两路低相位噪声频率合成器电路。

图4所示为四路低相位噪声频率合成器电路。

图5所示为多路低相位噪声频率合成器电路。

具体实施方式

下面结合具体实施方式对本发明作进一步的详细描述。但不应将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明内容所实现的技术均属于本发明的范围。

图1所示为本发明的低相位噪声频率合成器模块框图,包括参考晶振,用于产生参考信号,所述参考晶振连接功率分配器,所述功率分配器连接至少一个锁相合成单元的信号输入端,用于将所参考信号分配后发送到每个所述锁相合成单元,其中,所述锁相合成单元包括第一锁相环,用于对第一晶振进行锁相,第二锁相环,用于对第二晶振进行锁相,所述第一晶振输出第一信号到第四锁相环,所述第二晶振输出第二信号到第三锁相环,所述第三锁相环用于对所述第二信号进行锁相;所述第三锁相环、第四锁相环将输出的信号进行混频后输出。

所述锁相环包括依次连接的鉴相器、环路滤波器、压控振荡器、分频器。

所述鉴相器为数字鉴相器或模拟鉴相器。

所述第一锁相环、第二锁相环均为窄带锁相环。

所述窄带锁相环带宽小于10Hz。

本发明利用多路非相关信号组合的相位噪声呈线性叠加的原理。通过窄带锁相先获得多路非相关的信号,并将这些信号通过环内混频的方式进行频率组合,能获得较常规锁相技术10*logN 的相噪提升,其中N为不相关的频率路数。

实施例1:

图2所示为仅包括一组锁相合成单元的频率合成器电路图,其中,X0为参考晶振,X1和X2也是晶振。V1和V2为压控振荡器(VCO)。PD为鉴相器,可以是数字鉴相器也可以是模拟鉴相器。N为分频器。PS为功分器。LPF为各环路的环路滤波器。

参考晶振通过功分器分成两路后,分别对X1和X2进行锁定。其中PLL1和PLL2就是X1和X2的锁定环路。这两个环路采用窄带锁相技术,也就是将PLL1和PLL2的环路带宽调到很窄,大约在10Hz以内,本实施例以10Hz计算。这样这两个环路的输出频率f1和f2的相位噪声仅在频率偏离输出频率10Hz以内是相关的,并相关于参考晶振X0。在偏离10Hz以外的相位噪声是X1和X2的本身相位噪声,他们之间是不相关的。因此,输出频率f1和f2还是具有本身晶振的相噪特性,同时他们的输出频率由于窄带锁相的结果是严格相同的,即f1=f2。

f2通过PLL3环路得到输出频率f3,f3=N3*f2

PLL4是主环路,输出频率f4与f3混频后经过分频器与参考频率f2鉴相,因此有f4=f3+N4*f1=N3*f2+N4*f1,N3=N4=N时,f1=f2,f4=N*f1+N*f2=2*N*f1。在相噪上,输出频率f4的相噪等于N*f1频率相噪和N*f2频率相噪的和。由于在窄带锁相环PLL1和PLL2中,已经将f1和f2在偏离中心频率10Hz以外的相位噪声是不相关的。因此,按照不相关信号噪声的线性叠加原理,在输出频率f4偏离中心频率10Hz以外的相位噪声为:

PN(f4)=PN(N*f1)+PN(N*f2)=PN(N*f1)+10*log2。

具体的,当有多个锁相环单元时,最终输出频率是由后续的多路锁相环频率逐步叠加上来的,由最后一个锁相环的频率得到倒数第二个锁相环频率,即,fn-1=2*fn。。。。。,以此类推,得到的第一路的频率f0=2*f1=2*....*2*fn。

实施例2:

图3为本发明另一实施方式,采用的是频率相加的原理。这种框图中仍然先采用窄带锁相的方法得到两路不相关的参考频率f1和f2,通过锁相或者倍频的方法得到不相关的两路频率f3和f4。因此有:f5=f3+f4=N3*f2+N4*f1,其原理与实施例1原理一样,因此得到的相位噪声改善也是一样的。

而采用现有锁相或者倍频技术得到的PN(f4)= PN(N*f1)+20*log2,因此本实施例中两路信号组合的相位噪声改善为20*log2-10*log2=10*log2=3dB。

本发明还给出了现有技术与实施例1中方案的在输出频率为13GHz时的相位噪声对比,现有技术方案的相位噪声在1K、10K和100K处分别为:-112.5dBc/Hz,-117dBc/Hz,-118.86dBc/Hz。

而本发明为-115.1dBc/Hz,-119.4dBc/Hz,-120dBc/Hz。相比而言,本发明的方案在1K、10K和100K处的相位噪声分别有2.6dB、2.4dB和1.14dB的提升。

此外,当锁相合成单元为多个时,如图4、图5所示,随着路数的增加,相位噪声的改善也随之增加,如,在合路路数为4或者8时,理论上可以得到6dB和9dB的相噪改善。

上面结合附图对本发明的具体实施方式进行了详细说明,但本发明并不限制于上述实施方式,在不脱离本申请的权利要求的精神和范围情况下,本领域的技术人员可以作出各种修改或改型。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1