碳纤维增强复合材料、制备方法及用途与流程

文档序号:13266259阅读:380来源:国知局

本发明一种碳纤维增强复合材料、制备方法及用途,尤其是一种碳纤维增强无机聚合物复合材料及其制备方法和用途。



背景技术:

硅酸铝类无机聚合物具有良好的耐热性能,因而被广泛应用于航空、舰船、交通、国防等方面。硅酸铝类无机聚合物具有类似树脂的特性,可采用传统树脂基复合材料的制备方式(如热压、缠绕、气压罐等)成型,因而工艺简单方便,易于制造大尺寸陶瓷基复合材料部件。该类无机聚合物可在300℃以下低温固化成型,不需要大型的陶瓷烧结设备。与其它陶瓷基复合材料相比,硅酸铝类无机聚合物可以明显降低制造成本。尤其是在热防护领域,相比于传统树脂基热防护材料,硅酸铝类无机聚合物具有耐温温度高等优点。但是其机械性能、烟尘和毒性释放性能仍然有待于提高。

一方面,现有技术通常采用碳纤维与多种成分混合形成陶瓷复合材料。例如,cn106191715a公开了一种陶瓷复合材料,其由以下重量份数的原料制成:三氧化二铝陶瓷颗粒15~24份,碳化硅陶瓷颗粒10~17份,氢氧化镁4~9份,过氧化二异丙苯2~6份,碳纤维3~7份,蛙石6~10份,水玻璃粘结剂5~9份,硬脂酸锌7~10份,铜粉5~9份,氮化硅7~12份,氧化钙3~6份,六氟硅酸铝7~10份,短玻璃纤维6~11份,钛酸钡5~8份,镍3~5份,高岭土8~14份。这样的组合无法避免烟尘和有毒气体的产生。

另一方面,钾水玻璃与碳纤维常被用于制备耐火胶凝材料、粘结剂等,并没有用于制备陶瓷复合材料。例如,cn106116391a公开了一种耐火混凝土,包括粒化高炉矿渣100~120份,钾水玻璃8~12份,氢氧化钠4~6份,硅酸盐水泥80~100份,粉煤灰30~70份,河砂100~150份,石子200~250份,改性碳纤维布2~5份,膨胀珍珠岩8~15份,硅橡胶胶粉2~4份,改性聚乙二醇600010~15份,环氧树脂乳液2~3份,亚甲基双萘磺酸二钠1~2份,木质素磺酸钠0.5~1.5份,水65~75份。又如,cn104129969a公开了一种地聚物基碳纤维布粘结剂,以钾水玻璃、矿渣、偏高岭土、粉煤灰、缓凝剂和水为原料制备碳纤维布粘结剂,其中以来源丰富的工业固体废弃物矿渣、粉煤灰为主要原料,以钾水玻璃为激发剂,添加磷酸氢钠或碳酸氢钠类化合物为缓凝剂,制备的碳纤维布粘结剂,在温度达到170℃时粘结性仍然不减。



技术实现要素:

为了克服现有技术的缺陷,本申请的发明人进行了深入研究,发现以碳纤维为增强体、以一种特定的硅酸铝类无机聚合物陶瓷为基体、添加合适的固化剂,可以获得机械强度和韧性良好、且没有烟尘和有毒气体释放的碳纤维增强无机聚合物陶瓷基复合材料。

本发明的一个目的在于提供一种碳纤维增强复合材料,机械强度和韧性良好、且基本上没有烟尘和有毒气体释放。

本发明的另一个目的在于提供一种碳纤维增强复合材料的制备方法,其工艺简单、并且可以低温成型。

本发明的再一个目的在于提供一种碳纤维增强复合材料的用途,其用作飞行器或汽车的热防护材料,基本上没有烟尘和有毒气体释放。

本发明提供一种碳纤维增强复合材料,该复合材料以碳纤维作为增强体,以包含钾水玻璃、偏高岭土、碱金属氢氧化物和水的混合物作为原胶液,以缩合磷酸铝和/或三聚磷酸铝作为原胶液的固化剂制备得到。本发明的碳纤维增强复合材料可以为一种碳纤维增强无机聚合物陶瓷基复合材料。本发明采用特定的原胶液和固化剂,所得复合材料的机械强度和韧性良好,并且没有烟尘和毒气的释放。例如,本发明的混合物中不含有任何在高温下可以释放烟尘和毒气的物质。所述的高温可以为200~1300℃,优选为800~1000℃。

根据本发明的复合材料,优选地,所述混合物由钾水玻璃、偏高岭土、碱金属氢氧化物和水组成。这样可以进一步避免原料中夹带烟尘和有毒气体释放成分,避免在高温下产生烟尘和有毒气体。

碳纤维是一种含碳量在95%以上的高强度、高模量纤维的新型纤维材料。碳纤维主要可分为聚丙烯腈(pan)基、沥青基、粘胶基三种类型。本发明的碳纤维优选为聚丙烯腈基碳纤维,这样可以避免在高温下产生烟尘和有毒气体。本发明使用的碳纤维实例包括但不限于日本东丽公司生产的t300、t700、t800碳纤维。作为优选,本发明的碳纤维选自日本东丽公司生产的t300碳纤维。本发明的碳纤维的丝束可以为1~12k根单丝,优选为3~6k根单丝(1k相当于1000根)。根据本发明的一个实施方式,本发明的碳纤维采用丝束为3k的t300碳纤维。本发明的碳纤维以碳布的形式使用,可以采用平纹碳布。

在本发明中,钾水玻璃的分子式为k2o·nsio2,其主要成分为k2o和nsio2。本发明的钾水玻璃的波美度be(20℃)可以为35~45,优选为40~45。偏高岭土是以高岭土(al2o3·2sio2·2h2o)为原料,在适当温度下脱水形成的无水硅酸铝(al2o3·2sio2)。本发明发现,钾水玻璃和偏高岭土的组合有利于改善复合材料的机械性能,并且不导致烟尘或毒气的产生。

现有技术一般采用磷酸氢钠等磷酸类物质作为钾水玻璃的缓凝剂。本发明则发现,缩合磷酸铝、三聚磷酸铝非常适合用作促进复合材料进行固化的固化剂。尽管机理尚不清楚,但我们推测的机理为:缩合磷酸铝、三聚磷酸铝在水溶液中缓慢水解,释放出氢离子促进钾水玻璃的胶体化,从而析出二氧化硅胶体;随着水分的蒸发,二氧化硅胶体缩合成硅氧网状结构。本发明发现,缩合磷酸铝、三聚磷酸铝非常有利于改善复合材料的机械性能和韧性,并且不导致烟尘或毒气的产生。

根据本发明的复合材料,优选地,钾水玻璃、偏高岭土、碱金属氢氧化物和水的重量比为100∶101~108∶16~22∶6~16。作为优选,钾水玻璃、偏高岭土、碱金属氢氧化物和水的重量比为100∶105~108∶19~22∶11~16。将上述组分控制在上述范围,有利于提高复合材料的拉伸强度和弯曲强度,降低线烧蚀率,提高比热容。

根据本发明的复合材料,优选地,所述混合物与所述碳纤维的质量比为3~6∶1;且所述混合物与所述固化剂的质量比为100∶0.2~0.4。根据本发明的一个实施方式,所述混合物与所述碳纤维的质量比为4~6∶1;且所述混合物与所述固化剂的质量比为100∶0.28~0.4。将上述组分控制在上述范围,有利于提高复合材料的机械性能,降低线烧蚀率和提高比热容。

根据本发明的复合材料,优选地,所述钾水玻璃中的k2o含量为9~18wt%、且sio2含量为22~31wt%;且所述的碱金属氢氧化物为氢氧化钾。作为优选,所述钾水玻璃中的k2o含量为15~17.5wt%、且sio2含量为28~31wt%。采用上述组分,可以改善复合材料的机械性能,并降低烟尘。

根据本发明的复合材料,优选地,将厚度为12mm的复合材料试样在1000℃烧蚀600s后的复合材料质量保留率≥98%。根据本发明的一个实施方式,将厚度为12mm的复合材料试样在1000℃烧蚀600s后的复合材料质量保留率≥99%。

根据本发明的复合材料,优选地,采用gjb323a-1996在热流密度4309.1kw/m2和烧蚀时间20s下测定的线烧蚀率为0.05~0.1mm/s;采用gjb330a-2000对直径为11mm和高度为32mm的圆柱试样在室温~800℃的温度下测定的比热容为1.1~1.4kj/kg·℃;采用gb/t1447-2005对尺寸为250×25×4mm(长×宽×高)的试样测定的拉伸强度为117~163mpa;和采用gb/t1449-2005对尺寸为80×15×5mm(长×宽×高)的试样测定的弯曲强度为109~134mpa。

本发明还提供一种上述复合材料的制备方法,包括如下步骤:

(1)配制原胶液:将钾水玻璃、偏高岭土、碱金属氢氧化物和水混合得到混合物,作为原胶液;

(2)配制胶液:将固化剂与原胶液混合得到胶液;

(3)碳纤维处理:使用有机溶剂对含碳纤维的碳布超声清洗10~30min,晾干备用;

(4)制作预浸布:将步骤(2)所得胶液涂覆在步骤(3)所得碳布上,并晾置得到预浸布;

(5)制作坯料板:将步骤(4)所得预浸布裁剪,并叠加在一起,压制成坯料板;

(6)固化:将步骤(5)所得坯料板在80~200℃下处理6~12小时,然后冷却得到所述复合材料。

在本发明的制备方法中,碳纤维、固化剂的种类,钾水玻璃、偏高岭土、碱金属氢氧化物和水的种类及其重量比,混合物(原胶液)与碳纤维的质量比,混合物与固化剂的质量比如前所述,这里不再赘述。

在步骤(1)中,将钾水玻璃、偏高岭土、碱金属氢氧化物和水混合,然后搅拌均匀,从而得到混合物作为原胶液。例如,将偏高岭土、碱金属氢氧化物和水加入钾水玻璃中,然后搅拌均匀,从而得到混合物作为原胶液。具体地,将偏高岭土、氢氧化钾和蒸馏水加入钾水玻璃中,然后搅拌均匀,从而得到混合物作为原胶液。在步骤(2)中,将固化剂与原胶液混合得到胶液。例如,将固化剂加入原胶液,然后搅拌均匀,从而获得胶液。

根据本发明的制备方法,优选地,在步骤(3)中,所述有机溶剂选自丙酮或乙醇,所述含碳纤维的碳布为平纹碳布;在步骤(4)中,晾置时间为1~2h;在步骤(5)中,坯料板的厚度为5~30mm;和在步骤(6)中,所述的冷却为随炉冷却。在本发明的步骤(5)中,将预浸布裁剪所需的尺寸并叠加在一起,然后置于压机上压制成要求厚度的坯料板。坯料板的厚度优选为10~15mm。根据本发明的一个实施方式,将压制成型的坯料板上下夹上钢板锁紧后,放置于烘箱中固化。

本发明还提供上述复合材料的用途,所述复合材料用作飞行器或汽车热防护材料。本发明的碳纤维增强复合材料具有耐高温、抗烧蚀、机械强度和韧性优良,可制造大面积构件,可满足飞行器、汽车等领域的热防护部件对材料性能要求。

本发明的碳纤维增强复合材料以碳纤维为增强体、以特定的硅酸铝类无机聚合物陶瓷为基体、并添加特定的固化剂,从而解决了无机聚合物固有的脆性、低机械强度等缺点,并且在高温下基本上不产生烟尘和有毒气体。本发明的制备工艺在较低温度下进行,固化温度较低,适合于工业化生产。

具体实施方式

下面结合具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。

下面实施例中使用的测试方法说明如下:

复合材料质量保留率:将厚度为12mm的复合材料试样在1000℃烧蚀600s后,测定烧蚀的重量,计算得到复合材料质量保留率。

线烧蚀率:采用gjb323a-1996在热流密度4309.1kw/m2和烧蚀时间20s下进行测定。

比热容:采用gjb330a-2000对直径为11mm和高度为32mm的圆柱试样在室温~800℃的温度下进行测定。

拉伸强度:采用gb/t1447-2005对尺寸为250×25×4mm的试样进行测定。

弯曲强度:采用gb/t1449-2005对尺寸为80×15×5mm的试样进行测定。

实施例1

(1)配制原胶液:按钾水玻璃∶偏高岭土∶koh∶蒸馏水=100∶101∶16∶6比例配制3278g原胶液,并搅拌均匀。

(2)配制胶液:将6.56g缩合磷酸铝加入步骤(1)配制的原胶液中,搅拌均匀后得到胶液。

(3)碳纤维处理:裁出一块幅宽1000×4100mm的3kt300的平纹碳布,称重后,使用乙醇超声处理10min,晾干备用。

(4)制作预浸布:将步骤(2)的3284.56g的胶液均匀涂刷在步骤(3)所得碳布上,晾置1h。

(5)制作坯料板:将步骤(4)的预浸布裁剪成50片220×310mm的预浸布,然后叠加在一起,40℃烘1h,然后置于压机上,压制成厚度为15mm厚的坯料板。

(6)固化:将压制好的坯料板夹上上下夹板,锁紧螺丝后,放置于烘箱中,150℃固化8小时,脱模后制得产品。所得复合材料的线烧蚀率为0.0965mm/s,比热容1.21kj/kg·℃,拉伸强度为117mpa、弯曲强度为109mpa。

实施例2

(1)配制原胶液,按钾水玻璃∶偏高岭土∶koh∶蒸馏水=100∶105∶19∶11比例配制4578g原胶液,并搅拌均匀。

(2)配制胶液:将13.73g缩合磷酸铝加入步骤(1)配制的原胶液中,搅拌均匀后得到胶液。

(3)碳纤维处理:裁出一块幅宽1000×4100mm的3kt300的平纹碳布,称重后,使用乙醇超声处理10min,晾干备用。

(4)制作预浸布:将步骤(2)的4591.73g的胶液均匀涂刷在步骤(3)所得碳布上,晾置1h。

(5)制作坯料板:将步骤(4)的预浸布裁剪成50片220×310mm的预浸布,然后叠加在一起,40℃烘1h,然后置于压机上,压制成厚度为15mm厚的坯料板。

(6)固化:将压制好的坯料板夹上上下夹板,锁紧螺丝后,放置于烘箱中150℃,固化8小时,脱模后制得产品。所得复合材料的线烧蚀率为0.0570mm/s,比热容1.31kj/kg·℃,拉伸强度为163mpa、弯曲强度为134mpa。

实施例3

(1)配制原胶液:按钾水玻璃∶偏高岭土∶koh∶蒸馏水=100∶108∶22∶16比例配制4900g原胶液,并搅拌均匀。

(2)配制胶液:将19.6g三聚磷酸铝加入到步骤(1)的原胶液中,搅拌均匀后得到胶液。

(3)碳纤维处理:裁出一块幅宽1000×4100mm的3kt300的平纹碳布,称重后,使用丙酮超声处理20min,晾干备用。

(4)制作预浸布:将步骤(2)的4919.6g的胶液均匀涂刷在步骤(3)所得碳布上,晾置1h。

(5)制作坯料板:将步骤(4)的预浸布裁剪成50片220×310mm的预浸布,然后叠加在一起,40℃烘1h,然后置于压机上,压制成厚度为15mm厚的坯料板。

(6)固化:将压制好的坯料板夹上上下夹板,锁紧螺丝后,放置于烘箱中150℃,固化8小时,脱模后制得产品。所得复合材料的线烧蚀率为0.0780mm/s,比热容1.33kj/kg·℃,拉伸强度为153mpa、弯曲强度为121mpa。

此外,将实施例1~3的复合材料与高硅氧/酚醛基复合材料进行比对,试验样品厚度为12mm,静态1000℃烧蚀600s。实施例1~3的复合材料质量保留率≥98%,而高硅氧/酚醛基复合材料的质量保留率低于90%。同时,实施例1~3的复合材料在烧蚀时没有烟尘和毒气释放;高硅氧/酚醛基复合材料在烧蚀时则释放大量烟尘和毒气。

本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员可以想到的任何变形、改进、替换均落入本发明的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1