定制多能干细胞及其应用的制作方法

文档序号:886436阅读:643来源:国知局
专利名称:定制多能干细胞及其应用的制作方法
技术领域
本发明涉及适用于个体的定制(tailor-made)多能干细胞。更特别地,本发明涉及多能干细胞及其应用,其中不直接使用ES细胞。具体来说,本发明涉及制备缺失了部分或全部胚胎干细胞(以下也称为ES细胞)源性移植抗原的多能干细胞的方法,以及制备细胞、组织或器官的方法,所述方法包括将融合细胞分化为仅表达体细胞源性主要组织相容性抗原的细胞、组织或器官。此外,本发明涉及用所述方法制备的仅表达体细胞源性主要组织相容性抗原的多能干细胞和细胞、组织和器官。
背景技术
胚胎干(ES)细胞是从早期胚胎诱导而来的且能迅速增殖的未分化全能性细胞,所述细胞具有与胚胎肿瘤细胞相似的性质。ES细胞最初是通过在小鼠纤维母细胞的饲喂细胞层上培养小鼠胚泡内部细胞块(Inner cell mass;ICM)而得以建立的。ES细胞在存在饲喂细胞层和/或白血病抑制因子(LIF)而维持其未分化状态的条件下具有无限寿命[R.Williams等,Nature 336684-687(1998)]。此外,ES细胞已知具有高体外分化能力而且仅需通过作为集合块的培养即能分化成为多种类型的细胞。ES细胞从着床前阶段的胚胎中建立,其具有分化为来自三个胚层,即外胚层、中胚层和内胚层的多种细胞类型的多能性[M.J.Evans和M.H.Kaufman,Nature 292154-156(1981);G.R.Martin,Pro.Natl.Acad.Sci.USA.787634-7638(1981)]。更特别地,ES细胞能够分化为成体的任何成熟细胞,例如ES细胞能分化为通过在早期引入正常胚胎来构建嵌合胚胎的嵌合体动物的体细胞和生殖细胞[R.R.Brinster,J.Exp.Med.1401949-1956(1974)A.Bradley等;Nature 309255-256(1984)]。交配含有来自引入到如精巢、卵巢等生殖细胞的ES细胞的细胞的嵌合体动物,可获得仅由来自ES细胞的细胞所构成的后代。这意味着,可通过人为控制的遗传学易感性而制备动物。使用所述动物,即可不仅在体外而且可以在个体水平上研究生长和分化机制。与胚胎肿瘤细胞不同,很多ES细胞是保持二倍体核型的正常细胞,其具有高嵌合体形成率,以及分化为生殖细胞系细胞的高可能性[A.Bredley,Nature 309255-256(1986)]。因此,ES细胞的使用范围可以扩展到发生学领域以外。
例如,ES细胞特别适用于研究控制细胞分化的细胞和基因。例如,用于具有已知序列的基因的功能性分析,通过引入遗传性修饰,小鼠ES细胞已被用于制备具有基因断裂的小鼠种系。未分化ES细胞可高效而有效地使用于人类基因组分析后的功能性分析研究中。由于ES细胞能在体外分化为多种细胞类型,ES细胞已经用于胚胎发生中细胞分化机制的研究中。这使得通过加入生长因子或形成胚样层而将ES细胞诱导分化为临床有用的细胞,如造血细胞、心肌细胞和特定类型神经细胞成为可能[M.Wiles等,Development 111259-267(1991);W.Miller-Hance等,J.Biol.Chem.26825244-25252(1993);V.A.Maltsev等,Mech.Dev.4441-50(1993);G.Bain等,Dev.Biol.168342-357(1995)]。诱导小鼠SE细胞分化为有用细胞的尝试在制备造血细胞、心肌细胞、特定神经细胞和血管中获得成功[T.Nakano等,Science 2651098-1101(1994);R.Pacacios等,Proc.Natl.Acad.Sci.USA 927530-7534(1995);V.A.Maltsev等,Mech.Dev.4441-50(1993);S.H.Lee等,Nat.Biotechnol.18675-679(1999);H.Kawasaki等,Neuron 2831-40(2000);S.-I.Nishikawa,Development1251747-1757(1998);M.Hrirashima等,Blood 931253-1363(1999)]。
近来,大鼠[Doetshman T.等,Dev.Bio.127224-227(1988)],猪[Evans M.J.等,Theriogenology 33125128(1990);Piedrahita J.A.等,Theriogenology 34879-891(1990);Notarianni E.等,J.Reprod.Fert.4051-56(1990);Talbo N.C.等,Cell.Dev.Biol.29A546-554(1993)];羊[Notarianni E.等,J.Reprod.Fert.Suppl.43255-260(1991)];牛[Evans M.J.等,Theriogenology 33125-128(1990);Saito S.等,Roux.Arch.Dev.Biol.201134-141(1992)];貂[SukoyanM.A.等,Mol.Reorod.Dev.33418-431(1993)];兔[Japanese NationalPhase PCT特表号2000-508919];和灵长类如恒河猴、狨(marmoset)等[Thomson J.A.等,Proc.Natl.Acad.Sci.USA 927844-7848(1995);Thomson J.A.等,Biol.Reprod.55254-259(1996)]的ES细胞已经确立。人类ES细胞也已经确立,这些ES细胞显示出与小鼠ES细胞相似的分化能力[J.A.Thomson等,Science 2821145-1147(1998);J.A.Thomson等,Dev.Biol.38133-165(1998);B.E.Reubinoff等,Nat.Biotechnol.18339-404(2000)]。可以预期,运用通过使用小鼠ES细胞而积累的关于分化诱导和调节的大量知识,人ES细胞将成为适用于包括心肌梗塞、帕金森氏症、糖尿病和白血病的疾病的移植治疗用的多种细胞和/或组织的无限材料,且将解决移植治疗中原材料不足的问题。2000年6月23日,澳大利亚、美国和德国的三个研究小组在国际干细胞研讨会(International Symposiumon Stem Cell)中报告了他们已经成功地首次从人ES细胞制备了神经细胞和肌肉细胞。另外,最近报道了一种将人ES细胞分化为造血细胞的方法。但是,即使在ES细胞已用于移植治疗的情况中,现有器官移植中发生的免疫排斥反应仍然是一个遗留问题。
进行活组织移植的原因是很多的。通过器官移植,可以补偿机能缺陷。例如,肾脏等重要器官的致死性疾病可被治愈。同一个体的异位移植称为自体移植(autotransplantation)。自体移植物是不会被排斥的。同卵双胎之间或同系动物之间的的移植称为同基因移植(isotransplantation)。在这种情况下,宿主可终生接受移植物。同种间移植称为同种移植(allotransplantation)。在这种情况下,除非进行特殊处理以预防排斥,否则移植物将受排斥。异种间的移植称为异种移植(heterotransplantation)。在这种情况下,宿主迅速破坏移植物。
诱发移植物排斥的因子称为移植抗原或组织相容性抗原。红细胞以外的所有体细胞都有移植抗原。红细胞具有其自身的血型(ABO)抗原。主要人类移植抗原称为主要组织相容性抗原或HLAs(人白细胞抗原A),其由第6号染色体上的基因编码。HLA抗原可分为两种类型排斥反应靶向的I型抗原和在起动排斥反应中发挥作用的II型抗原。I型抗原出现在所有组织中,而II型抗原并不出现在所有组织中,其在具有指状突起的树突细胞即巨噬细胞样细胞中高表达。目前已经在进行从要移植的组织中去除所述细胞以便阻止排斥反应起动的尝试。虽已有一些成功的实验,但其不具有实用性,而且尚未应用于临床。
移植后发生的排斥反应可分为超急性排斥反应、加速型急性排斥反应、急性排斥反应和慢性排斥反应等类型。在受者血清中存在与供者HLA抗原反应的抗体的时候发生超急性排斥反应。血管结扎放开以及器官的血液循环恢复数小时内强烈的排斥反应马上破坏移植器官。现在,没有可用的治疗方法。为了防止该情况,在移植前要进行淋巴细胞交叉实验。在确定受者血清内存在能与供者淋巴细胞反应的抗体后,为预防起见,就要放弃移植。在移植前受者血清中存在与供者HLA抗原反应的T淋巴细胞时,即会发生加速型急性排斥反应。加速型急性排斥反应通常在移植7日内发生,而且与超急性排斥反应一样强烈。近年来在治疗药物上的进展使得治疗所述排斥反应成为可能。急性排斥反应是主要由与移植器官的受体HLA抗原相关的T淋巴细胞诱导的细胞免疫反应的结果。通常在移植后大约2周至1个月可以观察到并能典型地识别急性排斥反应。慢性排斥反应的特征在于在逐渐抵抗临床治疗的进程中,器官的机能低下,其发生在移植后6个月至1年。基本上,由供者HLA抗原侵入而活化的受体免疫反应诱发了移植器官内的组织障碍,对器官组织的反应在一个长时期内导致了组织变性。除非器官与移植受体具有相同MHC分子结构,否则排斥反应不可避免。现在,控制排斥反应方法的缺乏是一个重要课题。
阻止排斥反应的免疫抑制技术的实例包括使用免疫抑制剂、外科手术、放射线照射等。免疫抑制剂的实例主要包括肾上腺皮质类固醇、环孢霉素、FK506等。肾上腺皮质类固醇降低循环T细胞数而抑制淋巴细胞的核酸代谢和细胞因子的生成从而抑制T细胞功能。因此,抑制了巨噬细胞的游走和代谢,这导致免疫反应的抑制。环孢霉素和FK506的作用类似,其与辅助T细胞表面上的受体结合,进入细胞,直接作用于DNA而抑制白细胞介素2的生成。最终,杀伤T细胞功能受抑制,导致免疫抑制。使用这些免疫抑制剂会产生副反应。特别地,类固醇通产会产生副反应。环孢霉素具有肝和肾毒性。FK506具有肾毒性。外科手术的实例包括淋巴结摘除、脾摘除、胸腺摘除,其效果尚未完全证实。在外科手术中,胸导管引流术噬要从胸导管中去除循环淋巴细胞而其效果尚未完全证实。但是,这一技术导致血清蛋白和脂质大量丢失,这会导致营养障碍。放射线照射包括全身照射和移植物照射。其效果不确切,而且对受体的影响很大。因此,放射线照射要与前述免疫抑制剂联合使用。很明显,上述技术对阻止排斥反应均不理想。
现在已知,通过将体细胞核引入去核的卵细胞中,体细胞核在哺乳动物中再程序化为全能性。通过这一方法,制备了克隆羊、克隆牛、克隆小鼠、克隆猪等[Wilmut I.等,Nature 385810-813(1997);KatoY.等,Science 2822095-2098(1998);Wakayama T.等,Nature 394369-374(1998);Onishi A.等,Science 2891188-1190(2000);PolejaevaI.A.等,Nature 40786-90(2000)]。使用这一技术,通过使用卵细胞以及制备全能性细胞来使得来自欲接受移植物的体细胞再程序化,而制备不导致免疫排斥反应的抑制物成为可能。另外,使用所述细胞培养方法,可以克服供体的短缺。
但是,人类治疗用克隆遇到了社会问题,即生物医学伦理问题(Weissman,I.L,N.Eangl.J.Med.,3461576-1579(2002))。上述技术方法需要卵细胞,这从伦理学观点来看是有问题的。对人类来说,ES细胞来自早期胚胎的未分化细胞核,而不存在成体早期胚胎。因此,原则上,在早期胚胎时期之后建立ES细胞是不可能的,特别是来自成体宿主。因此,尚未获得适用于个体的多能干细胞。现有技术领域非常需要这样的细胞。
(本发明要解决的问题)本发明的一个目的是提供一种易于获得的适用于个体的多能干细胞。更特别地,本发明的一个目的是有效地建立不会诱发免疫排斥反应的细胞、组织和器官,其作为疾病治疗中的供体组织,而不用取出干细胞,如ES细胞等,也需要不使用卵细胞。
发明概述本发明人成功地制备了含有来自例如作为治疗处理对象的个体的所需基因组的,免疫排斥反应水平减低的,多能性干细胞。从而解决了上述问题。
开始,本发明人通过融合干细胞(如ES细胞)和体细胞而制备了四倍体体细胞,而且发现该细胞能在体内和体外生长和体细胞核再程序化且具有全能性。根据本发明,在所述四倍体体细胞中,能够在宿主即不表达部分或全部干细胞源性移植抗原的干细胞(如ES细胞)中诱发免疫排斥反应的来自干细胞(如ES细胞)的因子,可用于制备适用于个体的多能干细胞。
不表达部分或全部干细胞(如ES细胞)源性移植抗原的适用于个体的多能干细胞可获自,例如,将部分或全部移植抗原(特别是组织相容性抗原)缺失的干细胞(如ES细胞)与体细胞融合。在该情况下,就从适用于个体的多能干细胞中降低或去除了干细胞源性移植抗原。因此,可显著降低移植排斥反应。
不表达部分或全部干细胞(如ES细胞)源性移植抗原的适用于个体的多能干细胞可获自,例如,将干细胞(如ES细胞)与体细胞融合,然后采用基因操作去除干细胞(如ES细胞)源性基因组。在该情况下,从融合细胞中完全去除了干细胞源性基因组,即可获得适用于个体的不会出现排斥反应的“完全”多能干细胞。
另外,意料不到地鉴定了干细胞(如ES细胞)源性再程序化(reprogramming)因子。再程序化因子用于为含有所需基因组的细胞(如体细胞)提供多能性,从而成功地制备了多能干细胞。在该情况下,可获得适用于个体的、不会出现排斥反应的、不包含所需基因组以外基因的“完全”多能干细胞。
当将从含有所需基因的多能干细胞如,融合细胞、再程序化体细胞等分化而来的细胞,组织和器官引入受体时,与从含有全部干细胞(如ES细胞)源性移植抗原或全部缺失的细胞分化而来的细胞相比,受体的排斥反应降低。因此,本发明的多能干细胞可作为建立作为疾病治疗供体的细胞、组织和器官的理想材料。这些细胞、组织和器官在定制医学治疗中具有广泛的用途而且具有高度的工业实用性。
本发明具体提供的内容如下。
1.分离的多能干细胞,包括所需基因组。
2.根据第1项的多能干细胞,其为非ES细胞。
3.根据第1项的多能干细胞,其中至少缺失部分移植抗原。
4.根据第1项的多能干细胞,其中缺失全部移植抗原。
5.根据第1项的多能干细胞,其中移植抗原包括至少一种主要组织相容性抗原。
6.根据第3项的多能干细胞,其中主要组织相容性抗原包括I型抗原。
7.根据第1项的多能干细胞,其中基因组再程序化。
8.根据第1项的多能干细胞,其由再程序化细胞来制备。
9.根据第8项的多能干细胞,其中细胞为体细胞。
10.根据第1项的多能干细胞,其由干细胞和体细胞融合来制备。
11.根据第10项的多能干细胞,其中干细胞为ES细胞。
12.根据第10项的多能干细胞,其中干细胞为组织干细胞。
13根据第1项的多能干细胞,其具有来自所需个体的基因组而且不是所需个体的ES细胞和卵细胞。
14根据第1项的多能干细胞,其具有来自所需个体的体细胞的染色体。
15.根据第1项的多能干细胞,其不是直接来自胚胎。
16.根据第1项的多能干细胞,其来自体细胞。
17.根据第1项的多能干细胞,其中所需个体以外的移植抗原被降低。
18.根据第1项的多能干细胞,其来自所需个体卵细胞以外的细胞。
19.根据第1项的多能干细胞,其中所需基因组是早期胚胎以外阶段的个体的基因组。
20.根据第1项的多能干细胞,其是ES细胞和体细胞融合的未分化体细胞融合细胞,其中ES细胞中缺失部分或全部移植抗原。
21.根据第1项的多能干细胞,其是ES细胞和体细胞融合的未分化体细胞融合细胞,其中ES细胞中缺失全部移植抗原。
22.根据第20项的多能干细胞,其中移植抗原为主要组织相容性抗原。
23.根据第22项的多能干细胞,其中主要组织相容性抗原为I型抗原。
24.根据第20项的多能干细胞,其中体细胞为来自移植个体的淋巴细胞、脾细胞或精巢源性细胞。
25.根据第20项的多能干细胞,其中至少一种ES细胞和体细胞是人源性细胞。
26.根据第20项的多能干细胞,其中体细胞是人源性细胞。
27.根据第20项的多能干细胞,其中至少一种体细胞和干细胞是经遗传修饰的。
28.一种制备具有所需基因组的多能干细胞的方法,包括如下步骤1)使干细胞中的部分或全部移植抗原缺失;和2)将干细胞和具有所需基因组的体细胞融合。
29.根据第28项的方法,其中干细胞是ES细胞。
30.根据第28项的方法,其中ES细胞是建立的ES细胞。
31.根据第28项的方法,其中移植抗原为主要组织相容性抗原。
32.根据第31项的方法,其中主要组织相容性抗原为I型抗原。
33.根据第28项的方法,其中体细胞为来自移植个体的淋巴细胞、脾细胞或精巢源性细胞。
34.根据第28项的方法,其中至少一种ES细胞和体细胞是人源性细胞。
35根据第28项的方法,包括缺失全部移植抗原。
36.一种制备具有所需基因组的多能干细胞的方法,包括如下步骤1)提供具有所需基因组的细胞;和2)将细胞暴露于含有再程序化因子的组合物中。
37.根据第36项的方法,其中细胞是体细胞。
38.根据第36项的方法,其中制备再程序化因子的至少一种药剂选自下列之一细胞周期调节剂、DNA解旋酶、组蛋白乙酰化剂和直接或间接与组蛋白H3 Lys4甲基化相关的转录因子。
39.一种细胞、组织或器官,其从具有所需基因组的多能干细胞分化而来。
40.根据第39项的细胞,其中细胞为肌细胞、软骨细胞、上皮细胞或神经细胞。
41.根据第39项的组织,其中组织为肌、软骨、上皮或神经。
42.根据第39项的器官,其中器官选自下述之一脑、脊髓、心脏、肝脏、肾脏、胃、肠和胰腺。
43.根据第39项的细胞、组织或器官,其中细胞、组织或器官用于移植。
44.根据第39项的细胞、组织或器官,其中所需基因组与要移植细胞、组织或器官的宿主的基因组基本上相同。
45.一种药物,包括具有所需基因组的细胞、组织或器官,其中细胞、组织或器官从多能干细胞分化而来。
46.一种治疗或预防由于个体的细胞、组织或器官缺陷而致疾病或紊乱的药物,包括具有与个体基因组基本上相同的基因组的多能干细胞。
47.一种治疗或预防由于个体的细胞、组织或器官缺陷而致疾病或紊乱的方法,包括如下步骤制备具有与个体基因组基本上相同的基因组的多能干细胞;从多能干细胞分化细胞、组织或器官;和将对个体施用细胞、组织或器官。
48.一种治疗或预防由于个体的细胞、组织或器官缺陷而致疾病或紊乱的方法,包括如下步骤在个体中施用具有与个体基因组基本上相同的基因组的多能干细胞。
49.一种治疗或预防由于个体的细胞、组织或器官缺陷而致疾病或紊乱的方法,包括如下步骤在个体中施用药物,所述药物包括从具有与个体基因组基本上相同的基因组的多能干细胞分化而来细胞、组织或器官。
50.多能干细胞在制备用于治疗或预防由于个体的细胞、组织或器官缺陷而致疾病或紊乱的药物中的用途,其中所述药物包括具有与个体基因组基本上相同的基因组的多能干细胞。
51.多能干细胞在制备用于治疗或预防由于个体的细胞、组织或器官缺陷而致疾病或紊乱的药物中的用途,其中所述药物包括从具有与个体基因组基本上相同的基因组的多能干细胞分化而来细胞、组织或器官。
52.包含所需基因组的多能干细胞在制备包含多能干细胞的药物中的用途。
53.具有所需基因组的多能干细胞在制备包含从多能干细胞分化而来的细胞、组织或器官的药物中的用途。
54.一种再程序化因子,其选自下列之一组蛋白H3-Lys4甲基化酶或与组蛋白H3-Lys4甲基化相关的因子、细胞周期调节剂、DNA解旋酶、组蛋白乙酰化剂和转录因子。
55.根据第54项的再程序化因子,其中因子是转录因子Sp1和Sp3,或其辅因子。
附图简述

图1.显示了PCR分析的结果,该结果证实了来自ES融合细胞中胸腺细胞的Tcrβ、Tcrδ、Tcrγ和IgH基因的DNA重排。图(a)至(d)分别显示了使用下述区域(a)Tcrβ的D-J区;(b)Tcrδ的D-J区;(c)Tcrγ的D-J区和(d)IgH的D-J区特异性的引物组进行PCR分析的结果。使用的DNA样品如下T来自(Rosa26×Oct4-GFP)F1小鼠的胸腺细胞,ES来自ES细胞,Mλ/HindIII DNA和100bp DNAladder混合标记物。1~7来自ES细胞杂合克隆。
图2.显示了来自ES融合细胞中胸腺细胞的X染色体的再活化。(a)ES融合细胞的X染色体复制期的R分化染色分析的结果。在ES融合细胞中,三个X染色体(2个X染色体来自雌性来源的胸腺细胞,1个X染色体来自胸性来源的ES细胞)显示为红色和绿色,这表示其为活性的。在(a)中,三个X染色体同时复制,在(c)中放大显示(箭头)。雌性体细胞中的X染色体((b)中用箭头所示)和Y染色体((a)的中部)均染为红色,这表示其为无活性的。(d)Xist RNA为雄性ES细胞的活性X染色体上的红色信号点,而无活性雌性胸腺细胞则染色为完全的强红色信号。在检测的两个ES杂合细胞系(ESX T1和ESX T2)中,每个细胞核上都检测到三个红色信号点。
图3.ES融合细胞再活化的显微照片。显示了用于制备ES融合细胞的(Rosa26×Oct4-GFP)F1小鼠的胸腺(a,b)和卵巢(c,d)的GFP荧光图和亮视野图。(e)融合两日后的克隆亮视野图中箭头指示GFP-阳性克隆,如(f)中所示。(f)融合两日后的GFP荧光图。小GFP-阳性克隆在无表达ES细胞克隆中。上部显示阳性克隆发大图。(g)(h)的亮视野图。(h)在用G418选择后,从克隆中延伸的GFP-阳性细胞图。
图4.显示ES融合细胞在体内的发展能力。(a)制备ES融合和嵌合胚胎的示意图。(b)显示含有ES融合细胞的E7.5嵌合胚胎的β-半乳糖苷酶活性染色结果。来自融合细胞的细胞为蓝色。(c)显示E7.5嵌合胚胎沿纵轴切片的免疫组织化学分析结果。(d,e)高倍显示嵌合胚胎切片。Ect外胚层,Mes中胚层和End内胚层。
图5.显示ES杂合体和ES×EG融合细胞中H19基因和Ifg2r基因的甲基化分析以及分析结果。(a)H19基因的分析结果。(b)和(c)Ifg2r基因的分析结果。箭头显示的是甲基化DNA片段,○表示分化的DNA片段。(c)中显示实验方法总结。缩写词如下T胸腺细胞,ES/T比例为1∶1的ES和胸腺细胞混合物;ES/EG比例为1∶1的ES和EG DNA混合物,ESX T;ES细胞和Rosa26胸腺细胞的ES杂合克隆。
图6.显示了构建畸胎瘤和制备嵌合胚胎以及畸胎瘤嵌合胚胎的显微图象。
图7.显示了ES细胞和成体淋巴细胞融合细胞的定性及其多能性。(A)制备和分化domesticus(dom)ES细胞和molossinus(mol)胸腺细胞之间的亚种间融合细胞实验图。(B)四倍体融合细胞克隆,HxJ-18的代表性中期扩展;(C)Tcrδ和IgH基因的D-J DNA重排的基因组PCR分析;(D)融合细胞来源的畸胎瘤石蜡切片中外胚层、中胚层和内胚层组织特异性标记蛋白、III型β-Tublin(TuJ)、神经丝-M(NF-M)、白蛋白和结蛋白(Des)的表达。用苏木素和曙红(HE)对切片进行反染色。
图8.显示了融合细胞的外胚层、中胚层和内胚层衍生物中体细胞基因组特异性RT-PCR产物。(A)未分化和分化的HxJ-17和18融合克隆中的外胚层Pitx3、中胚层MyoD、Myf-5和结蛋白和内胚层白蛋白和α-胎球蛋白。e18.5胚胎作为对照。(B)从再程序化体细胞基因组中转录外胚层Pitx3。domesticus(dom)ES基因组中的mRNA的鸟嘌呤残基被替换为molossinus体细胞基因组中的腺嘌呤残基。(C)从再程序化体细胞基因组中转录内胚层白蛋白。domesticus型RT-PCR产物含有单个NcoI消化位点,而molossinus型产物含有两个NcoI消化位点。(D)从再程序化体细胞基因组中转录中胚层MyoD。domesticus型RT-PCR产物对BssHI消化敏感,而molossinus型产物对BssHI不敏感。
图9.显示了融合细胞在PA6饲喂细胞上的体外神经细胞分化诱导。(A)从宿主molossinus MP4ES细胞分化来的神经细胞作为对照。TuJ(红色)有丝分裂后神经细胞特异性标记物蛋白和Ecda(绿色)干细胞特异性标记物。(B)从MxR-3融合细胞中分化的神经细胞。大多数克隆与中脑多巴胺能神经细胞特异的TH抗体发生阳性免疫反应(红色)而与神经细胞标记物NF-M反应的为(绿色)。(C)对TH-阳性神经细胞有效和可再生的分化诱导。(D)在诱导11日后从融合细胞中体外分化的神经细胞中表达神经细胞特异性基因Nestin(神经上皮干细胞特异性标记物)和NF-M(有丝分裂后神经细胞特异性标记物)。神经细胞诱导分化后在融合细胞衍生物中转录domesticus神经细胞特异性标记物Nurr1、TH和Pitx3。对照PA6中无信号。(E)从再程序化体细胞基因组中表达pitx3(TH的转录激活子)。Domesticus(dom)基因组中鸟嘌呤残基变换为molossinus(mol)基因组中腺嘌呤残基。
图10.显示了小鼠脑内融合细胞来源的TH-阳性神经细胞的移植物。(A)将在图3B,C,D和E中定性的MxR-3融合细胞来源的神经细胞移植到小鼠脑中的纹状体。(B)融合细胞来源的神经细胞在小鼠脑内表达TH。用LacZ抗体检测来自携带LacZ/neo报告基因的神经细胞的MxR-3融合细胞时,其表现为阳性。LacZ和TH抗体双染色显示来自神经细胞的融合细胞表达TH(红色)。在合并图中,LacZ和TH双阳性细胞为黄色细胞。(C)(B)中(C)区域的高倍图。LacZ阳性融合细胞衍生物(绿色)在注射位点表达TH(红色)。在合并图中,LacZ和TH双阳性细胞为黄色细胞。
图11.显示了再程序化的简图。
图12.显示了制备MHC缺陷的ES细胞-体细胞融合细胞的简图。
图13.显示了制备基因组缺陷的ES细胞-体细胞融合细胞的简图。
图14.显示了图13的简图中所使用的隔离子(insulator)-聚合酶II启动子-GFP-LoxP-隔离子的构建体。
发明最佳实施方案以下将描述本发明。本说明书整体应被理解为除文中明确指出的以外,单数形式的冠词(例如,英语中的“a”、“an”、“the”等;德语中的“ein”、“der”、“das”、“die”等及其格的变化;法语中的“un”、“une”、“le”、“la”、等;西班牙语中的“un”、“una”、“el”、“la”等以及其它语言中的冠词、形容词等)都包括复数概念。除特别指出的以外,本说明书使用的术语也应被理解为具有本技术领域通常使用的定义。
(术语说明)以下描述本说明书使用的术语。
本说明书使用的术语“细胞”具有本领域最广泛的定义,其是指多细胞有机体组织的结构单位的活体,被将其与外界隔绝开的膜结构所包被、具有自我复制能力、具有遗传信息和表达机制。本说明书使用的细胞可以是天然存在的细胞或人工修饰的细胞(例如,融合细胞、遗传修饰的细胞等)。
本说明书使用的术语“干细胞”是指具有自我复制和多分化能力(pluripotency)的细胞。干细胞通常可以再生损伤组织。本说明书使用的干细胞可以是(但不限于)胚胎干细胞(ES)或组织干细胞(也称为组织特异性干细胞,或体性干细胞)。任何人工制备的具有上述能力的细胞(比如本说明书使用的融合细胞、再程序化细胞等)都可以是干细胞。ES细胞为来自早期胚胎的多能干细胞。ES细胞最早建立于1981年,1989以来其已经用于制备敲除小鼠(knockoutmice)。1998年,建立了人ES细胞,现在其正在用于再生医学中。与ES细胞不同,组织干细胞具有限定的分化方向。在组织内的特定位点存在组织干细胞,其具有未分化的细胞内结构。因此,组织干细胞的多能性低。组织干细胞的核/质比较高,且具有少量细胞内小细胞器。大部分组织干细胞具有多能性,长的细胞周期以及能维持在个体一生以上的增殖能力。尽管组织干细胞也能根据情况而使用,但本说明书使用的干细胞优选ES细胞。
组织干细胞可按照细胞来源部位的类型如皮肤系统、消化系统、骨髓系统、神经系统等而进行分类。皮肤系统的组织干细胞包括表皮干细胞、毛囊干细胞等。消化系统的组织干细胞包括胰(共通)干细胞、肝脏干细胞等。骨髓系统的组织干细胞包括造血干细胞、间质干细胞等。神经系统的组织干细胞包括神经干细胞、视网膜干细胞等。
本说明书使用的术语“体细胞”是指干细胞以外的任何细胞,例如卵子、精子等不直接将其DNA转至子代的细胞。体细胞通常具有局限的多能性或没有多能性。本说明书使用的体细胞可以是天然存在的或遗传修饰的。
细胞的来源可按照来自外胚层、中胚层或内胚层的干细胞而分类。外胚层源性干细胞主要存在于脑中,包括神经干细胞。中胚层源性干细胞主要存在于骨髓中,包括血管干细胞、造血干细胞、间质干细胞等。内胚层源性干细胞主要存在于脏器中,包括肝脏干细胞、胰干细胞等。优选地,可使用体细胞,如淋巴细胞、脾细胞或精巢源性细胞。
本说明书使用的术语“分离的”是指至少减少或优选基本上完全去除在正常情况下天然伴随的物质。因此,术语“分离的细胞”是指基本上不含其它天然情况下伴随的物质(如其它细胞、蛋白、核酸等)的细胞。与核酸或多肽相关的术语“分离的”是指,例如在用重组DNA技术制备时基本上不含细胞物质或培养基的;或在用化学制备时基本上不含前体化学物质或其它化学物质的核酸或多肽。分离的核酸优选不含核酸源性生物体中与核酸侧接天然的序列(如位于所述核酸5’末端和3’末端的序列)的核酸。
本说明书使用的与细胞相关的术语“建立的”是指保持细胞的特定性质(如多能性)且在培养条件下细胞能够稳定增殖的细胞状态。因此,建立的干细胞细胞保持多能性。在本发明中,由于可以避开从宿主中集取干细胞的步骤,因此优选使用建立的干细胞。
本说明书使用的术语“非胚性”是指不直接来自早期胚胎。因此,术语“非胚性”是指细胞来自早期胚胎以外的身体部分。非胚性细胞还包括修饰的ES细胞(例如,遗传修饰的或融合的ES细胞等)。
本说明书使用的术语“分化细胞”是指具有特化功能和形态的细胞(如肌细胞、神经细胞等)。与干细胞不同,分化细胞不具有多能性或具有很低的多能性。分化细胞的实例包括表皮细胞、胰腺实质细胞、胰腺管细胞、肝细胞、血液细胞、心肌细胞、骨骼肌细胞、成骨细胞、成骨骼肌细胞、神经细胞、血管内皮细胞、色素细胞、平滑肌细胞、脂肪细胞、骨细胞、软骨细胞等。因此,在本发明的一个实施方案中,可以使用给予了多能性的给定分化细胞,或用于替换本发明中的体细胞。
本说明书使用的术语“分化”或“细胞分化”是从单个细胞分离来的子细胞代中两种或多种类型的细胞在形态和/或功能上出现性质上差异的一种现象。因此,“分化”包括,在细胞传代(细胞系谱)期间,原本不具有特异的可识别特征的细胞获得某种特性,例如能产生特定蛋白质等的一种过程。现在,细胞分化通常被看作细胞中基因组中特定基因群表达的一种细胞状态。细胞分化可通过探索诱导上述基因表达状态的细胞内或细胞外因子或条件而进行鉴定。分化细胞原则上是稳定的。特别地,一经分化的动物细胞几乎不再分化成其它类型的细胞。因此,本发明的获得多能性的细胞是非常有用的。
本说明书使用的术语“多能性”是指细胞的一种性质,即能分化成一种或多种,优选两种或多种,组织或器官的能力。因此,除特别指出的以外,本说明书使用的术语“多能性”和“未分化”可以互换。通常,细胞多能性在细胞进展时受到限制,而在成体中组成组织或器官的细胞几乎不会转变为其它类型的细胞,多能性通常丧失。特别的,上皮细胞抵抗转变为其它类型上皮细胞。所述转变通常发生在病理情况下,称为化生。但是在相对单纯的刺激下,间质细胞很容易化生即转变为其它间质细胞。因此,间质细胞具有高度多能性。ES细胞具有多能性。组织干细胞具有多能性。本说明书使用的术语“全能性”是指细胞如受精卵分化为组成生物体所有类型细胞的多能性。因此,术语“多能性”可包括全能性的概念。用于确定多能性有无的体外实验的实例包括(但不限于)在诱导胚样体形成和分化的条件下培养。用于确定多能性有无的体内实验的实例包括(但不限于)将细胞植入免疫缺陷小鼠以便形成畸胎瘤,将细胞注射到胚泡中以便形成嵌合体胚胎,将细胞植入生物体组织中(例如将细胞注射到腹水中)以便产生增殖等本说明书使用的细胞包括可来自任何生物(例如任何多细胞生物(例如动物(例如脊椎动物、无脊椎动物)、植物(单子叶植物、双子叶植物等)))的细胞。优选地,动物为脊椎动物(例如盲鳗目(Myxiniformes)、Petronyzoniformes、软骨鱼类(Chondrichthyes)、硬骨鱼类(Osteichthyes)、两栖类、爬虫类、禽类、哺乳动物等),更优选地为哺乳动物(例如单孔类、有袋类、贫齿类、皮翼类、翼手类、食肉类、食虫类、长鼻类、奇蹄类、偶蹄类、管齿类、有鳞类、海牛类、鲸类、灵长类、啮齿类、兔类等)。更优选地使用灵长类(例如黑猩猩、日本猕猴、人等)。最优选地,使用人类。
本发明可使用任何器官。本发明使用的组织或细胞可来自任何器官。本说明书使用的术语“器官”是指定位在具有特定功能的生物个体的特定部分的形态学依赖性结构。在多细胞生物体(例如动物、植物)中,多种组织按照特定空间排列方式而组成器官,每一组织由大量细胞组成。所述器官的一个实例包括血管系统有关的器官。在一个实施方案中,本发明靶向的器官包括(但不限于)皮肤、血管、角膜、肾脏、心脏、肝脏、脐带、肠、神经、肺、胎盘、胰腺、脑、视网膜等。从多能细胞分化来的细胞的实例包括表皮细胞、胰腺实质细胞、胰腺管细胞、肝细胞、血液细胞、心肌细胞、骨骼肌细胞、成骨细胞、成骨骼肌细胞、神经细胞、血管内皮细胞、色素细胞、平滑肌细胞、脂肪细胞、骨细胞、软骨细胞等。
本说明书使用的术语“组织”是指多细胞生物体中具有实质上相同的功能和/或形态的细胞集团。“组织”通常是来源相同的细胞的集团,但也可以是不同来源细胞的集团,只要具有相同的功能和/或形态。因此,但本发明的干细胞用来再生组织时,组织可以由两种或多种不同源性细胞组成。通常,组织是组成器官的一部分。动物组织可以分为上皮组织、结缔组织、肌肉组织、神经组织等。植物组织可根据组成组织的细胞的发展时期,而粗略地分为分生组织和永久组织。另外,组织可根据组成组织的细胞的类型而分为单一组织和复合组织。因此,组织可分为多种类型。
本说明书使用的术语“蛋白”,“多肽”和“肽”可以互换,其是指由一系列氨基酸组成的高分子。
本说明书使用的术语“氨基酸”可以指天然存在的和非天然存在的氨基酸。本说明书使用的术语“氨基酸衍生物”或“氨基酸类似物”是指与天然存在的氨基酸不同的,具有与源氨基酸相似功能的氨基酸。所述氨基酸衍生物和氨基酸类似物是本领域众所周知的。术语“天然存在的氨基酸”是指天然存在的氨基酸的L-异构体。天然存在的氨基酸为甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、丝氨酸、蛋氨酸、苏氨酸、苯丙氨酸、酪氨酸、色氨酸、半胱氨酸、脯氨酸、组氨酸、天冬氨酸、天冬酰胺、谷氨酸、谷氨酰胺、γ-羧基谷氨酸、精氨酸、鸟氨酸和赖氨酸。除了特别指出的以外,本说明书使用的全部氨基酸均为L-异构体。术语“非天然存在的氨基酸”是指通常无法在天然发现的氨基酸。非天然存在的氨基酸的实例包括正亮氨酸、对-硝基苯丙氨酸、同型苯丙氨酸、对-氟苯丙氨酸、3-氨基2-苄基丙酸、D-或L-同型精氨酸和D-苯丙氨酸。本说明书使用的术语“氨基酸类似物”是指物理性质和/或功能谷氨基酸相似,但又不是氨基酸的分子。氨基酸类似物的实例包括,例如乙基硫氨酸、刀豆氨酸、2-甲基谷氨酸等。氨基酸模拟物是指具有与氨基酸一般化学结构不同的结构,但功能模式与天然存在的氨基酸相似的化合物。
本说明书使用的分子生物学技术,生物化学技术和微生物技术是本领域众所周知的且通常所使用的,其记载于例如Maniatis,T.等(1989),分子克隆实验指南(Molecular CloningA LaboratoryManual),Cold Spring Harbor及其3rdEd.(2001);Ausubel,F.M.等,(1987),现代分子生物学方法(Current Protocols in MolecularBiology),Greene Pub.Associated and Wiley-interscience;Ausubel,F.M.(1989),分子生物学方法概要(Short Protocols in Molecular BiologyA Compendium of Methods from Current Protocols in MolecularBiology),Greene Pub.Associated and Wiley-interscience;Sambrook,J.等(1989)分子克隆实验指南,Cold Spring Harbor;Innis,M.A.(1990),PCT方法方法和应用指南(PCR ProtocolsA Guide toMethods and Applications),Academic Press;Ausubel,F.M.(1992),分子生物学方法概要,Greene Pub.Associated;Ausubel,F.M.(1995),分子生物学方法概要,Greene Pub.Associated;Innis,M.A.(1995),PCR Strategies,Academic Press;Ausubel,F.M.(1999),分子生物学方法概要,Wiley,and annual updates;Sninsky,J.J.等(1999),PCR应用功能基因组方法(PCR ApplicationsProtocols for FunctionalGenomics),Academic Press,Special issue,Jikken igaku[ExperimentalMedicine]“Ienshi Donyu & Hatsugenkaiseki Jikkenho[ExperimentalMethod for Gene introduction & Expression Analysis]”,Yodo-sha,1997等。这些公开内容的相关部分(或可能是全部)引入本说明书作为参考。
本说明书使用的术语“生物学活性”是指生物体中因子(例如多核苷酸,蛋白等)具有的活性,包括表现为多种功能的活性。例如,当特定因子为酶时,其生物学活性包括其酶活性。当特定因子为再程序化因子时,其生物学活性包括其再程序化活性。
本说明书使用的术语“变体”是指部分与源物质不同的如多肽,多核苷酸等物质。所述变体的实例包括置换变体、添加变体、删除变体、截短变体、等位变体等。本说明书使用的术语“等位基因”是指定位在相应基因同一基因座上的基因变体,这两个基因彼此不同。因此,本说明书使用的术语“等位变体”是指与给定基因具有等位关系的变体。本说明书使用的术语“种相同体(species homolog)”是指与给定物种中给定基因具有氨基酸或核苷酸具有相同性(优选至少60%相同性,更优选至少80%,至少85%,至少90%和至少95%相同性)。根据本说明书的详细记载清楚说明了获得所述种相同体的方法。用于本发明的细胞可包含修饰的核酸或多肽。
任何能将DNA导入细胞的方法都可以用作载体导入方法,包括,例如转染、转导、转化等(例如电穿孔方法、离子枪(基因枪)方法等)。
本发明书述及基因时,术语“载体”或“重组载体”是指能将兴趣多核苷酸序列导入靶细胞的载体。所述载体能自我复制或整合到宿主细胞的染色体中(例如原核细胞、酵母、动物细胞、植物细胞、昆虫细胞、动物个体、植物个体等),所述载体并且包含处于适于本发明多核苷酸转录的位点上的启动子。
用于原核细胞的“重组载体”的实例包括pBTrp2、pBTac1、pBTac2(均可以从Roche Molecular Biochemicals获得)、pKK233-2(Pharmacia)、pSE280(Invitrogen)、pGEMEX-1(Promega)、pQE-8(QIAGEN)、pKYP10(日本专利特开平58-110600)、pKYP200[Agric.Biol.Chem.,48,669(1984)]、pLSA1[Agric.Biol.Chem.,53,277(1989)]、pGEL1[Proc.Natl.Acad.Sci.USA,82,4306(1985)]、pBluescript II SK+(Stratagene)、pBluescript II SK(-)(Stratagene)、pTrs30(FERM BP-5407)、pTrs32(FERM BP-5408)、pGHA2(FERMBP-400)、pGKA2(FERM B-6798)、pTerm2(日本专利特开平3-22979,US4686191,US4939094,US5160735)、pEG400[J.Bacteriol.,172,2392(1990)]、pGEX(Pharmacia)、pETsystem(Novagen)、pSupex、pUB110、pTP5、pC194、pTrxFus (Invitrogen)、pMAL-c2(New England Biolabs)、pUC19[Gene,33,103(1985)]、pSTV28(Takara)、pUC118(Takara)、pPA1(日本专利特开平63-233798)等。
用于酵母细胞的“重组载体”的实例包括YEp13(ATCC37115)、YEp24(ATCC37051)、YCp50(ATCC37419)、pHS19、pHS15等。
用于动物细胞的“重组载体”的实例包括pcDNAI/Amp、pcDNAI、pCDM8(均可以从Funakoshi商业获得)、pAGE107[日本专利特开平3-229(Invitrogen)、pAGE103[J.Biochem.,101,1307(1987)]、pAMo、pAMoA[J.Biol.Chem.,268,22782-22787(1993)]、基于小鼠干细胞病毒(Murine Stem Cell Virus,MSCV)的逆转录病毒表达载体等。
本说明书使用的“逆转录病毒载体”包括,例如(但不限于)基于莫洛尼小鼠白血病病毒(Moloney Murine Leukemia Virus,MMLV)或小鼠干细胞病毒(MSCV)的逆转录病毒表达载体等。
用于植物细胞的“重组载体”的实例包括Ti质粒、烟草花叶病毒载体等。
用于昆虫细胞的“重组载体”的实例包括pVL1392、pVL1393、pBlueBacIII(均可以获自Invitrogen)等。
本说明书使用的术语“转化体”是指通过转化制备的全部或部分生物体如细胞。转化体的实例包括原核细胞、酵母、动物细胞、植物细胞、昆虫细胞、动物个体、植物个体等。转化体可以指依存于对象的转化细胞、转化组织、转化宿主等。本发明使用的细胞可以是转化体。
本说明书所使用的原核细胞当用于遗传操作等时,原核细胞可以是,例如,埃希氏菌(Escherichia)属、沙雷氏菌(Serratia)属、杆菌(Bacillus)属、短杆菌属(Brevibacterium)属、棒杆菌属(Corynebacterium)属、微杆菌(Microbacterium)属、假单孢菌(Pseudomonas)属等的原核生物细胞,包括,例如,大肠杆菌XL1-Blue、大肠杆菌XL2-Blue、大肠杆菌DH1、大肠杆菌MC1000、大肠杆菌KY3276、大肠杆菌W1485、大肠杆菌JM109、大肠杆菌HB101、大肠杆菌No.49、大肠杆菌W3110、大肠杆菌NY49、大肠杆菌BL21(DE3)、大肠杆菌BL21(D E3)pLysS、大肠杆菌HMS174(D E3)、大肠杆菌HMS174(DE3)pLysS、无花果沙雷氏菌、居泉沙雷氏菌、液化沙雷氏菌、粘质沙雷氏菌、枯草芽孢杆菌(subtilis Bacillus)、解淀粉芽孢杆菌、产氨短菌(Brevibacterammoniagenes)、immariophilum短杆菌ATCC14068、解糖短杆菌ATCC14066、谷氨酸棒杆菌(glutamicum Corynebacterium)、ATCC13032、谷氨酸棒杆菌ATCC14067、谷氨酸棒杆菌ATCC13869、嗜乙酰乙酸棒杆菌ATCC13870、嗜氨微杆菌ATCC15354、假单孢菌亚种D-0110等。
本说明书所使用的动物细胞包括小鼠骨髓瘤细胞、大白鼠骨髓瘤细胞、小鼠杂交瘤细胞、中国仓鼠卵细胞(CHO)细胞、BHK细胞、非洲绿猴肾细胞、人白血病细胞、HBT5637(日本专利特开平63-299)、人结肠癌细胞系等。小鼠骨髓瘤细胞包括ps20、NSO等。大鼠骨髓瘤细胞包括YB2/0等。人胚肾细胞包括HEK293(ATCCCRL-1573)等。人白血病细胞包括BALL-1等。非洲绿猴结肠癌细胞系包括HCT-15等。
本说明书所使用的植物细胞的实例包括如下植物的细胞,如马铃薯、烟草、玉米、米、十字花科植物、大豆、番茄、胡萝卜、小麦、大麦、黑麦、苜蓿、亚麻等。可以使用任何能将DNA导入植物细胞的重组载体导入方法,例如农杆菌方法(日本专利特开平59-140885,日本专利特开平60-70080,WO94/00977),使用粒子枪(基因枪)的方法(日本专利公开2606856,日本专利公开2517813)等。
本说明书所使用的昆虫细胞包括草地夜蛾(Spodopterafrugiperda)的卵巢细胞、粉纹夜蛾(Trichoplusia ni)的卵巢细胞、源自蚕卵巢的培养细胞等。草地夜蛾的卵巢细胞的实例包括Sf9、Sf21(Bateraculovirus Expression VectorsA Laboratory Manual)等。粉纹夜蛾的卵巢细胞的实例包括High5、BTI-TN-5B1-4(Invitrogen)等。源自蚕卵巢的培养细胞的实例包括家蚕(Bombyx mori)N4等。
本说明书使用的作为重组载体导入法的任何导入DNA的方法包括,例如氯化钙法、电穿孔法、(Methods.Enzymol.,194,182(1990)),脂转染法(lipofection)、原生质球法(spheroplast method)(Proc.Natl.Acad.Sci.USA,84,1929(1978)),乙酸锂法(J.Bacteriol.,153,163(1983))、在Proc.Natl.Acad.Sci.USA,75,1929(1978)中公开的方法等。
本说明书所使用的逆转录病毒法是本领域公知的,所述方法记载于,如Current Protocols in Molecular Biology(如前)(特别地,Units9.9-9.14)等。具体来说,例如ES细胞用胰蛋白酶消化为单细胞悬液,然后与病毒导入细胞(包装细胞系)的培养上清共培养1~2小时,由此获得有效数量的转染细胞。
本说明书中用作去除基因组、基因座等方法的瞬时表达Cre酶,染色体上DNA作图等是本领域众所周知的,描述于如KenichiMatsubara和Hiroshi Yoshikawa编,Saibo-Kogaku[Cell Engineering],special issue(别册),Jikken Purotokoru Shirizu[Experiment ProtocolSeries],“FISH Jikken Purotokoru Hito·Genomu Kaiseki karaSenshokutai·Idenshishindan made [FISH Experiment/Genediagnosis]”,Shujun-sha(Tokyo)等。
基因表达(如mRNA表达,多肽表达)可以通过包括mRNA测定法和免疫学测定法的适用方法进行“检测”或“定量”。分子生物学的测定方法包括Northern印迹法、斑点印迹法、PCR法等。免疫学的测定方法包括使用微量滴定板的ELISA法、RIA法、荧光抗体法、Western印迹法、免疫组织化学染色法等。定量方法的实例包括ELISA法、RIA法等。
本说明书所使用的术语“表达水平”是指在目的细胞中多肽或mRNA的表达量。表达水平包括通过采用任何使用本发明的抗体的适用方法进行测定的本发明多肽的蛋白水平的表达水平,所述任何使用本发明的抗体方法包括免疫学测定法(例如ELISA法、RIA法、荧光抗体法、Western印迹法、免疫组织化学染色法等)或采用任何适用方法进行测定的本发明多肽的mRNA水平的表达水平,所述任何适用方法包括分子生物学的测定方法(例如Northern印迹法、斑点印迹法、PCR法等)。术语“表达水平的改变”是指采用适用方法进行测定的本发明多肽的蛋白或mRNA水平的表达水平的增加或减少,所述适用方法包括上述免疫学测定法或分子生物学的测定方法。
本说明书所使用的术语“移植抗原”是指在将从未分化体细胞融合细胞或从融合细胞分化而来的细胞、组织或器官等导入特定个体时,可将移植免疫导入特定个体的抗原物质。大多数移植抗原作为细胞膜上共显的性状而表达。移植抗原可被粗分为两类主要组织相容性抗原(MHC),其是一种能够诱导强排斥反应抗原呈递分子;和能够诱导慢性的弱的排斥反应的次要组织相容性抗原。主要组织相容性复合抗原是能够在器官、抗原和细胞的同种异体移植中诱导强排斥反应的同种异体抗原。编码主要组织相容性抗原的基因组成一个具有高度多型性的,包含了很多基因座的复合体,被称为主要组织相容性复合体(MHC)。在人类中,MHC是在6号染色体短臂上的人白血球抗原(HLA)。在小鼠中,MHC是在17号染色体上H-2基因复合体。已知,单MHC存在于所有的哺乳类和鸟类中。除人类和小鼠外,恒河猴RhL-A、狗DLA、大鼠RT1等也是已知的。HLA抗原(人MHC)可分为在所有有核细胞中表达的I型抗原,和在如巨噬细胞、B细胞、活化的T细胞、树状细胞、胸腺上皮细胞等抗原呈递细胞上表达的II型抗原。I型抗原表现为细胞内抗原,可被CD8阳性细胞毒性T细胞受体(CD8+TCR)所识别。II型抗原表现为异物抗原,可被CD4阳性辅助T细胞受体(CD4+TCR)所识别。另一方面,次要组织相容性抗原的基因座为单独基因座(次要组织相同性基因座(MIH)),其多型性程度低。
在本发明中,可以通过在用于制备多能干细胞的干细胞(如ES细胞)中缺失移植抗原而制备适用于移植个体的多能干细胞。欲缺失的移植抗原可以包括部分或全部上述主要组织相容性抗原和次要组织相容性抗原。缺失的程度不受特别局限,只要在将采用缺失的干细胞(例如ES细胞)或从多能干细胞分化而来的细胞、组织或器官制备的多能干细胞用于移植的时候,与提供未缺失状态时相比,降低了受体中排斥反应的程度。除此以外,在本发明中,主要组织相容性抗原为优选的将要缺失的移植抗原,特别优选为I型抗原。移植抗原可以通过例如缺失编码移植抗原的方法而得以缺失。缺失基因的代表方法是使用同源重组的基因打靶[Mansour S.L.等,Nature 336348-352570-76(1988);Capecchi M.R.,TIG 570-76(1989);Valancius和Smithies,Mol.Cell.Biol.111402-1408(1991);Hasty等,Nature350(6351)243-246(1991)]等。
I和II型MHC抗原为由2个亚基α和β构成的异二聚体。适用于移植个体的本发明的多能干细胞为,例如将源自干细胞(如ES细胞)的MHC抗原亚基的至少一个拷贝,优选两个拷贝灭活的细胞。要灭活的亚基不会在亚基被灭活的干细胞与体细胞融合后被体细胞源性亚基所补偿。换言之,选择干细胞(例如ES细胞)源性而不在融合细胞中表达的移植抗原的亚基。
可以通过缺失编码源自干细胞(例如ES细胞)的MHC抗原亚基的基因或其它能对MHC抗原的表达产生影响的基因而实现灭活。能对MHC抗原的表达产生影响的基因的实例包括调节MHC抗原表达的基因,例如,依赖MHC抗原而调节呈递的II型基因座中的TAP1、TAP2、LMP2和LMP7基因等。例如,当用基因打靶制备缺少干细胞源性MHC抗原的融合细胞时,编码干细胞(如ES细胞)源性MHC抗原的部分基因被用于同源重组以便构建含有缺失或断裂的靶向载体。采用如电传孔,钙沉降DNA、融合、转染、脂转染法等适用的技术将得到的载体导入融合细胞。转化哺乳动物细胞的技术报道于,如Keown等[Methods in Enzymology 185527-537(1990)]。筛选转化细胞可以通过例如将如neo、puro等通常用于基因打靶中的选择性标记导入至兴趣基因的缺陷区域。单独表达选择性标记物基因时,一般认为如neo、puro等会在以后的基因分析或临床应用中带来问题例如,所述选择性标记物基因可被Lox-P夹心化,并将Cre基因引入到基因靶向细胞中,由此Cre酶得以暂时表达。因此,可用细胞工程学方法去除选择性标记物基因。所述技术是本领域众所周知的,其被记载于本说明的其它地方和本说明书所提及的文献中。MHC抗原在分化细胞内表达。因此,可以根据转化细胞表面靶MHC抗原的缺失来实施筛选。作为一种筛选方法,例如,针对靶MHC抗原的任意表位的单克隆抗体可以和补体一起使用从而可以杀死含有该抗原的细胞。或者,也可以通过使用适用的抗体、赖氨酸A链、相思豆毒素、白喉毒素等的结合物来杀死含有该抗原的细胞。更简便地,亲和层析可用于去除含有该靶抗原的细胞。对最终获得细胞而言,从细胞表面去除至少一种ES细胞源性MHC抗原。当将所述细胞或由所述细胞诱导的细胞、组织或器官引入生物体时,由于干细胞(ES细胞)源性的MHC抗原要少于起始融合细胞,因此细胞被免疫排斥可能性较小。
本说明书所使用的术语“再程序化”是指细胞(例如体细胞)被至于未分化状态以便使该细胞增加或获得多能性。因此,再程序化活性可用例如下述的方法进行检测。将分化细胞(例如体细胞等)暴露于预定量的特定因子一段预定时间(例如数小时等)。然后,检测细胞的多能性并与暴露前的细胞多能性作比较。通过确定是否发现显著性差异,从而确定再程序化活性。与再程序化细胞的多能性水平相应的有多种再程序化水平。因此,当使用来自多能干细胞的再程序化因子时,再程序化可与授予的全能性相符。
本说明书所使用的术语“再程序化因子”是指能够作用于细胞而使细胞成为一种未分化状态的因子。如下述实施例所示,ES细胞不能在体细胞的核内再程序化印记,而能够再程序化体细胞核的表观遗传状态从而发展为生殖细胞。因此,ES细胞很明显含有能够再程序化的因子。ES细胞以外的生殖细胞同样存在含有能够再程序化体细胞的因子的可能性。所述再程序化因子也包含于本发明中。应用于体细胞的来自ES细胞的组分的实例包括(但不限于)ES细胞包含的组分,包括胞浆组分、细胞核组分、特定RNA和蛋白质等。当应用包含混杂分子的胞浆或细胞核组分时,可采用常用的技术(例如亲和层析等)将组分分馏,每个馏分都可以应用于本发明。如果特定馏分显示出包含再程序化因子,该馏分可被进一步纯化以便最终确定单一分子,并可使用该分子。或者,包含再程序化因子的馏分可以不需经纯化而被用于再程序化体细胞。可以认为单一分子可以实现再程序化。或者,可以认为多分子与其他分子相互作用从而将体细胞变换为未分化状态。因此,本发明的“再程序化因子”包括由单一分子组成的因子,由多分子组成的因子,和含有单一分子或多分子的组合物。
本发明的再程序化因子可按下述进行选择。将来自ES细胞的组分通过接触、注射等方式作用于体细胞。根据Oct-4-GFP标记基因的表达、X染色体的活性等再程序化的指征来测定所述作用。选择具有再程序化活性的组分。
可用上述筛选方法获得本发明的“ES细胞包含的再程序化因子”。再程序化因子可以是甲基化组蛋白H3-Lys4的酶或与甲基化相关的因子。ES细胞以外的细胞(如组织干细胞)也可能包含所述组分。但是,来自ES细胞的再程序化因子通过上述方法一经鉴定,即可根据鉴定了的再程序化因子从其它材料中获得或制备所述再程序化因子。例如,如果通过上述方法获得的再程序化因子是RNA,则将该RNA测序然后使用众所周知的技术合成含有相同序列的RNA。或者,如果再程序化因子是蛋白质,则制备该蛋白质的抗体,然后使用该蛋白质抗体的活性从含有该因子的材料中得到再程序化因子。或者,部分确定该蛋白质的氨基酸序列;制备与编码部分氨基酸序列的基因杂交的探针;通过杂交技术获得编码该蛋白质的cDNA和基因组DNA。所述基因可以通过PCR扩增,而引物需要制备。编码通过任何上述方法获得的再程序化因子的基因可通过众所周知的基因重组技术而用于制备再程序化因子。因此,并不需要从ES细胞中获得本发明的“ES细胞包含的再程序化因子”,而可以从具有多能性的细胞(如组织干细胞等)中获得。因此,再程序化因子包括所有能再程序化体细胞的因子。
可以用如下筛选方法获得再程序化因子。使来自胚胎干细胞的组分作用于合适的体细胞。通过检测活性来选择具有再程序化体细胞活性的组分。此处使用的体细胞的示例性实例包括(但不限于)淋巴细胞、脾细胞、胸腺源性细胞等。可以使用任何含有正常基因组的、可以稳定生长的和可通过再程序化因子的作用而转化为具有多能性未分化细胞的体细胞。特别地,用于筛选的体细胞优选为与来自与收集组分的ES细胞同种的体细胞(例如当ES细胞来自人时的人源体细胞)。可以使用预先建立的细胞系。
在从体细胞、干细胞(例如ES细胞)和/或本发明的多能干细胞制备细胞、组织或器官的方法中,通过非特别限制的只要基本上保留细胞染色体组型而将细胞分化为细胞、组织或器官的方法进行细胞分化。例如,通过将细胞导入胚泡、将细胞皮下注射至动物(例如小鼠等)来形成畸胎瘤等,可将细胞分化为细胞、组织或器官。可以从分化的胚泡或畸胎瘤中分离需要的细胞、组织或器官。通过加入获得兴趣细胞类型所需的细胞生长因子、生长因子等在体外诱生所需的细胞、组织或器官。目前已有关于从ES细胞中诱导血管、神经细胞、肌细胞、造血细胞、皮肤、骨、肝脏、胰腺等的报道。当根据本发明从多能干细胞中制备与移植受体相应的细胞、组织或器官时可以使用这些技术(例如Kaufman,D.S.,Hanson,E.T.,Lewis,R.L.,Auerbach,R.和Thomson,J.A.(2001)Proc Nat1 Acad Sci USA 98,10716-21;Boheler,K.R.,Czyz,J.,Tweedle,D.,Yang,H.T.,Anisimov,S.V.和Wobus,A.M.(2002),Circ.Res.,91,189-201)。另外,在本发明中,当组织干细胞用作制备融合细胞的干细胞时,融合细胞可具有与起源组织干细胞所具有多能性相似的多能性。
当将干细胞(如ES细胞等)用于制备来自根据本发明的细胞的细胞、组织或器官的方法中时,干细胞可以从合适的个体干细胞(例如ES细胞等)来建立,或优选使用预先建立的来自多种生物体的干细胞(例如ES细胞等)。例如,所述干细胞的实例包括(但不限于)小鼠的、仓鼠的、猪的、羊的、牛的、貂的、兔的、灵长类动物的(如恒河猴、狨猴等)和人的干细胞。优选的,使用来自与欲使用的兴趣体细胞相同物种的样本物种的干细胞(例如ES细胞等)。
本发明的从多能干细胞制备细胞、组织或器官的方法中使用的体细胞的实例包括(但不特别限于)淋巴细胞、脾细胞、精巢源性细胞等。所述体细胞还包括任何含有正常染色体的,能稳定生长为融合细胞的以及与干细胞(如ES细胞)融合时能转变为具有多能性的未分化细胞的体细胞。当将通过所述方法制备的细胞、组织或器官意欲用于移植的时候,优选使用获自移植个体的体细胞。
本说明书所使用的术语“融合细胞”是指通过融合干细胞(如ES细胞)和上述体细胞而制备的,能够稳定生长的、具有多能性的未分化细胞。当从融合细胞中成功去除源自宿主干细胞(如ES细胞)的染色体时,融合细胞即可成为含有体细胞源性染色体的二倍体未分化细胞。结果得到的细胞为用于对多种疾病更理想的治疗方法的优选供体。缺失全部来自干细胞(例如ES细胞)的染色体的方法的实例包括照射、化学处理、使用基因操作的方法等。例如,通过在与体细胞融合前用放射或化学物质处理干细胞(如ES细胞),即可能在融合后仅破坏来自干细胞的染色体。在去除染色体中使用的示例性化学物质可以是溴脱氧尿苷(BrdU)。用BrdU处理染色体如下首先用该化学物质处理ES细胞;在将ES细胞和体细胞融合后进行UV照射。通过照射,仅除去了来自用BrdU处理的干细胞(如ES细胞)的染色体。通过基因操作从融合细胞中去除来自干细胞(如ES细胞)的染色体的方法可以按如下方式进行。首先LoxP序列被随机地引入到干细胞(如ES细胞)的基因组中。在将干细胞和体细胞融合后,强制表达Cre蛋白的表达以便仅去除来自干细胞(如ES细胞)的染色体。因此,上述方法可以用于去除部分或全部来自干细胞(如ES细胞)的基因组。
本说明书与细胞相关的术语“融合”或“细胞融合”可互换使用,是指细胞多能性融合在一起为多核细胞的现象。例如,天然发生的融合例如在生殖细胞中,用于细胞工程方法。为实现融合,两类不同细胞嵌合或物理融合并用选择性培养基(其中仅能生长融合细胞)进行培养。例如,通过使用用紫外线灭活的传染性病毒(例如副粘液病毒,如HVJ(仙台病毒)、副流感病毒、纽卡斯尔病病毒等)可以诱导细胞融合。通过使用化学物质同样能实现细胞融合。所述化学物质包括溶血卵磷脂、聚乙二醇(PEG)6000、甘油油酸酯等。物理方法例如采用电刺激实施细胞融合(电融合)。优选不依赖于和非特异性针对病毒的使用化学物质的细胞融合。
在本发明中,融合干细胞(如ES细胞)和体细胞的方法并非受特别的限制,只要能用ES细胞和体细胞融合来构建融合细胞即可。例如,如实施例中所述,按特定比例,例如在制备ES细胞和胸腺细胞的融合细胞时,按照1∶5的比例混合ES细胞和体细胞,然后冲洗。在合适的缓冲液如甘露醇缓冲液中悬浮细胞,然后进行电融合。除了使用通过电刺激(电转化)[例如,EMBO J.1841-845(1982)]引起细胞膜结构改变的所述高电压脉冲细胞融合方法外,使用化学细胞融合加速物质如仙台病毒、溶血卵磷脂、甘油、油酸酯、聚乙二醇等的方法也是已知的。融合方法可以是任何通过融合ES细胞和体细胞而构建的细胞作为融合细胞能够稳定增殖而且来自体细胞的核再程序化从而最终的细胞为具有多能性的未分化细胞的融合方法。
在本发明的细胞、组织或器官用于移植的情况下,细胞、组织或器官可以单独使用或与已有的免疫抑制方法如免疫抑制剂、外科手术、或放射联合使用。主要的免疫抑制剂为肾上腺皮质激素、环孢霉素、FK506等。外科手术可以是,例如淋巴结摘除、脾摘除、胸腺摘除、胸导管引流等。放射线照射包括全身照射和移植物照射。通过将这些方法恰当的联合,受体对移植物的排斥反应可被更有效地抑制。
因此,在本发明方法的一个实施方案中,本发明的处理方法可包括避免排斥反应。避免排斥反应的方法是现有技术中已知的(参见,例如“Shin Gekagaku Taikei,Zoki Ishoku”[NeW Whole Surgery,OrganTransplantation](1992))。所述方法的实例包括(但不限于),使用免疫抑制剂或类固醇药物等方法。例如,下述药物目前用于抑制排斥反应“环孢霉素”(SANDIMMUNE/NEORAL);“tacrolimus”(PROGRAF);“咪唑硫嘌呤”(IMURAN);“类固醇激素”(prednine、methylpredinene);和“T-细胞抗体”(OKT3,ATG等)。在世界范围内多种设备中应用于预防性免疫抑制治疗方法一般合并使用三种药物环孢霉素、咪唑硫嘌呤和类固醇激素。免疫抑制剂可以联合本发明的药物而施用。本发明不限于此。免疫抑制剂可在本发明的再生/治疗方法之前或之后进行施用,而免疫抑制剂的效果均可以实现。
术语“所需个体源性”是指来自需要进行治疗、预防等处理的个体。因此,当确定了特定靶个体时,具有与个体基本上相同的信息,如基因信息等(基因组信息),性状(表型形状等)或功能被称为源自所需个体。
与起源相关的术语“非直接源自”是指“不是从起源源性”或“借助至少一个人工操作(如细胞融合)而从起源源性”。因此,“非直接源自”ES细胞的干细胞可包括ES细胞以外的全部细胞。
术语“体细胞源性”是指具有与体细胞基本上相同的信息,如遗传信息等(如基因组信息)、性状(表型形状等)或功能。
术语“克隆技术”是指用于使用基因操作来制备“克隆”即基因相同的个体的技术。
本说明书所使用的术语“移植片(implant)”和“移植物(graft)”以及“组织移植物”是指插入到身体的特定位点并随后构成身体部分的同种或异种组织或细胞团。传统的移植物的实例包括(但不限于)器官或器官的一部分、血管、血管样组织、皮片、心脏瓣膜、心包、硬膜、角膜、骨片、齿、骨、脑或脑的一部分等。因此,移植物包括任何插入到缺陷部位从而补偿缺陷的移植物。移植物包括根据其供体类型的自体移植物(autograft)、同种异体移植物(allograft)、异种移植物。本发明中的器官、组织或细胞一般用作自体移植物,或者,可用作同种异体移植物和异种移植物。
本说明书所使用的术语“自体移植物”是指移植到移植物源性同一个体中的移植物。本说明书所使用的术语“自体移植物”可以包括来自广义上的遗传学相同的个体(例如同卵双生)的移植物。自体移植物这一概念中包括从本发明的细胞分化的欲被移植的细胞、组织或器官。
本说明书所使用的术语“同种异体移植物”是指移植到与移植物源性个体同种但基因不同的个体的移植物。由于,同种异体移植物与接受移植的个体(受者)的基因不同,移植物可诱发免疫学反应。所述移植物包括(但不限于)例如来自亲本的移植物。
本说明书所使用的术语“异种移植物”是指移植到异种个体的移植物。因此,例如,当人为受者时,来自猪的移植物即被称为异种移植物。
本发明的个体定制技术可被用于制备基本不会诱发排斥反应的移植物。这是因为采用本发明方法制备的移植物(如组织、器官等)适于治疗目的而且其副反应如免疫反应应答等基本上被抑制。因此,移植治疗可以在仅能使用传统自体移植物而获得自体移植物又非常困难的情况下而得以实施,而且通过使用本发明可以获得显著的效果,这一效果是传统方法所无法达到的。此外,采用本发明的个体定制技术而制备的多能干细胞不但可被用于作为多能干细胞基因组源性患者,还能用于其他患者。在这一情况下,优选使用上述避免排斥反应的方法。
本说明书所使用的术语“受试者”或“样本”是指进行处理(如治疗、预防、诊断处理)的生物体。受试者或样本可以是指“患者”。“患者”、“受试者”或“样本”可以是任何使用本发明的生物体。优选的,“患者”、“受试者”或“样本”是人类。
当在本发明中使用干细胞(如ES细胞等)时,干细胞可以从移植个体来建立,或优选使用预先建立的来自多种生物体的干细胞。例如,所述干细胞的实例包括(但不限于)小鼠的、仓鼠的、猪的、羊的、牛的、貂的、兔的、灵长类动物的(如恒河猴、狨猴等)和人的干细胞。优选的,使用来自欲使用体细胞的样本物种的干细胞。
在本发明中使用的体细胞的实例包括任何细胞,特别是,淋巴细胞、淋巴细胞、脾细胞、来自精巢的细胞等。可以使用来自哺乳动物(包括人类)和多种物种的体细胞。本发明并非特别局限于此。可以使用任何含有正常染色体的并且当与干细胞,如ES细胞融合时能够稳定生长为融合细胞的而且能转化为具有多能性的未分化细胞的体细胞。在制备含有在受者中降低的排斥反应水平的未分化体细胞融合细胞中优选使用来自移植个体的体细胞。
本发明的未分化体细胞融合细胞是通过将干细胞如ES细胞和上述体细胞融合而制备的多能性、未分化的而且能够稳定生长的细胞。
在本发明中,在从多能干细胞制备细胞、组织或器官时融合干细胞(如ES细胞)和体细胞的方法并非特别局限于通过彼此接触融合ES细胞和体细胞而构建融合细胞。例如,如实施例中所述,按特定比例,例如在制备ES细胞和胸腺细胞的融合细胞时,按照1∶5的比例混合ES细胞和体细胞,然后冲洗。在合适的缓冲液如甘露醇缓冲液中悬浮细胞,然后进行电融合。除了使用通过电刺激(电转化)[例如,EMBOJ.1841-845(1982)]引起细胞膜结构改变的所述高电压脉冲细胞融合方法外,使用化学细胞融合加速物质如仙台病毒、溶血卵磷脂、甘油、油酸酯、聚乙二醇等的方法也是已知的。融合方法可以是任何通过融合ES细胞和体细胞而构建的细胞作为融合细胞能够稳定增殖而且来自体细胞的核再程序化从而最终的细胞为具有多能性的未分化细胞的融合方法。
在本发明的用以制备其中的部分或全部移植抗原来自ES细胞的细胞、组织或器官的方法中,细胞通过某方法进行分化并非特别局限于细胞分化为细胞、组织或器官,而细胞的染色体组型基本上得以保留。例如,通过将细胞引入胚泡,将细胞经皮下注射至动物(如小鼠等)来构建畸胎瘤等,细胞可被分化为细胞、组织和器官。可从胚泡或畸胎瘤分离所需细胞、组织或器官。通过加入对获得兴趣类型的细胞所需的细胞生长因子、生长因子等可在体外从细胞诱导出所需细胞、组织或器官。迄今为止,已经报道了从ES细胞诱导出血管、神经细胞、肌肉细胞、造血细胞、皮肤、骨、肝脏、胰腺等。当从根据本发明的多能干细胞制备与移植个体相关的细胞、组织或器官时,可以应用上述这些技术。
(优选实施方案详述)在一个方面,本发明提供了一种含有所需基因组的分离的多能干细胞。优选地,该多能干细胞可为非ES细胞。使用含有所需基因组的非ES的多能干细胞,可以不需要新建ES细胞或收集卵细胞即可实施多种再生治疗。
多能干细胞优选缺失至少部分移植抗原,更优选缺失全部移植抗原。由于减少了移植抗原,本发明的多能干细胞具有含有所需基因组以及具有降低了的对宿主的免疫排斥反应的效果。优选地,欲缺失的移植抗原包括至少主要组织相容性抗原。更优选地,主要组织相容性抗原包括I型抗原。这些特异性抗原的缺失可以降低免疫排斥反应的主要部分,从而显著降低副反应。
本发明的多能干细胞可优选地含有再程序化基因组。在一个实施方案中,可以通过再程序化作为供源的其它细胞而制备本发明的多能干细胞。所述其它细胞可以是体细胞。体细胞可优选(非限制性)为胸腺细胞、淋巴细胞、骨髓细胞等。
在另一实施方案中,可以通过干细胞和体细胞的融合来制备本发明的多能干细胞,其中干细胞和体细胞用作供源。作为供源的干细胞可以是ES细胞或其它组织干细胞,优选为ES细胞。这是因为ES细胞的多能性被转化到本发明的多能干细胞中。
本发明的多能干细胞优选含有来自所需个体(需要治疗、预防、处理等)基因组,且不是所需个体的ES细胞或卵细胞。由于不需要所需个体的ES细胞或卵细胞,本发明在克服该实施方案中的伦理问题上具有显著的效果。在优选的实施方案中,本发明的多能干细胞含有来自所需个体的体细胞的染色体。
在一个优选的实施方案中,本发明的多能干细胞不是直接来自胚胎。因此,这就有可能避免从宿主取得胚胎这样会带来社会学和伦理学问题的行为。优选地,多能干细胞可来自体细胞。由于多能干细胞来自体细胞且具有多能性,因此多能干细胞可很容易地获得,而且其应用范围是无限的。
在一个优选的实施方案中,本发明的多能干细胞含有所需个体以外的降低了的移植抗原。更优选地,本发明的多能干细胞不含所需个体以外的移植抗原。在一个实施方案中,本发明的多能干细胞可来自所需个体卵细胞以外的细胞。
在一个实施方案中,本发明的多能干细胞可优选为非天然存在的细胞。优选地,在本发明的多能干细胞中,所需的基因组为早期胚胎以外的个体的基因组。所述定制多能干细胞含有与兴趣个体体细胞相同的基因组,而且具有多能性(优选全能性)。含有全部所述特性的细胞不能被称为天然存在的。ES细胞来自早期胚胎的未分化细胞。因此,原则上不能从处在早期胚胎以外阶段(如成体)的宿主来构建ES细胞。由于不存在成年早期胚胎,本发明的定制多能干细胞不能通过传统技术方法获得。
在一个优选实施方案中,本发明的多能干细胞为ES细胞(其中缺失了部分或全部移植抗原)和体细胞的未分化体细胞的融合细胞。更优选地,本发明的多能干细胞为ES细胞(其中缺失全部移植抗原)和体细胞的未分化体细胞融合细胞。优选地,移植抗原可以是主要组织相容性抗原。优选地,主要组织相容性抗原可以是I型抗原。在一个优选实施方案中,体细胞可以是(非限制性地)移植个体源性淋巴细胞、脾细胞或胸腺源性细胞。优选地,至少一种ES细胞和体细胞可以是人源细胞。体细胞优选为与兴趣宿主的体细胞同种(优选同系)的体细胞。因此,例如,当人为治疗靶点时,体细胞优选为人类细胞,更优选地为治疗靶点人类个体的体细胞。ES细胞优选为与体细胞同种(优选同系)的ES细胞。因此,当人为治疗靶点时而体细胞为人类细胞时,ES细胞同样优选为人类细胞。需要注意的是,在这一情况下,ES可为任何细胞系。优选地,可以使用提前建立的ES细胞(或其它多能干细胞)。因此,本发明的多能干细胞也可以用作作为供源的干细胞。
在一个特定实施方案中,至少一种体细胞和干细胞可以是基因修饰的。基因修饰可以根据本发明书所述而实施。因此,本发明的多能干细胞可与基因治疗联合应用。可以根据要进行治疗或预防的患者的情况而恰当地使用众所周知的基因治疗。
(基因组再程序化因子)在本发明的一个优选的实施方案中,可用基因组再程序化因子处理体细胞。本发明人揭示了体细胞如何通过与ES细胞的细胞融合而得以后生修饰和如何获得再程序化因子以及分析其机制的线索。结果,通过使体细胞强制表达再程序化因子,体细胞可被直接转化为多能干细胞。
本发明人预期使用ES细胞的细胞融合可导致体细胞基因组的染色质结构的显著变化,并且分析了在亚种间融合细胞(domesticus×molossinus)的体细胞核的组蛋白乙酰化。
使用抗乙酰化组蛋白H3的抗体、抗乙酰化组蛋白H4的抗体、抗乙酰化组蛋白H3-Lys4的抗体和抗乙酰化组蛋白H3-Lys9的抗体来研究体细胞、ES细胞和融合细胞的核组蛋白的修饰。然后,上述四种抗体用于实施染色质免疫沉淀以便分析组蛋白和DNA之间的相互作用。DNA-组蛋白蛋白复合物通过与各抗体的反应而得以恢复。通过PCR扩增包含于恢复的DNA-组蛋白蛋白复合物中的DNA,结果揭示了在DNA区域中组蛋白是如何被修饰的。根据细胞亚种内部的基因组DNA的碱基序列的多态性,就可能确定来自体细胞核的基因组是否被修饰。该实施方案的结果,由于细胞融合,体细胞基因组被完全乙酰化而具有松弛的染色质结构。重要的是,在再程序化的基因组中,组蛋白H3-Lys4被特异性甲基化。已知组蛋白H3的乙酰化伴随组蛋白H3-Lys4的甲基化。甲基化具有比乙酰化更加稳定的外生性。因此,这提示了组蛋白H3-Lys4的甲基化是再程序化基因组的特征性修饰。甲基化组蛋白H3-Lys4的酶或甲基化所涉及的因子即被认为是一种再程序化因子(图11)。
下面将描述一种确定再程序化因子的示例性技术方法。
1.为从体细胞基因组辨别体细胞基因组,按照实施例1中所述从含有具有与Mus musculus domesticus(dom)小鼠相比更高多态性的DNA碱基序列的亚种M.m.molossinus(mol)中建立ES细胞。制备ES细胞(dom)×体细胞(mol)或ES细胞(mol)×体细胞(dom)的亚种间融合细胞。
2.用1%甲醛溶液固定体细胞、ES细胞和融合细胞10分钟以便交叉连接组蛋白和DNA(组蛋白-DNA复合物)。然后,按照前述方法提取核蛋白。核蛋白与前述抗乙酰化组蛋白H3的抗体、抗乙酰化组蛋白H4的抗体、抗乙酰化组蛋白H3-Lys4的抗体和抗乙酰化组蛋白H3-Lys9的抗体反应。
3.反应溶液过蛋白A柱以便分离与前述抗体反应的组蛋白-DNA复合物。从与前述各抗体反应的组蛋白-DNA复合物中提取DNA。
4.提取的DNA点附在膜上。所述DNA,基因组上分散重复的B2重复序列、IAP和小鼠基因组DNA用作探针来实施杂交。结果,所使用的全部探针DNA与体细胞基因组上的乙酰化组蛋白H3-Lys9发生反应,而它们与ES细胞和融合细胞基因组上的乙酰化组蛋白H3-Lys4、乙酰化组蛋白H3和乙酰化组蛋白H4发生反应。
5.使用PCR引物组扩增提取的DNA,其中所述PCR引物组分别特异性对应于在未分化细胞中表达而不在体系报中表达的Oct4基因、在体细胞或未分化细胞中不表达的神经丝-M和-L基因、在体细胞中表达而在未分化细胞中不表达的Thy-1基因。限制性酶识别DNA碱基序列多态性位点的差异用于确定融合细胞中扩增的DNA来自ES细胞基因组还是来自体细胞基因组。结果,无论体细胞中的基因存在或不存在或无论融合细胞中的基因存在或不存在,体细胞源性基因组均与融合细胞中的乙酰化组蛋白H3-Lys4、乙酰化组蛋白H3和乙酰化组蛋白H4发生反应。虽然在上述描述中将ES细胞用作示例性干细胞,但再程序化因子可被确定存在于任何表现为多能性的干细胞中。
已知,乙酰化组蛋白可构成松弛的染色质结构。另一方面,已知,组蛋白H3-Lys4和组蛋白H3-Lys9的甲基化是互补修饰,组蛋白H3-Lys9在紧密染色质中甲基化,而组蛋白H3-Lys4在松弛染色质中甲基化。分析基因组中分散的重复序列和融合细胞中的每一基因提示了再程序化的体细胞基因组形成了松弛的染色质结构。特别地,似乎组蛋白H3-Lys4的甲基化在再程序化中发挥重要作用。
因此,在本发明的另一个方面中,本发明提供了一种制备含有所需基因组的多能干细胞的方法,包括如下步骤1)提供含有所需基因组的细胞;和2)将该细胞暴露于再程序化因子中。优选地,所述细胞为体细胞。再程序化因子可在多能干细胞的胞浆中作为核内因子而进行制备。再程序化因子的实例包括(但不限于)甲基化组蛋白H3-Lys4的酶或甲基化组蛋白H3-Lys4所涉及的因子、细胞周期因子、DNA解旋酶、组蛋白乙酰化因子和转录因子等。
(移植抗原(如MHC)缺失的ES细胞和体细胞的融合细胞)在本发明的一个方面中,本发明提供了一种制备含有所需基因组的多能干细胞的方法,包括如下步骤1)缺失干细胞的部分或全部移植抗原;和2)将干细胞与含有所需基因组的体细胞融合。优选地,所述干细胞可以是ES细胞,更优选地是预先建立地ES细胞。
在一个优选的实施方案中,移植抗原可以是主要组织相容性抗原。更优选地,主要组织相容性抗原可以是I型抗原。体细胞可以是移植个体源性淋巴细胞、脾细胞或胸腺源性细胞。
在制备本发明的多能干细胞的方法中,缺失了部分或全部移植抗原的干细胞(如ES细胞)与体细胞的未分化体细胞融合细胞可以用作供源。更优选地,缺失了全部移植抗原的干细胞(如ES细胞)与体细胞的未分化体细胞融合细胞可以用作供源。
在一个优选实施方案中,体细胞可以是(非限制性地)移植个体源性淋巴细胞、脾细胞或胸腺源性细胞。优选地,至少一种ES细胞和体细胞可以是人源细胞。体细胞优选为与兴趣宿主的体细胞同种(优选同系)的体细胞。因此,例如,当人是治疗靶点时,体细胞优选为人类细胞,更优选地为治疗靶点人类个体的体细胞。ES细胞优选为与体细胞同种(优选同系)的ES细胞。因此,当人为治疗靶点时而体细胞为人类细胞时,ES细胞同样优选为人类细胞。需要注意的是,在这一情况下,ES可为任何细胞系。优选地,可以使用提前建立的ES细胞(或其它多能干细胞)。因此,本发明的多能干细胞也可以用作作为供源的干细胞。
在一个优选实施方案中,制备本发明的多能干细胞的方法包括缺失全部移植抗原。缺失全部移植抗原的方法包括照射、化学处理、使用基因操作的方法等。例如,通过在与体细胞融合前用放射或化学物质处理干细胞(如ES细胞),即可能在融合后仅破坏来自干细胞的染色体。在去除染色体中使用的示例性化学物质可以是溴脱氧尿苷(BrdU)。用BrdU处理染色体如下首先用该化学物质处理ES细胞;在将ES细胞和体细胞融合后进行UV照射。通过照射,仅除去了来自用BrdU处理的干细胞(如ES细胞)的染色体。通过基因操作从融合细胞中去除来自干细胞(如ES细胞)的染色体的方法可以按如下方式进行。首先LoxP序列被随机地引入到干细胞(如ES细胞)的基因组中。在将干细胞和体细胞融合后,诱导Cre蛋白的表达以便仅去除来自干细胞(如ES细胞)的染色体。因此,上述方法可以用于去除部分或全部来自干细胞(如ES细胞)的基因组。
在本发明的一个优选实施方案中,欲制备主要组织相容性抗原(MHC)缺失的ES细胞和体细胞的融合细胞。主要组织相容性抗原(MHC)已知是在将组织移植至同种其他个体时发生的排斥反应所包括的一种分子。小鼠MHC对应于H-2抗原。MHC可被分为三类I型,II型和III型。已知针对非自体移植的细胞的排斥反应中包括经抗原呈递至CD4的I型基因和经抗原呈递至CD8的II型基因。本发明人制备了用基因操作的方法去除I型MHC和II型MHC基因的ES细胞并该ES细胞和获自个体的体细胞融合。结果得到的体细胞-ES(MHC-)融合细胞在细胞表面仅呈现体细胞基因组源性自体I型MHC和II型MHC抗原,从而该融合细胞不再被识别为非自体。所述继承了来自体细胞基因组的用以自体识别的抗原和来自ES(MHC-)细胞的再程序化活性的体细胞-ES(MHC-)融合细胞即可被称为MHC定制融合细胞。由于体细胞源性MHC在MHC定制ES细胞中表达,该细胞就不会受到自然杀伤细胞的攻击。I型MHC缺陷小鼠和II型MHC缺陷小鼠已得以制备。目前已经建立了通过交配小鼠而制备I型MHC缺陷/II型MHC缺陷小鼠的方法和II型MHC缺陷小鼠源性ES细胞,通过同源重组的方法缺失I型基因。获取ES(MHC-)细胞并与不同小鼠种系的体细胞融合来制备体细胞-ES(MHC-)融合细胞。通过将述融合细胞移植到ES细胞源性小鼠和体细胞源性小鼠,即可检测到排斥反应的发生或不发生。
例如,下面将描述上述方法(图12)。
1.I型H-2缺陷小鼠和II型H-2缺陷小鼠用于制备I型H-2和II型H-2缺陷的小鼠。可用三种方法进行制备。1)将I型H-2缺陷小鼠与II型H-2缺陷小鼠交配来制备同时缺陷I型H-2和II型H-2的小鼠。2)从II型H-2缺陷小鼠制备II型H-2(-/-)小鼠,然后通过同源重组去除I型H-2。3)通过同源重组从II型H-2缺陷小鼠体细胞源性培养细胞中去除I型H-2。通过体细胞核移植,即可制备同时缺陷I型和II型的小鼠。
2.将I型H-2(-/-)II型(-/-)ES细胞与体细胞或组织干细胞融合来制备MHC定制的ES细胞。
3.将MHC定制的ES细胞或从其分化的组织细胞移植到提供体细胞的个体中。检测排斥反应的出现或不出现。
4一经获得I型H-2(-/-)II型(-/-)ES细胞的主人细胞(mastercell),可通过改变欲组合的体细胞而制备适用于个体的MHC定制的ES细胞。
(从体细胞-ES细胞中去除ES细胞基因组)更优选地,彻底避免能够诱发排斥反应的因子。为了彻底避免排斥反应,需要制备来自兴趣个体体细胞的定制干细胞。在体细胞-干细胞(ES细胞)融合细胞中,再程序化体细胞的基因组具有与源干细胞(ES细胞)相似的分化能力。因此,通过使用基因操作从融合细胞中去除干细胞(ES细胞)的基因组,可以获得定制的ES细胞。根据本发明人再活化细胞融合中的体细胞源性Oct4基因的实验(Tada等,Curr.Biol.,2001),揭示了体细胞基因组的再程序化需要大约两天。因此,在细胞融合之后,需要选择性地去除ES细胞基因组。
本发明人制备了转基因ES细胞,其中至少一个LoxP序列被引入其每一染色体中(图13)。使用逆转录病毒载体制备隔离子-聚合酶II启动子-GFP-LoxP-隔离子的构建体(图14)。用逆转录病毒感染ES细胞,然后以GFP作为标记物用细胞分选仪进行分选,以便浓聚结果得到的转基因ES细胞。通过DNA FISH测定插入位点。转染表达Cre酶的质粒引入ES细胞和体细胞的融合细胞中。由于Cre酶的作用,LoxP序列经受同源重组,因此仅将来自ES细胞基因组的染色体修饰为具有双着丝粒或无中心的染色体,而在细胞周期中通过细胞分裂而被去除。仅保留来自再程序化体细胞的双倍体基因组。因此,制备了独特的体细胞源性定制多能干细胞。转基因ES细胞一经建立,即可通过使用来自特定患者的体细胞的融合而很容易地建立定制ES细胞。因此,如果在小鼠模型实验系统中成功制备建立定制ES细胞,将可进行将本发明应用于人类ES细胞来制备来自个体体细胞的人类定制ES细胞的尝试。与核移植克隆不同,不使用人类未受精卵的通过细胞融合的体细胞基因组的再程序化包括在ES细胞的应用范围中而且可以按照指导方案进行操作。这是一种新的基因工程技术,其对再生医学具有巨大的影响,而可将伦理问题最小化。
所述技术描述如下。
1.为有效导入基因,逆转录病毒用于基因导入。使用逆转录病毒载体制备隔离子-聚合酶II启动子-GFP-LoxP-隔离子的构建体(图14)。隔离子用于隔绝周围基因对LoxP的影响,聚合酶II启动子用于使GFP恰当的表达以便使基因拷贝数可用细胞分选仪进行线性鉴别。目前具有最低毒性的GFP用于筛选含有导入基因的ES细胞。LoxP序列拷贝数与GFP的表达水平相关。
2.将隔离子-聚合酶II启动子-GFP-LoxP-隔离子基因导入ES细胞。然后,使用细胞分选仪收集转基因ES细胞,其中GFP基因的表达水平用做参照。该操作实施若干次。
3.克隆若干次实施基因导入的ES细胞。隔离子-聚合酶II启动子-GFP-LoxP-隔离子用作探针而在染色体上绘图。选择每个染色体含有至少一个基因的转基因ES细胞。
4.将表达Cre酶的质粒导入通过将转基因ES细胞和体细胞融合的融合细胞中,使Cre酶暂时表达。由于Cre酶的作用,LoxP序列经受同源重组,因此仅将来自ES细胞基因组的染色体修饰为具有双着丝粒或无中心的染色体,而在细胞周期中通过细胞分裂而被去除。
5.在若干次细胞分裂之后,仅保留了再程序化的体细胞,因此完成了定制的ES细胞。
在本发明的细胞、组织或器官用于移植的情况下,细胞、组织或器官可以单独使用或与已有的免疫抑制方法如免疫抑制剂、外科手术、或放射联合使用。主要的免疫抑制剂为肾上腺皮质激素、环孢霉素、FK506等。外科手术可以是,例如淋巴结摘除、脾摘除、胸腺摘除、胸导管引流等。放射线照射包括全身照射和移植物照射。通过将这些方法恰当的联合,受体对移植物的排斥反应可被更有效地抑制。
在另一方面,本发明提供了从含有所需基因组的多能干细胞分化来的细胞、组织或器官。所述细胞可以是表皮细胞、胰腺实质细胞、胰腺管细胞、肝细胞、血液细胞、心肌细胞、骨骼肌细胞、成骨细胞、成骨骼肌细胞、神经细胞、血管内皮细胞、色素细胞、平滑肌细胞、脂肪细胞、骨细胞、软骨细胞。优选地,所述细胞可以是肌细胞、软骨细胞、上皮细胞或神经细胞。分化技术是本领域众所周知的,而且详细地记载于本说明书的实施例和本说明书所提及的文献中。
在另一个优选实施方案中,组织可以是(非限制性的)肌肉、软骨、上皮或神经。在一个优选实施方案中,器官选自脑、脊髓、心脏、肝脏、肾脏、胃、大肠和胰腺之一。组织和器官的分化技术是本领域众所周知的,而且详细地记载于本说明书的实施例和本说明书所提及的文献中。
在一个优选实施方案中,本发明的细胞、组织或器官用于移植。更优选地,所需基因组基本上与移植宿主相同。当本发明的细胞、组织或器官用于移植时,由于所需基因组即可带来所需的效果。另外,还有降低或无免疫排斥反应的优点。
(药物、和使用所述药物的治疗、预防等)在另一方面,本发明提供了包含从含有所需基因组的多能干细胞分化来的细胞、组织或器官。所述药物可用于患有需要所述细胞(优选,分化细胞)、组织或器官的疾病、紊乱或病症的患者。疾病、紊乱或病症包括细胞、组织或器官的缺损/损伤。
在另一方面,本发明提供了治疗或预防由于个体的细胞、组织或器官缺损而导致的疾病或紊乱的药物,包含含有基本上与个体相同的基因组的多能干细胞。在这一情况下多能干细胞自身用作药物,且多能干细胞根据移植环境而按需进行分化。结果治疗得以促进。为了实现在移植位点的所需的分化,可以预先或同时施用与分化有关的因子(如SCF)等。
上述药物还可以进一步包含本说明书所述的载体等。
在另一方面,本发明提供了治疗或预防由于个体的细胞、组织或器官缺损而导致的疾病或紊乱的方法,包括如下步骤制备含有基本上与个体相同的基因组的多能干细胞;将该多能干细胞分化为细胞、组织或器官;和将细胞、组织或器官施用到个体中。疾病或紊乱可以是任何需要新鲜的分化细胞、组织或器官的疾病或紊乱。下面将描述疾病或紊乱的特例。基本山相同的基因组是指具有不会削弱同一性(即不会引发免疫应答)的相似性的基因组。要注意到当使用避免排斥反应的步骤时,基因组可以不需要和个体相同。
在另一方面,本发明提供了治疗或预防由于个体的细胞、组织或器官缺损而导致的疾病或紊乱的方法,包括如下步骤对个体施用含有基本上与个体相同的基因组的多能干细胞。使用本领域众所周知的技术来施用该多能干细胞。本说明书中的施用方法可以是口服、胃肠外用药(例如静脉内注射、肌肉注射、皮下注射、皮内注射、粘膜给药、阴道给药、感染位点局部给药、皮肤的局部给药等)。所述施用给药可以采用任何剂型。所述剂型包括液体剂型、注射剂、持续配制剂等。
在另一方面,本发明提供了治疗或预防由于个体的细胞、组织或器官缺损而导致的疾病或紊乱的方法,包括如下步骤施用包含来自含有基本上与个体相同的基因组的多能干细胞分化而来的细胞、组织或器官的药物。使用本领域众所周知的技术来施用所述药物,此处可以是口服、胃肠外用药(例如静脉内注射、肌肉注射、皮下注射、皮内注射、粘膜给药、阴道给药、感染位点局部给药、皮肤的局部给药等)。所述施用给药可以采用任何剂型。所述剂型包括液体剂型、注射剂、持续配制剂等。另外,当药物是器官自身时,施用通过移植而完成。
在另一方面,本发明提供了多能干细胞在治疗或预防由于个体的细胞、组织或器官缺损而导致的疾病或紊乱中的应用。药物包含来自含有基本上与个体相同的基因组的多能干细胞分化而来的细胞、组织或器官。
在另一方面,本发明使用含有所需基因组的多能干细胞来制备包含多能干细胞的药物。制备所述药物(例如生物技术制剂)的方法是本领域众所周知的。本领域普通技术人员根据现有技术的规范可制备所述药物。
在另一方面,本发明使用含有所需基因组的多能干细胞来制备包含由多能干细胞分化来的细胞、组织或器官的药物。
采用本发明处理的疾病或紊乱可以是与从本发明的干细胞分化来的细胞、组织或器官相关的疾病或紊乱。
在一个实施方案中,上述分化细胞、组织或器官可以属于循环系统(血细胞等)。疾病或紊乱的实例包括(但不限于)贫血(例如再生障碍性贫血(特别是严重的再生障碍性贫血)、肾性贫血、癌性贫血、继发性贫血、难治性贫血等)、癌症或肿瘤(例如白血病);及其化疗后、造血障碍、血小板减少症、急性中幼粒细胞白血病(特别是第一缓解期(first remission)(高危群体)、第二缓解期(secondaryremission)及其以后的缓解期)、急性淋巴细胞白血病(特别是第一缓解期、第二缓解期及其以后的缓解期)、慢性中幼粒细胞白血病(特别是慢性期、迁移期)、恶性淋巴瘤(特别是第一缓解期(高危群体)、第二缓解期及其以后的缓解期)、多发性骨髓瘤(特别是,发作后的早期)等。
在一个实施方案中,上述分化细胞、组织或器官可以属于神经系统。所述疾病或紊乱的实例包括(但不限于)痴呆、脑中风及其后遗症、脑肿瘤、脊髓损伤等。
在一个实施方案中,上述分化细胞、组织或器官可以属于免疫系统。所述疾病或紊乱的实例包括(但不限于)T-细胞缺陷综合症、白血病等。
在一个实施方案中,上述分化细胞、组织或器官可以属于运动器官和骨骼系统。所述疾病或紊乱的实例包括(但不限于)骨折、骨质疏松症、关节脱臼、半脱位、扭伤、韧带损伤、骨关节炎、骨肉瘤、Ewing氏肉瘤、骨形成不全、骨软骨异常形成症等。
在一个实施方案中,上述分化细胞、组织或器官可以属于皮肤系统。所述疾病或紊乱的实例包括(但不限于)毛发缺乏症、黑素瘤、皮肤恶性淋巴瘤、血管肉瘤、组织细胞增多病、水疱病、脓疱症、皮炎、湿疹等。
在一个实施方案中,上述分化细胞、组织或器官可以属于内分泌系统。所述疾病或紊乱的实例包括(但不限于)视丘下部/下垂体疾病、甲状腺疾病、副甲状腺(上皮小体)疾病、副肾上腺皮质/髓质疾病、糖代谢异常、脂质代谢异常、蛋白代谢异常、核酸代谢异常、先天性代谢异常(苯丙酮尿症、半乳糖血症、高胱氨酸尿症、槭糖尿病)、先天性无白蛋白血症(analbuminemia)、抗坏血酸合成能力缺乏症、高胆红素血症、高胆红素尿症、激肽释放酶缺陷症、肥大细胞缺陷症、尿崩症、抗利尿激素分泌异常、侏儒症、Wolman氏病(酸脂肪酶(Acid lipase)缺陷)、VI型黏多糖贮积病等。
在一个实施方案中,上述分化细胞、组织或器官可以属于呼吸系统。所述疾病或紊乱的实例包括(但不限于)肺疾病(例如肺炎、肺癌等)、支气管疾病等。
在一个实施方案中,上述分化细胞、组织或器官可以属于消化系统。所述疾病或紊乱的实例包括(但不限于)食道疾病(例如食道癌)、胃/十二指肠疾病(例如胃癌、十二指肠癌等)、小肠疾病/大肠疾病(例如结肠息肉、结肠癌、直肠癌等)、胆道疾病、肝脏疾病(例如肝硬变、肝炎(A型、B型、C型、D型、E型等)、爆发性肝炎、慢性肝炎、原发性肝癌、酒精性肝损伤、药物性肝损伤等)、胰腺疾病(急性胰腺炎、慢性胰腺炎、胰腺癌、囊性胰腺疾病等)、腹膜/腹壁/横膈膜疾病(疝气等)、Hirschsprung氏病等。
在一个实施方案中,上述分化细胞、组织或器官可以属于泌尿系统。所述疾病或紊乱的实例包括(但不限于)肾疾病(例如肾功能不全、原发性肾片状沉淀物疾病、肾血管障碍、肾小管功能异常、间质性肾疾病、全身性疾病所致肾障碍,肾癌等)、膀胱疾病(膀胱炎、膀胱癌等)等。
在一个实施方案中,上述分化细胞、组织或器官可以属于生殖系统。所述疾病或紊乱的实例包括(但不限于)男性生殖器疾病(如男性不孕、前列腺肥大症、前列腺癌、精巢癌等)、女性生殖器疾病(如女性不孕、卵巢功能障碍、子宫肌瘤、子宫腺肌病、子宫癌、子宫内膜病、卵巢癌绒毛性疾病)等。
在一个实施方案中,上述分化细胞、组织或器官可以属于循环系统。所述疾病或紊乱的实例包括(但不限于)心功能不全、狭心症、心肌梗塞、心律失常、心瓣膜病、心肌/心瓣膜疾病、先天性心脏病、(例如室缺、动脉闭合不全、法洛四联症等)、动脉疾病(例如动脉硬化、动脉瘤)、静脉疾病(静脉瘤等)、淋巴管疾病(淋巴水肿等)等。
使用本发明的干细胞,可以治疗上述疾病,还可以避免使用天然存在的干细胞或分化细胞(特别是,通过异物或异种细胞(例如感染、移植物对宿主疾病等)所致的)的移植治疗所固有的副作用。这一效果仅在提供能保持干细胞的多能性和自我复制传统技术之后才能有效的实现。传统方法不能或很难获得这种效果。
在另一个实施方案中,本发明的多能干细胞可以是经基因修饰的,或可以在使用来自本发明的多能干细胞的细胞、组织、器官时与基因治疗联合使用。基因治疗是本领域众所周知的,记载于如,Curr.Gene Ther.,2002 5月,2(2)的综述文章。所述基因治疗的的实例包括(但不限于),使用腺伴随病毒(adeno-associated virus)、仙台病毒、EB病毒(Epstein-Barr virus EBV)、单纯疱疹病毒(HSV)、alpha病毒、慢病毒(Lentivirus)的方法等。
在另一个实施方案中,本发明的治疗方法可以更进一步包括施用其他药物。所述药物可以是现有技术中任何已知的药物。例如,所述药物可以是药学领域任何已知的药物(例如抗生素等)。本发明的治疗方法可以包括两个或多个其他药物。所述药物的实例包括那些记载于,例如日本药典最新版、美国药典最新版、其他国家药典最新版等的药物。该药物可以对兴趣疾病或治疗产生效果,或可以对其他疾病或治疗产生效果。
在另一个实施方案中,本发明可以包括两种或多种类型的体细胞。当使用两种或多种细胞类型时,细胞可以具有相似特性或可以来自相似细胞,或可以具有不同特性或可以来自不同细胞。
本领域普通技术人员按照使用目的、靶疾病(类型、严重程度等)、患者的年龄、体重、性别和发病史、细胞形态或类型等可以很容易的确定用于本发明的治疗方法的细胞数量。
本领域普通技术人员按照使用目的、靶疾病(类型、严重程度等)、患者的年龄、体重、性别和发病史、细胞形态或类型等可以很容易的确定应用于受试者(或患者)的本发明治疗方法的频率。所述频率的实例包括每日至数月一次(例如每周一次至每月一次)。优选地,按照疾病进展可以采用每周至每月一次进行施用。
现有技术中已知的任何药学可接受的载体都可以使用在本发明的药物中。
适用剂型材料或药学可接受的因子的实例包括(但不限于)抗酸化剂、保存剂、着色剂、风味剂、稀释剂、乳化剂、悬浊剂、溶剂、填充剂、增量剂、缓冲剂、递送载体、和/或药学佐剂。代表性地,本发明的药物可以是包括分离的多能干细胞或其变体或衍生物和至少一种生理可接受载体、赋型剂或溶剂的组合物形式。例如,适用的递送载体可以是注射用水、生理溶液、或人工脑脊液等,其可以添加其它通过能够用于非经口递送组合物的物质。
适用载体的实例包括中性缓冲生理盐水或与血清混合的生理盐水。优选地,使用赋型剂(例如糖)将产品制备为冻干剂。按照需要可以包括其他标准载体、溶剂和赋型剂。其他示例性组合物包括大约pH7.0至8.5的Tris缓冲液或大约pH4.0至5.5的乙酸缓冲液,其还可以进一步包括适用的替代物。
本发明的药物可以经口或非口的方式施用。或者,本发明的药物可用静脉内或皮下的方式施用。当全身施用时,用于本发明的药物可以是无发热原的、药学可接受水溶液的形式。考虑到细胞、组织或器官存活、pH、等张性、稳定性等的所述药学可接受组合物的制备是本领域的公知技术。
本发明的药物可通过将所需纯度混合糖链组合物与任选的生理学可接受的载体、赋形剂或稳定剂(日本药典14版或其补定或最新版;Reminton’s药学,18版本,A.R.Gennaro编,Mack出版公司,1990等)相混合的方法,以冻干块或水溶液的形式制备储藏、。
本说明书所使用的可接受的载体、赋形剂或稳定剂优选是对受者无毒的。优选对施用剂量和浓度惰性的、以及优选包括磷酸、柠檬酸或其他有机酸;抗氧化剂,如抗坏血酸;低分子量多肽;蛋白质(例如血清白蛋白、凝胶或免疫球蛋白);亲水聚合物(例如聚乙烯吡咯烷酮);氨基酸(例如甘氨酸、谷氨酰胺、天门冬氨酸、精氨酸或赖氨酸);单糖、二糖和其他碳水化合物(葡萄糖、甘露糖或葡聚糖);螯合剂(例如EDTA);糖醇(例如甘露醇或山梨醇)SALT FORMINGCOUNTERIONS(例如钠);和/或非离子表面活性剂(例如Tween、Pluronics或聚乙二醇(PEG))。
在本发明的一个优选的实施方案中,通过将含有所需基因组(例如基本上与治疗靶个体相同的)的细胞(例如体细胞)暴露于再程序化因子,即可获得含有所需基因组的需要的多能干细胞。
当将通过本发明的方法获得的未分化体细胞融合细胞和来自融合细胞的细胞、组织或器官用于移植时,由于缺失了部分或全部来自ES细胞的移植抗原,因此与仅来自传统ES细胞的细胞、组织或器官的相比,受者的排斥反应得以减少。因此,本发明能够无限地提供用于包括心肌梗塞、Parkinson氏病、糖尿病和白血病等多种疾病移植材料。另外,由于保持了ES细胞的无限增殖能力和多能性,本发明的细胞、组织或器官可用于检测和植被药学产品、化妆品等,而且可用于通过基因组计划等揭示了序列的基因的功能性分析。另外,本发明的多能干细胞可用于筛选诱导特定细胞、组织或器官分化所需要的细胞生长因子、生长因子等。
另外,本发明提供了一种能够操作和研究再程序化相关分子机制的实验系统。在所述实验系统中,可以在体外使用ES细胞再程序化至少一部分体细胞核的,仅在制备了ES细胞和体细胞的融合细胞后获得的能力。在胸腺细胞与ES细胞融合后,体细胞的H19和Igf2r的特异性甲基化作用并没有改变。通常,在受精后的发展过程中能保持该等位基因特异性甲基化作用,而在生殖细胞中则不能保持[TremblayK.D.等,Nature Ganet.,9407-413(1995)]。事实上,在EG胸腺细胞融合细胞中,体细胞的某些印记基因(imprinted gene)(包括Igf2r)的甲基化模式被打断,因此没有等位基因被甲基化[Tada M.等,EMBOJ.,156510-6520(1997)]。根据这一发现,可以认为ES细胞和EG细胞都含有相同的能再程序化能发展为生殖细胞的体细胞核的上皮状态的细胞因子。但是,与EG细胞不同,ES细胞中印记不被再程序化。再ES*EG融合细胞中的Igf2r的甲基化分析提示EG细胞含有与表观遗传(epigenetics)的更有效再程序化相关的附加显性因子。事实上,ES细胞和EG细胞表现了其各自起源的性状。因此,ES细胞和EG细胞都是能用于表观遗传的再程序化和鉴定在早期生殖细胞和性腺的去甲基化相关因子的材料。
在使用体细胞核制备克隆的情况下,成活并成长为成体的克隆比例非常小。缺少核-质相互作用可部分地导致移植前胚胎的死亡[KatoY等,Science 2822095-2098(1998);Wakayama T.等,Nature 394369-374(1998)]。另外,很多克隆胎死于孕期和出生后立即死亡。在发展阶段失败的一个原因被认为是缺少体细胞核的有效再程序化。在几乎所有的检测的ES杂合胚胎中,都可以观察到GFP的稳定表达,这提示了该系统具有正常的核的再程序化。这揭示了在ES杂合体中对于H19和IGF2r基因保留了来自体细胞的原始甲基化印记,而且特定物种中细胞的表观遗传图不受细胞融合的影响。对上述的另一个支持为发现了来自体细胞的无活性X染色体“记忆”其起源以及通过在克隆胎的trophectodermal细胞的灭活而进行非随机选择[Eggan K.等,Science,2901578-1581(2000)]。
能导致正常胚胎发展能力的表观遗传再程序化相关的体细胞核机制已得到完全地研究。最近,已经显示了ATRS基因(SWI2/SNF2螺旋酶/ATPase酶家族成员)的突变改变了序列的甲基化图谱,其在哺乳动物中可重复多次[Gibbons R.J.等,Nat.Genet.,24368-371(2000)]。结果,提示了去甲基化发生的可能性是染色体重构的结果。已有报道指出母体ISWI(一种ATPase酶依赖DNA螺旋酶)的活性可在克隆蛙体细胞的核的再程序化期间发挥染色体改建子的作用[Kikyo H.等,Science,2892360-2362(2000)]。重构从爪蟾XTC-2上皮细胞提取并在爪蟾卵细胞中短期培育的细胞核,并缺失其作为基本转录复合物中关键组分的TBP组分。因此,ES细胞的再程序化能力可能适于构建具有能导致体细胞内表观遗传基因丢失的松弛结构的染色体。在本发明的未分化体细胞融合细胞中,保留了体细胞源性印记,因此可以进行正常的再程序化。与使用ES细胞时相比,本发明的优点不仅在于制备动物克隆,还在于制备用于移植的细胞、组织或器官。已有证据提示了由于小鼠ES细胞中某些印记基因的表观遗传的不稳定性,表观遗传阶段可在临床应用人ES细胞之前而得以评估[Humpherys D.等,Science,29395-97(2000)]。当成功去除了宿主ES细胞的染色体时,ES融合细胞具有特别有用的治疗意义。一般认为,再程序化因子一经鉴定,即可使用这些再程序化因子进行表观遗传操作。所述因子的鉴定使得不需要使用哺乳动物胚胎而从成年体细胞或组织特异性干细胞制备克隆成为可能。所述技术预期能使得制备用于多种需要进行细胞或组织移植的临床应用的供体细胞成为可能。
以下,将用实施例来描述本发明。现面记载的实施例仅用于说明性目的。因此,本发明的范围不受除所附的权利要求外的其它限制。
实施例下面,将用实施例来描述本发明。本发明不局限于实施例。
实施例1制备体细胞融合细胞1.制备嵌合胚胎(1)建立ES细胞系和EG细胞系作为ES细胞系,使用通过E3.5雄性129/Sv胚泡建立的ES细胞系TMAs-5[Isolation,CuIture,and Manipulation of embryonic stem cells(254-290页),″Manipulating the mouse embryoA Laboratory Manual 2ndEdition″Hogan,Beddington,Castantini和Lacy编(Cold Spring HarborLaboratory press,USA)(1994)]和来自Rosa26胚泡的携带neo/lacZ报告基因的G418-抗性的ES细胞系NR-2[Friedrich G.和Soriano P.,GenESDev.51513-1523(1991)]。作为EG细胞系,使用由E12.5雌性PGC[Tada T.等Dev.Gene.Evol.207551-561(1998)]建立的EG细胞系TMA-58G[Tada M.等,EMBO J.166510-6520(1997)],和通过将药物抗性基因pSV2bsr转染至TMA-58G细胞而制备blstoydine盐酸盐(BS)抗性的EG细胞系(TMA-58Gbsr)。这些细胞在用丝裂霉素C于用ES培养基(15%牛胎血清,10-4M 2-巯基乙醇,和1000单位/ml重组白血病移植因子(LIF,ESGRO))增补的Dulbecco’s Modified Eagle’s培养基(DMEM)中灭活的小鼠G418-抗性原始胚胎成纤维细胞(PEE)饲喂细胞(用常规技术从12.5日龄的Rosa26胚胎中的原代培养成纤维细胞中制备)上维持。在含有3-4μG/ml BS的ES培养基中培养TMA-58Gbsr。下述细胞融合实验中使用传代10次以内的ES细胞系和EG细胞系。
(2)用细胞融合制备杂合克隆(2)-1,ES融合细胞胸腺细胞来自下述3种6-8日龄小鼠(A)在整个身体的细胞种表达neo/lacZ报告基因的129/Sv-TgR(Rosa26)26Sor(称为Rosa26)[Friedrich G.和Soriano P.,GenESDev.51513-1523(1991)];(B)GOF-18/GFP(称为Oct4-GFP)[Yoshimizu T.等,Develp.GrowthDiffer.41675-684(1999)],其全能性和多分化全能性细胞特异性表达GFP;和
(C)包含neo/lacZ基因和Oct4-GFP基因的(Rosa26×Oct4-GFP)F1转基因小鼠(通过将雌性Rosa26小鼠和雄性Oct4-GFP转基因小鼠交配获得的杂交小鼠[Yoshimizu T.等.,Develop.Growth Differ.41675-684(1999))。
通过用X-gal将尾尖染色来鉴别Rosa26小鼠。使用下述引物OCGOFU35,5’-CTAGGTGAGCCGTCTTTCCA-3’(SEQ ID NO1),和EGFPUS23,5’-TTCAGGGTCAGCTTGCC GTA-3’(SEQ ID NO2)进行PCR来分析来自小鼠尾部的DNA从而确定Oct4-GFP小鼠。将从转基因小鼠获得的胸腺经过18-线针数次来获得单细胞悬液。TMAS-5细胞作为一种ES细胞而使用,并与上述3种类型胸腺细胞以1∶5的比例(ES细胞胸腺细胞)混合,然后用PBS冲洗3遍。将细胞以1×106细胞/ml的浓度在0.3M甘露醇缓冲液中悬浊。使用含有1mm电极的玻璃片和Electro CellManipulator 2000(BTX)引导电融合(E=2.5~3.0KV/cm)来制备融合细胞。融合细胞在ES培养基培养1日。在7~8日内于含有250μg/mlG418的ES培养基中选择灭活的抗G418的PEF。收集融合细胞克隆然后铺于添加了G418的ES培养基中(继代1),培养3~4日。ES杂合克隆在每两日更新的培养基中次代培养。
(2)-2,ES×EG融合细胞按下述方法制备ES×EG融合细胞。以1∶1的比例混合NR2 ES细胞和TMA-58GbsrEG细胞,然后以1×106细胞/ml的浓度在0.3M甘露醇缓冲液中悬浊。在7~8日内于含有250μg/mlG418和3~4μg/mlBS的ES培养基中选择ES×EG融合细胞。
ES杂合克隆能保持与在先前的研究中通过本发明制备的EG杂合克隆相似的比率(2.8×10-4)。融合细胞的全部类型均与亲本ES细胞相似,且未发现形态变化。使用G-带的细胞遗传学分析显示出完整的染色体组,其包括实验中使用的全部13个ES融合细胞和2个ES×EG杂合克隆中的三个X染色体和1个Y染色体。另外,2~4代时的ES杂合和ES×EG杂合细胞系用于分子分析。
(3)融合的确定为了确定ES细胞和分化细胞间的融合细胞,使用分别对应于T细胞受体(Tcr)β的D-J区、免疫球蛋白(Ig)的D-J区、Tcrδ和Tcrγ的V-J区的四组引物来进行PCR扩增,以从胸腺和ES融合细胞中提取的DNA作为模板。针对来自成体胸腺的基因组DNA(0.5μg)、ES细胞和ES杂合克隆,使用下述引物进行PCR扩增来检测每一个基因的重排(A)Tcrβ基因的Dβ2-Jβ2重排,Dβ2,(5′-GTAGGCACCTGTGGGGAAGAAACT-3’)(SEQ ID NO3)和Jβ2(5′-TGAGAGCTGTCTCCTACTATCGATT-3’)(SEQ ID NO4)[Levin S.D.等,EMBO J.121671-1680(1993)];(B )IgH基因的D-J重排,Dμ(5′-ACAAGCTTCAAAGCACAATGCCTGGCT-3’)(SEQ ID NO5)和Jμ(5′-GGGTCXTAGACTCTCAGCCGGCTCCCTCAGGG)(SEQ ID NO6)[Gu H.等,Cell 6547-54(1991)];(C)Tcrγ基因的Vγ7-Jγ1重排,Vγ7(5′-CTCGGATCCTACTTCTAGCTTTCT-3’)(SEQ ID NO7)和Jγ1(5′-AAATACCTTGTGAAAACCTG-3’)(SEQ ID NO8)[Livak F.等,J.Immunol.1622575-2580(1999)];和(D)Tcrδ基因的Vδ5-Jδ1重排Vδ5(5′-CAGATCCTTGCAGTTCATCC-3’)(SEQ ID NO9)和Jδ1(5′-TCCACAGTCACTTGGGTTCC-3’)(SEQ ID NO10)[Wilson A.等,Immunity 437-45(1996)]。
PCR产物在1.2%agarose胶上电泳,然后用溴乙非啶染色。使用针对Tcrβ的生物素化的Jβ2特异性寡核苷酸探针(5’-TTTCCCTCCCGGAGATTCCCTAA-3’(SEQ ID NO11))[Levin S.D.等,EMBO J.121671-1680(1993)];和针对IgH的生物素化的JH4寡核苷酸探针(5’-CCTGAGGAGACGGTGAGGTTCCTTG-3’(SEQ IDNO12))[Ehlich A.等,Cell 72695-704(1993)]通过Southern杂交来确定PCR产物的特异性。
DNA的重排时显示胸腺细胞分化为淋巴细胞的明显证据[Fowlkes,B.J.和Pardoll D.M.,Adv.Immunol.44207-264(1989)]。在45%的杂合克隆中发现了TcrβD-Jβ22.1,2.2,2.3,2.4,2.5或2.6的特异性重排(图1a)。另外,在某些克隆中,可以观察到IgH的D-J区(图1b)和Tcrδ和Tcrγ的V-J区(分别为图1c和1d)存在相似的重排。在研究的31个ES杂合克隆中,至少经研究发现共有17个克隆(55%)发生了重排。在这些情况中,ES细胞被认为在胸腺细胞分化为淋巴细胞后发生融合。
(4)X染色体活性在雌性体细胞中,由于X相关基因的计量补偿作用,两个X染色体中的一个被随机灭活。已知在细胞分裂早期发生的X染色体的灭活可诱导发生DNA复制转移至S期后期的延迟,DNA的过甲基化和组蛋白H4的低乙酰化。在通过将体细胞核转移至卵母细胞中的细胞核转移获得的克隆胚胎中,雌性体细胞的灭活的X染色体被重新激活[Eggan K.等,Science2901578-1581(2000)]。因此,全部X染色体的激活可以作为细胞核再程序化的一个指征。为了分析X染色体的活性,本发明的研究中使用复制分化染色方法[Sugawara O.等,Chromosoma 88133-138(1983)](图2a)。
(4)-1,X染色体复制的计时通过将150μg/ml5-溴-2脱氧尿苷(BrdU)与细胞共培养7日的方法(其中在最后一天向培养的细胞中加入0.3150μg/ml秋水仙素)来制备上节(2)中描述的ES融合细胞和ES×EG融合细胞的染色体制品。然后在室温下从0.075M KCL对细胞进行低渗处理。然后浸入在甲醇∶乙酸(3∶1)溶液三次来固定细胞,然后风干。用新鲜制备吖啶橙溶液进行细胞染色。使用标准B滤器在荧光显微镜下观察玻片。在S期后期持续加入BrdU和吖啶橙染色后,观察到活性X染色体和常染色体红绿分染因子。由于复制的延迟,无活性X染色体在雌性体细胞中为均一的暗红染色(图2b)。在核型决定的全部32个细胞(4n=80)中,XY雌性ES细胞和XX雌性胸腺细胞的6个融合细胞克隆携带同时复制的X染色体(图2c)。
(4)-2,Xist的RNA FISH使用包含外显子1~7的探针,所述探针通过使用cy3-dUTP和XistcDNA克隆的缺口翻译而制备,并与按4-1中获得的染色体制品杂交。按照前述进行杂交和随后的冲洗[Lawrence J.B.等,Cell 57493-502(1989)]。其结果与(4)-1中得到的结果一致,即Xist(无活性的X特异性转录)RNA没有在通过RNA FISH(荧光原位杂交)进行测试的两个ES杂合细胞系中的三个X染色体上稳定累积(斑点)(图2b)。在雄性ES细胞的活化X染色体上的Xist的累积也是不稳定的,而在雌性胸腺细胞的无活性X染色体上则是稳定的(彩色信号)。在杂交后,来自无活性X染色体的体细胞核获得了活性X染色体的某些特性,而且具有与在未分化细胞中观察到的相似的复制和Xist表达模式。显示于上述(4)-1和(4)-2中的ES融合细胞中体细胞的X染色体的复制计时的改变和XistRNA的累积提示了在细胞融合后体细胞核被再程序化。
(5)体细胞核的再程序化使用含有Oct4-GFP转基因的小鼠细胞系来使体细胞核的再程序化可被观测到(图3)。在生殖细胞、移植前胚胎和移植前早期胚胎的外胚层可以特异性观察到Oct4的表达。因此,Oct4的活性可用作鉴定细胞全能性和/或多能性的一个理想指征。与内生Oct4的表达模式相比较,Oct4-GFP的表达模式是已知的[Yoshimizu T.等,Develop Growth Diffr.41675-684(1999)]。检测Oct4-GFP转基因小鼠的胸腺和卵巢的Oct4-GFP的表达。在生长的卵巢中可观察到GFP,而在胸腺中未能观察到(图3a~4)。
Oct4-GFP转基因小鼠的胸腺细胞与ES细胞融合,然后进行无筛选的培养。每12小时检测GFP的表达。采用GFP激发源和GFP滤镜在解剖显微镜(Leica)下观察培养皿上活ES细胞中的GFP的表达。48小时后,大量无表达克隆的边缘观察到由16个细胞组成的GFP阳性克隆(图3e,f)。随后,在达到融合前在同一培养板上发现了其他几个GFP阳性克隆。在条件下培养的无融合的胸腺细胞中未发现GFP阳性细胞。为了观察在全部ES融合细胞中体细胞核是否能够被再程序化,使用了抗G418选择的(Rosa26×Oct4-GFP)F1小鼠的胸腺细胞。筛选后,得到的37个克隆中有36个表达GFP(97%)。即使再次培养若干代后仍能稳定保持该表达(图3g,h),这显示出在大多数ES融合细胞中胸腺细胞核发生了再程序化。在细胞融合前于胸腺细胞内受到抑制的Oct4-GFP转基因在ES细胞中被再次活化。这进一步支持了(4)的结果,即在细胞融合后,体细胞核被再程序化。
(6)导入胚泡使用正常的二倍体胚泡和ES细胞来制备嵌合胚胎。从与雄性ICR交配的孕龄3.5日的雌性ICR的子宫中获得二倍体胚泡。采用上述(Rosa26×Oct4-GFP)F1小鼠源性(分化的)胸腺细胞的杂合克隆和Rosa26小鼠源性胸腺细胞的杂合克隆用作四倍体融合细胞。将四倍体融合细胞显微注射到充分扩张的胚泡的分裂腔孔中(图4a)。将这些胚泡转移到假孕的雌性ICR的子宫中。从E7.5子宫中取出嵌合胚胎,然后去除Reichert膜,并进行β-半乳糖苷酶染色合组织学分析。
(6)-1,β-半乳糖苷酶活性染色通过β-半乳糖苷酶活性染色,确定融合细胞至每一嵌合体的相对分布。用PBS冲洗培养的细胞,然后用含有1%甲醛、0.2%戊二醛、0.02%NP40和1mM MgCl2的PBS在4℃固定5分钟。将同一固定溶液在4℃下固定胚胎和小鼠尾3~4小时。用PBS冲洗样品,然后用含有1mg/ml4-Cl-5-Br-indolyl-β-半乳糖苷酶(X-gal)和二甲替甲酰胺、5mM铁氰化钾、5mM铁氰化钾和2mM MgCl2的PBS反应混合液在室温下染色24~48小时。
(6)-2组织学分析用X-gal染色的E7.5胚胎用上升酒精系列(ascending alcohol series)脱水,在JB-4塑料树脂(polyscience,Warrington,PA)中包埋。2~4μm厚的极薄切片用0.25%曙红Y逆染色。固定并包埋于石蜡中的四周龄畸胎瘤切成8-μm厚的切片。用苏木精和曙红进行连续切片染色。
结果,20个E7.5胚胎中的8个为阳性,这显示出融合细胞的有限分布(图4b,c)。详细的分析揭示了来自胚性外胚层、胚性中胚层和内脏内胚层中的融合细胞的衍生物(图4d,e)。如上述,ES细胞具有在移植前的早期胚胎中分化为三种原胚芽层(外胚层、中胚层和内胚层)的发展性能力。
(7)DNA的甲基化接下来,采用Southern点杂交来研究胸腺细胞、ES细胞和制备的杂合克隆的DNA以便确定胸腺细胞核的再程序化是否可以对印记基因座的甲基化产生影响。Southern点杂交的实施方法如下用限制性酶将基因组DNA消化为片段,用0.8%的agarose将其分离,通过碱性点膜将片段转移到Hybond N+膜(Amersham),然后于32P-dCTP-标记的探针杂交。
(7)-1,H19基因座已发现在欲表达的母系H19基因座上游含有父系甲基化区,因此保持了原始甲基化印记[Tremblay K.D.等,Natrue Genet.9407-413(1995)]。采用BamHI和甲基化敏感性限制性酶HhaI来消化胸腺细胞、ES细胞和制备的杂合克隆的DNA。使用3.87kb SacI探针和2.7kb BamHI探针来检测来自胸腺细胞和ES细胞的DNA中的10kb和2.7kb的父系甲基化片段和7.0kb和1.8kb的母系未甲基化片段。在甲基化(RI=0.60)和未甲基化片段(RI=0.40)条带(图5a)之间的条带相对密度没有差异。使用BamHI探针可以观察到相似的结果,其中鉴定了2.7kb的父系甲基化片段和1.8kb和0.8kb的母系未甲基化片段。可相似地全部样品的检测到甲基化条带(RI=0.55)和未甲基化(RI=0.45)条带(图5a)。
(7)-2 Igf2r基因座通过使用如下引物5′-AATCGCATTAAAACCCTCCGAACCT-3’)(SEQ ID NO13)和5′-TAGCACAAGTGGAATTGTGCTGCG-3’)(SEQID NO14)来制备用于分析Igf2r 2区甲基化的探针[Stoger R.等,Cell 7361-71(1993)]。为Igf2r基因内含子且已知会被甲基化印记的CpG岛仅在一个等位基因上被甲基化[Stoger R.等,Cell 7361-71(1993)]。如上节(7)-1中所述,采用PvuII和甲基化敏感性限制性酶MluI来消化每一DNA样品。使用330bp Igf2r CpG岛探针,在来自胸腺细胞和ES细胞的DNA中发现了2.9kb的母系甲基化片段和2.0kb的父系未甲基化片段(图5b)。在杂合克隆中也发现了相似地模式。在甲基化(RI=0.55)和未甲基化片段(RI=0.45)条带(图5a)之间的相对密度(RI)没有差异(图5a)。
根据(7)-1和(7)-2,证实了H19上游区域和胸腺细胞基因组Igf2r内含子区域的原始甲基化不会受到与ES细胞融合的影响。这一结果与先前在来自Igf2r的母系特异性甲基化消失的E12.5小鼠的生殖细胞PGC的胸腺细胞和EG细胞的杂合克隆[Tada M.等,EMBO J.166510-6520(1997)]。中观察到的不同ES融合细胞中体细胞甲基化模式的保持提示了ES细胞和EG细胞具有不同的调节印记基因DNA甲基化的控制机制。虽然在ES细胞中观察到Igf2r的母系等位基因特异性甲基化,但以大约1∶3的比例(甲基化/RI=0.27,去甲基化/RI=0.73)的ES细胞DNA和EG细胞DNA的对照混合物中则没有观察到。在ES×EG杂合体中,甲基化条带消失(图5c),提示了EG细胞中去甲基化活性在ES细胞中甲基印记的维持中占支配地位。
2.畸胎瘤的制备采用与上述1部分中制备嵌合胚胎的方法相似的方法来制备的TMAS-5ES和Rosa26源性胸腺细胞的融合细胞用作四倍体融合细胞。大约100百万至500百万四倍体融合细胞经皮下注射到SCID小鼠(CLEA日本KK)的后肢腹股沟区域。皮下注射四周后,收集畸胎瘤。通过X-gal染色,确定畸胎瘤来自融合细胞。此后,在Bouin’s固定剂中固定,然后通过苏木素-曙红(染色)对细胞核和细胞质进行染色。经HE染色结果观察到肌肉、软骨、上皮细胞和神经细胞(图6)。
(实施例2再程序化因子的鉴定和应用)(融合细胞)根据现有技术中已知的标准方法步骤实施电融合、ES细胞和融合细胞的培养以及染色体的分析(Tada,M.,Tada,T.,Lefebvre,L.,Barton,S.C.& Surani,M.A.,EMBO J.,16,6510-6520(1997))特别如下述方法。
为了制备两类融合细胞,本发明人使用了两种ES细胞系,即根据“Manipulating the Mouse EmbryoA Laboratory Manual 2nd Edition”Brigid Hogan,Rosa Beddington,Frank Castantini和Eiizabeth Lacy编,253-290,Cold Spring Harbor(USA)建立的X染色体上Hprt基因缺陷的自制(domesticus)的XY ES细胞和MP4缺陷的molossinus XY ES细胞系。特别地,在交配后3.5日龄的雌性小鼠的子宫中冲洗出胚泡。结果的胚泡在用丝裂霉素C灭活的小鼠原始成纤维细胞(PEF)上培养。使用ES培养基,所述培养基为加入了15%胎牛血清、抗生素、L-谷氨酰胺、重碳酸钠、丙酮酸钠、巯基乙醇、白血病抑制因子(LIF)的MEM+F12培养基(Sigma)(“Manipulating the Mouse EmbryoALaboratory Manual 2nd Edition”Brigid Hogan,Rosa Beddington,FrankCastantini和Eiizabeth Lacy编,253-290,Cold Spring Harbor(USA))。培养5日后,用胰岛素处理来分离来自胚泡内部细胞团的增殖细胞,然后培养在新PEF上,从而纯化ES细胞。
通过自制Hml ES细胞和下述来自molossinus JF1小鼠间的电融合来获得HxJ-17和18融合细胞系。制备含有ES细胞和体细胞的甘露醇缓冲悬液(0.3M)。将悬液置于具有1mm电极的融合片上。以10V的交流电处理悬液60秒,然后以250V直流电处理10微秒。然后,获得的混合物在ES培养基中的PEF饲喂细胞上培养(“Takinokansaibo noSaipuroguramukakassei,In Jikken Igaku Bessatus Posutogenomujidai noJikkenkoza 4;Kansaibo·Kuron Kenkyu Pruotokoru [ReprogrammingActivity of Pluripotent Stem Cell,In Experimental Medicine,SpeicalIssue,Experimental Lecture 4 in Postgenome era;Stem cell·CloneResearch Protocol]”,191-198页,Yodo-sha(Tokyo)等。)。上述ES培养基中加入了次黄嘌呤、氨喋呤和胸苷(HAT)选择剂以得到HAT选择性培养基。在用HAT选择性培养8日后得到上述融合细胞。
通过molossinus MP4 ES细胞和下述来自自制129/Sv-Rosa26转基因小鼠(lacz/neo在小鼠内普遍表达)的胸腺细胞的电融合来获得其它细胞系,MxR-2和Mxr-3。制备含有ES细胞和体细胞的甘露醇缓冲悬液(0.3M)。将悬液置于具有1mm电极的融合片上。以10V的交流电处理悬液60秒,然后以250V直流电处理10微秒。然后,获得的混合物在ES培养基中的PEF饲喂细胞上培养(“Takinokansaibo noSaipuroguramukakassei,In Jikken Igaku Bessatus Posutogenomujidai noJikkenkoza 4;KansaiboKuron Kenkyu Pruotokoru[ReprogrammingActivity of Pluripotent Stem Cell,In Experimental Medicine,SpeicalIssue,Experimental Lecture 4 in Postgenome era;Stem cell·CloneResearch Protocol]”,191-198页,Yodo-sha(Tokyo)等)。上述ES培养基中加入了Geneticin(Sigma)选择剂以得到G418选择性培养基,其中细胞得以依次培养。在用G418选择性培养8日后得到上述融合细胞(Tada,M.,Takahama,Y.,Abe,K.,Nakatsuji,N.,和Tada,T.(2001),Curr.Biol.11 1553-1558)。
(免疫组织化学)采用标准步骤进行细胞和组织的X-gal染色(Tada,M.,Tada,T.,Lefebvre,L.,Barton,S.C.&Surani,M.A.,EMBO J.,16,6510-6520(1997)),特别如下述方法。
为了从四个融合细胞克隆(HxJ-17、HxJ-18、MxJ-2和MxJ-3)构建四倍体,将每个克隆大约1×106的细胞经皮下注射到免疫缺陷SCID小鼠的腹股沟区域。在注射后4-5周在全部位点均发现了四倍体的构建。用4%PFA固定的四倍体,培养细胞和小鼠脑的移植物组织用于下述使用抗体的免疫反应中兔抗-TuJ(Babco)、小鼠抗-Nesin(BDPharMingen)、兔抗-TH(CHEMICON)、小鼠抗-NF-M(CHEMICON)、小鼠抗-Ecad(TAKARA)、山羊抗-β-gal(Biogenesis)和小鼠抗抗-Nesin(DACO)。采用标准步骤进行细胞和组织的X-gal染色。
(基因组PCR,RT-PCR和测序)为检测融合克隆中的Tcrβ和IgH的D-J DNA再排列,使用下述序列对在65℃退火温度下进行30个循环的PCR反应。每一循环包括95℃,30秒(变性);65℃,30秒(引物退火);和72℃,30秒(使用Taq酶延长)。进行30个循环的DNA PCR扩增。
Tcrβ,Dβ2(5′-GTAGGCACCTGTGGGGAAGAAACT)(SEQ IDNO15)和Jβ(5′-TGAGAGCTGTCTCCTACTATCGATT)(SEQID NO16);IgH,Dμ(5′-ACAAGCTTCAAAGCACAATGCCTGGCT)(SEQ IDNO17)和Jμ(5′-GGGTCTAGACTCTCAGCCGGCTCCCTCAGGG)(SEQ ID NO18)。
为分析基因表达,使用oligo-dT从总RNA中合成cDNA。在Pitx和Nestino cDNA检测的情况中,使用在GC缓冲液2(TAKARA)中的LATaq聚合酶来计数高GC含量。引物序列,30个循环PCR反应的退火温度和扩增产物的长度如下Albumjn,55℃,567bp,5′-AAGGAGTGCTGCCATGGTGA(SEQID NO19),5′-CCTAGGTTTCTTGCAGCCTC(SEQ ID NO20);α-Fetoprotein,55℃,342bp,5′-TCGTATTCCAACAGGAGG(SEQID NO21),5′-CACTCTTCCTTCTGGAGATG(SEQ ID NO22);结蛋白,55℃,361bp,5′-TTGGGGTCGCTGCGGTCTAGCC(SEQID NO23),5′-GGTCGTCTATCAGGTTGTCACG(SEQ ID NO24);TH,60℃,412bp,5′-TGTCAGAGGAGCCCGAGGTC(SEQ IDNO25),5′-CCAAGAGCAGCCCATCAAAG(SEQ ID NO26);Nestin,55℃,327bp,5′-GGAGTGTCGCTTAGAGGTGC(SEQ IDNO27),5′-TCCAGAAAGCCAAGAGAAGC(SEQ ID NO28);Nurr1,55℃,253bp,5′-TGAAGAGAGCGGACAAGGAGATC(SEQ ID NO29),5′-TCTGGAGTTAAGAAATCGGAGCTG(SEQID NO30);NF-M,55℃,186bp,5′-GCCGAGCAGACCAAGGAGGCCATT(SEQ ID NO31),5′-CTGGATGGTGTCCTGGTAGCTGCT(SEQ IDNO32);Pitx3,55℃,373bp,5′-AGGACGGCTCTCTGAAGAA(SEQ IDNO33),5′-TTGACCGAGTTGAAGGCGAA(SEQ ID NO34);G3pdh,55℃,983bp,5′-TGAAGGTCGGTGTGAACGGATTTGGC(SEQ ID NO35),5′-CATGTAGGCCATGAGGTCCAC(SEQ IDNO36);MyoD,60℃,397bp,5′-GCCCGCGCTCCAACTGCTCTGAT(SEQID NO37),5′-CCTACGGTGGTGCGCCCTCTGC(SEQ ID NO38);Myf-5,60℃,353bp,5′-TGCCATCCGCTACATTGAGAG(SEQ IDNO39),5′-CCGGGTAGCAGGCTGTGAGTTG(SEQ ID NO40)。
为将PCR产物直接克隆至质粒载体中,使用TA克隆试剂盒(lnvitrogen)。通过使用M13反向和正向引物独立分析单一质粒克隆的cDNA序列。
(神经分化和细胞移植片)为高效制备TH阳性神经元,在用MEM培养基冲洗3次以去除血清和LIF后,ES和融合细胞在PA6间质细胞上培养8-11日(Kawasaki,H.,Mizuseki,K.,Nishikawa,S.,Kaneko,S.,Kuwana,Y.,Nakanishi,S.,Nishikawa,S.I.,和Sasai,Y.(2000).Neuron 28,31-40)。为移植分化TH阳性克隆,通过用木瓜蛋白酶处理来分离PA6饲喂层,然后通过使用平滑尖端的26G Hamilton注射器将其缓慢注射入小鼠纹状体(Kawasaki,H.,Mizuseki,K.,Nishikawa,S.,Kaneko,S.,Kuwana,Y.,Nakanis,S.,Nishikawa,S.I.,和Sasai,Y.(2000),Neuron 28,31-40)。大约5×105融合细胞源性TH阳性细胞悬浊物移植至每一注射位点。两周后,用4%PFA固定后,冷冻脑整体来制备冷冻切片。
(结果)
通过细胞融合获得的体细胞核再程序化能力是多能干细胞具有的显著特性(Tada,M.,Takahama,Y.,Abe,K.,Nakatsuji,N.,和Tada,T.(2001),“Nuclear reprogramming of somatic cells by in vitro hybirdization withES cell”,Curr.Biol.11 1553-1558)。相似地,通过共培养神经球细胞和骨髓细胞与ES细胞发生天然融合,因此其核发生再程序化。多能干细胞特异性标记基因Oct4-GFP和无活性X染色体的再活化为至少能够显示融合细胞的体细胞被再程序化为未分化状体的指示物。
成功构建畸胎瘤和嵌合体的结果证实了融合细胞具有多能性。再程序化的体细胞基因组可具有多能性和可在再分化过程中处于遗传休眠状态。
如果再程序化体细胞基因组获得如ES细胞基因组中的多能性,即可通过无需治疗克隆的细胞融合而获得适用于个体的定制ES细胞。
制备自制的Hm1 ES细胞Mus musuculus和M.m.molossinus JF1胸腺细胞(HxJ)的亚种间融合细胞,和molossinus MP4 ES细胞和自制的Rosa26(MxR)的亚种间融合细胞用于下述实验(图7A)。来自Rosa26转基因小鼠的体细胞基因组中的报告基因lacZ/neo遍在表达(Friedrich,G.&Soriano,P.,GneES&Dev.,5,1513-1523(1991))。缺陷X染色体相连的Hprt基因的Hm1 ES细胞MP4 ES细胞是从molossinus胚泡新建的。当与自制基因组(ref5)相比较时,在molossinus基因组中可以很容易地发现DNA序列多态性。本发明人所检测的融合细胞中保持了全部自制和molossinus源性染色体(图7B)。为了检测和成体胸腺细胞的ES融合细胞的分化能力,将HxJ和MxR融合细胞经皮下注射到免疫缺陷SCID小鼠的腹股沟区域。在注射MxR-2和3个融合细胞系后4-5周的畸胎瘤的一半,其中LacZ/neo的融合蛋白遍在表达,X-gal染色阳性。由此,含有畸胎瘤的组织是融合细胞的衍生物。切片的免疫化学分析显示了III型β-Tublin(TuJ)、神经丝-M(NF-M)、肌间线蛋白和白蛋白的表达(图7D),这提示即使体细胞是中胚层源性,融合细胞仍保持了在体内分化为外胚层、中胚层和内胚层世系的能力。在本发明人所使用的全部融合克隆中的淋巴细胞特异性的T细胞受体和/或免疫球蛋白H基因的DNA重排显示了体细胞是中胚层衍生物(图7C)。使用苏木素-曙红染色的进一步组织化学分析显示出畸胎瘤含有包括软骨、纤毛上皮和腺等其它组织。该融合细胞的多代分化可以通过对偶样同源机构域转录因子3(Pixs3)、白蛋白、α-胎球蛋白、MyoD、My-5和结蛋白基因的组织特异性mRNA加以证实(图8A)。在分化的ES细胞和融合细胞中这些基因表达的缺乏提示通过在畸胎瘤中的细胞类型特异性分化来诱导他们的表达。
为研究组织特异性基因的mRNA是否转录自组织中的再程序化体细胞基因组,测序并比较由domesticus和molossinus细胞和其亚种间融合细胞源性畸胎瘤cDNA扩增的Pitx3、白蛋白和MyoD RT-PCR产物。在Pitx3中,发现了在mRNA的322位发生domesticus基因组中鸟嘌呤(G)残基至molossinus基因组中腺嘌呤(A)残基的单碱基替换。在12个测序的克隆中,分别测序了5和7个domesticus和molossinus型序列。从体细胞基因组RNAs中扩增了数量大致相同的产物(图8B)。发现内源细胞特异性基因,白蛋白的转录具有相似的模式。用限制性酶NcoI消化来自domesticusmRNA的567bp的RT-PCR产物,检测到554bp和13bp,而来自molossinus的mRNA经NcoI消化后检测到三个条带381、173、13bp(图8C)。分化自HxJ和MxR亚种间融合细胞系的畸胎瘤中条带的相似强度来识别了ES基因组和体细胞基因组中白蛋白表达的相同水平。在肌肉-特异性调节因子MyoD,通过对BssHI消化敏感的序列多态性可以鉴别ES基因组和体细胞基因组的转录。来自domesticusmRNA的395bp的RT-PCR产物可分为2个条带293和102bp,而来自molossinus的mRNA可以抵抗消化而表现为完整的395bp条带(图8D)。在HxJ-17和18以及MxR-2和3亚种间融合细胞系中,发现体细胞源性转录与ES基因组源性转录相同。这些数据显示了与ES基因组相同,再程序化体细胞基因组获得了能够在体外分化的畸胎瘤中转录组织特异性mRNA的细胞核能力。
下一个问题是融合细胞中的体细胞基因组是否能够在体外分化诱导条件下分化为特定细胞类型。基于这一问题,本发明人使用了通过在无血清条件中的PA6基质细胞上的共培养来诱导神经细胞分化的系统(Kawasaki,H.等,Neuron,28,31-40(2000))。培养宿主MP4ES细胞和MxR-3融合细胞克隆在8~11日内来促进神经细胞分化(图9A,B)。通过这一诱导,来自融合细胞的大多数克隆和宿主ES细胞产生针对神经上皮干细胞特异的Nestin和有丝分裂后神经细胞特异的TuJ的正向免疫反应。极少能发现该正向针对干细胞特异的E-Cadherin的克隆。这些数据显示了融合细胞的多能性得以再现以及融合细胞受控而分别分化为神经细胞系。由此,为增强制备多巴胺能神经细胞的效率,诱导培养的时间延长至11天。使用TuJ和NF-M的抗体时,大部分细胞显示阳性染色。在全部存活克隆的内部主要发现了能与酪氨酸羟化酶(TH)(是制备儿茶酚胺神经递质所必须的酶)发生免疫反应的细胞。每个克隆大约20~50%的细胞被发现是TH阳性的(图9C)。当使用宿主ES细胞时,观察到相似的结果。在5次重复实验中均得到该有效的神经细胞分化。通过使用诱导分化11日后从融合克隆中提取的mRNA进行RT-PCR扩增的TH、Nurr1和Pitx3的转录可以证实在体外制备了中脑多巴胺能神经细胞。为检测通过再程序化体细胞基因组而进行表达的组织特异性基因是否与ES基因相似,对Pitx3(为TH的转录激活子)的RP-PCR产物进行测序。在Pitx3mRNA的domesticus基因组中鸟嘌呤(G)残基至molossinus基因组中腺嘌呤(A)残基的单碱基替换中,在12个测序的克隆中,从MxR亚种间融合细胞分化来的多巴胺能神经细胞中发现8个molossinus型克隆和4个domesticus型克隆(图9E)。从分化自HxJ融合细胞的多巴胺能神经细胞中获得了相似的结果。由此在融合细胞中再程序化的体细胞基因组获得了通过体外分化而表达中脑多巴胺能神经细胞特异性转录的多能性能力。
本发明人随后检测了经体外11日诱导分化的融合细胞源性多巴胺能神经细胞是否能在移植后整合到小鼠大脑的纹状体中。在本实验中,从携带lacZ/neo的Rosa26获得molossinus ES细胞和自制体细胞间的MxR-3融合细胞。将融合细胞衍生物每个位点的大约5×105个细胞以A=+1.0mm、L=+2.0mm、V=+3.0mm注射至纹状体,并以两个小鼠脑的前囱作为参照(图10A)通过注射后15日的X-gal染色(蓝色阳性细胞)来检测移植物中细胞的存活。采用抗TH和LacZ的抗体对移植物冷冻切片行免疫组织化学双染色分析,结果清楚证实了融合细胞源性神经中枢细胞在注射位点表达多巴胺能神经细胞特异性TH蛋白(图10B和C)。因此,即使在将融合细胞在体外诱导分化为特定类型细胞后,体细胞基因组仍能够表达神经细胞特异性基因。这些数据显示出MHC缺陷的融合细胞能够用于制备用于疾病和衰老治疗中的替代组织的可能性。
ES细胞是能自我更新的和多能性的细胞,在将其导入受体后,其能够分化为包括生殖细胞的多种组织。由此,其多能性可适用于通过体外分化诱导来制备多种类型的替代组织的细胞源。但是,由于非自体移植排斥反应,使得从ES细胞源提供的组织与多数受体不匹配。由此,治疗性移植的关键问题在于如何降低针对ES源性移植物的免疫排斥反应。为制备自体移植物,自体定制的ES细胞和自体成体组织干细胞适于作为细胞源。自体成体组织干细胞是一种很好和候选细胞源(Jiang,Y.,Jahagirdar,B.N.,Reinhardt,R.L.,Schwartz,R.E.,Keene,C.D.,Ortiz-Gonzalez,x.R.,Reyes,M.,Lenvik,T.,Lund,T.,Blackstad,M.,Du,J.,Aldrich,S.,Lisberg,A.,Low,W.C.,Largaespada,D.A.,和Verfaillie,C.M.(2002)。“Pluripotency of mesenchymal stemcells derived from adult marrow,Nature,418,41-49)。通过使用去核未受精卵的体细胞的核移植所制备的克隆胚泡来制备自体定制ES细胞(Rideout,W.M.,3rd,Hochedl inger,K.,Kyba,M.,Daley,G.Q.&Jaenisch,R.,Cell,109,17-27(2002))。但是,人类治疗性克隆遇到了生物伦理学带来的社会问题(Weissman,I.L.,N.Engl.J.Med.346,1576-1579(2002))。再程序化体细胞基因组至少有3种可能型来避免伦理学问题1)含有MHC I型和II型缺陷的自体体细胞基因组和ES基因组的融合细胞能够与个体的亲本半匹配;2)通过用自体体细胞融合后靶向消除ES基因组来制备遗传定制的ES样细胞(或能细胞);和3)从ES细胞鉴定的再程序化因子的基因操作可以再程序化自体体细胞。细胞融合技术在不会引起克隆引起的社会问题的自体治疗应用中具有潜在的重要贡献。
(实施例3鉴定再程序化因子)在实施例3中,本发明人研究了当与ES细胞融合时,体细胞基因组是如何发生表观遗传修饰的。本发明人期望与ES细胞的细胞融合能导致体细胞基因组的染色质结构的显著变化,并分析了在亚种间融合细胞(domesticus×molossinus)的体细胞核的组蛋白乙酰化。根据Forsberg等,Proc.Natl.Acad.Sci.USA,97,14494-99(2000)来实施下述实验。实际的操作规程参照抗体所来自的Upstate biotechnology的染色质免疫沉淀手册。
(细胞核组蛋白的修饰实验)抗乙酰化组蛋白H3的抗体、抗乙酰化组蛋白H4的抗体、抗乙酰化组蛋白H3-Lys4的抗体和抗乙酰化组蛋白H3-Lys9的抗体用于实施体细胞、ES细胞和融合细胞的细胞核组蛋白的修饰。然后,上述四种抗体用于实施染色质免疫沉淀以便分析组蛋白和DNA之间的相互作用。
DNA-组蛋白复合物通过分别与抗体发生反应而得以回收。通过扩增包含于回收的DNA-组蛋白复合物中的DNA,揭示了组蛋白如何在DNA区修饰的。
每个测定实验培养2×107~108个细胞。
第1日,在每10ml培养基中加入1,207μl 37%甲醛至终浓度为1%。然后,将混合物于37℃下以60次/分钟摇10分钟。
然后,加入甘氨酸至终浓度为0.125M以停止交联反应,然后将其静置于室温下5分钟。
对粘附性细胞,去除培养基,用冰冷却的PBS(含有8gNaCl,0.2gKCl,1.44g Na2HPO4和0.24g KH2HPO4/升(pH7.4)和1Mm PMSF)冲洗培养皿。每培养皿加入2ml的胰蛋白酶。然后,从培养皿中吸出胰蛋白酶。通过加入1%FCS-PBS终止胰蛋白酶化。离心细胞并用冰冷却的PBS冲洗得到的细胞片状沉淀物两次。对悬浮细胞,离心细胞并用冰冷却的PBS冲洗得到的细胞片状沉淀物两次然后,在10ml的细胞裂解缓冲液(10mMTris-HCl(pH8.0),10mMNaCl,0.2%诺乃洗涤剂P-40,10mM乳酸钠(避免去甲基化)和蛋白酶抑制剂(溶解于1ml无菌水中的1片完全蛋白移植剂(Roche;目录号.1697498),稀释1/100备用))。重悬细胞片状沉淀物。确定没有细胞团,然后置于冰上温育10分钟。以5000rpm于4℃离心悬液5分钟。
细胞核片状沉淀物在核裂解缓冲液(50mM Tris-HCl(pH8.1),10Mm EDTA,1%SDS,10mM乳酸钠和蛋白酶抑制剂(溶解于1ml无菌水中的1片完全蛋白移植剂(Roche;目录号.1697498),稀释1/100备用)),然后置于冰上温育10分钟。
然后,用超声裂解样品以便使染色质的长度平均为500bp。在这一步骤中,功率为最大值的10~15%,40秒,进行8次。以15000rpm于4℃离心样品5分钟。将上清(200μl)移至新管。此时,将超声裂解的染色质可选择性地保存于-70℃。
得到的样品在10倍ChIP稀释缓冲液(16.7mM Tris-HCl(pH8.1),167mM NaCl,1.2Mm EDTA,0.01% SDS,1.1% Triton X-100,10mM乳酸钠和蛋白酶抑制剂(溶解于1ml无菌水中的1片完全蛋白移植剂(Roche;目录号1697498),稀释1/100备用))稀释。
为降低非特异性背景,通过加入80μl Sarmon精子DNA/蛋白A的agarose纯化染色质样品。于4℃摇动温育样品1小时。然后,以1000rpm于4℃离心样品1分钟。将得到的上清移至新管。
然后,在得到的上清中加入多种抗体(10μl的抗乙酰化组蛋白H3的抗体(K9&14,Upstate biotechnology,New York,USA;目录号.#06-599)(5μl的抗体溶液用于2ml的反应溶液);5μl抗乙酰化组蛋白H4的抗体(Upstate biotechnology,New York,USA;目录号.#06-598)(5μl的抗体溶液用于2ml的反应溶液);5μl抗双乙酰化组蛋白H3(K4或K9)抗体(5μl的抗体溶液用于2ml的反应溶液)(Upstatebiotechnology,New York,USA;目录号分别为#07-030或#07-212)。典型地,每种抗体的需要量为1μg。不加抗体的样品作为检测中的阴性对照。
得到的上清于4℃摇动过夜。
在第2日,在样品中加入60μl的Sarmon精子DNA/蛋白A的agarose(Upstate biotechnology(目录号为16-157)(60μl的Sarmon精子DNA/蛋白A的agarose用于2ml的反应溶液)。于4℃摇动样品1小时,然后,以1000rpm于4℃离心样品1分钟。来自“无抗体”样品的样品作为“总产出染色质”而保存。
然后,用1ml低盐冲洗缓冲液(20mM Tris-HCl(pH8.1),150mMNaCl,2Mm EDTA,0.1% SDS,1% Triton X-100)冲洗片状沉淀物,然后于室温下摇动5分钟。然后,用1ml高盐冲洗缓冲液(20mMTris-HCl(pH8.1),500mM NaCl,2Mm EDTA,0.1% SDS,1% TritonX-100)冲洗片状沉淀物,然后于室温下摇动5分钟。然后用1ml的LiCl冲洗缓冲液(10mM Tris-HCl(pH8.1),0.25M LiCl,1Mm EDTA,1%诺乃洗涤剂P-401%,1%的去氧胆酸钠)冲洗片状沉淀物,然后于室温下摇动5分钟。最后,用1×TE(10mM Tris-HCl(pH8.0),1MmEDTA)冲洗片状沉淀物,然后于室温下摇动5分钟。
然后,用150μl的洗脱缓冲液(0.1M NaHCO3,1% SDS)洗脱抗体/蛋白/DNA复合物两次。简单离心样品后,于室温下摇15分钟。上清移至新管。此时,样品的总量为300μl。
然后在洗脱液中加入18μl的5M NaCl和1μl的10mg/mlRNase A。通过于65℃加热4~5小时来实施逆连接。
然后在样品中加入6μl的0.5M EDTA,1μl的1M Tris-HCl(pH6.5)和2μl的10mg/ml蛋白酶K,然后置于4℃温育1小时。
通过苯酚氯仿提取来回收DNA,然后用乙醇沉淀。加入糖原(20μg)。将样品保存于-20℃过夜。
第3日,将储存的样品离心来回收DNA。用1ml的70%乙醇冲洗片状沉淀物。干燥DNA,然后在30μl的1×TE中重悬。“全部输出”样品通过加入870μl的1×TE进一步稀释。然后2~3μl的样品用于PCR反应。
(鉴定再程序化因子)确定再程序化因子的方法,按照如下步骤实施。
1.为从体细胞基因组辨别体细胞基因组,按照实施例1中所述从含有具有与Mus musculus domesticus(dom)小鼠相比更高多态性的DNA碱基序列的亚种M.m.molossinus(mol)中建立ES细胞。制备ES细胞(dom)×体细胞(mol)或ES细胞(mol)×体细胞(dom)的亚种间融合细胞。
2.用1%甲醛溶液固定体细胞、ES细胞和融合细胞10分钟以便交叉连接组蛋白和DNA(组蛋白-DNA复合物)。然后,按照前述方法提取核蛋白。核蛋白与前述抗乙酰化组蛋白H3的抗体、抗乙酰化组蛋白H4的抗体、抗乙酰化组蛋白H3-Lys4的抗体和抗乙酰化组蛋白H3-Lys9的抗体反应。
3.反应溶液过蛋白A柱以便分离与前述抗体反应的组蛋白-DNA复合物。从与前述各抗体反应的组蛋白-DNA复合物中提取DNA。
4.提取的DNA点附在膜上。所述DNA,基因组上分散重复的B2重复序列、IAP和小鼠基因组DNA用作探针来实施杂交。探针序列描述如下B2重复序列GCAAAGCCAGGTTCCTTCCTTCTTCCAAATATTTTCATATTTTTTTTAAAGATTTATTTATTCATTATATGTAAGTACACTGTAGCTGTCTTCAGACACTCCAGAAGAGGGCGTCAGATCTTGTTACGTATGGTTGTGAGCCACCATGTGGTTGCTGGGATTTGAACTCCTGACCTTCGGAAGAGCAGTCGGGTGCTCTTATCCACTGAGCCATCTCACCAGCCCCTGGTTTATTTTTTTAATTATTATTTGCTTTTTGTTTATCAAGACAGGGTTTCTCTGCATAGCTCTAATTGT(SEQ ID NO.41);和IAPGAATTCGATTGGTGGCCTATTTGCTCTTATTAAAAGAAAAAGGGGGAGATGTTGGGAGCCGCCCCCACATTCGCCGTTACAAGATGGCGCTGACATCCTGTGTTCTATGTGGTAAACAAATAATCTGCGCATGTGCCAAGGGTATCTTATGACTACTTGTGCTCTGCCTTCCCCGTGACGTCAACTCGGCCGATGGGCTGCAGCCAATCAGGGAGTGACACGTCCGAGGCGAAGGAGAATGCTCCTTAAGAGGGACGGGGTTTCGTTCTCTCTCTCTCTTGCTTTTCTCTCTCTCTTGCTTTTCTCTCTCTCTTGCTTCTTGCTCTCTTGCTTCTTGCACTCTGTTCCTGAAGATGTAAGAATAAAGCTTTGTCGAATCACTAGTGAATTC(SEQ ID NO.42)(重复序列用下划线标出)结果,所使用的全部DNA均与体细胞基因组上的乙酰化组蛋白H3-Lys9发生反应、而与ES细胞和融合细胞基因组上的乙酰化组蛋白H3-Lys4、乙酰化组蛋白H3和乙酰化组蛋白H4发生发应。
5.使用分别特异性针对在未分化细胞中表达而不在体细胞中表达的Oct4基因、在体细胞或未分化细胞中表达的神经丝-M和L基因、在体细胞中表达而不在未分化细胞中表达的Thy-1基因的基因组PCR-引物组来扩增提取的DNA。所使用的引物序列如下Oct4正向CTAGACGGGTGGGTAAGCAA(SEQ ID NO43)反向CAGGAGGCCTTCATTTTCAA(SEQ ID NO44)Oct4sp 1正向CGCCTCAGTTTCTCCCACC(SEQ ID NO45)
反向AGCCTTGACCTCTGGCCC(SEQ ID NO46)Thy-1正向CTCCAAAGCCAAAACCTGTC(SEQ ID NO47)反向GCTGACTGGAGGTGTTCCAT(SEQ ID NO48)NF-M正向GGGTGACAAGAGGTCTGGAA(SEQ ID NO49)反向CAGCGTGTAGCTCATCTTGG(SEQ ID NO50)NF-L正向CAGGGAAGTTATGGGGGTCT(SEQ ID NO51)反向AGAAGAACGGGGGAGAAGAG(SEQ ID NQ52)然后,采用限制性酶对DNA碱基序列多态位点识别的差异来确定融合细胞中扩增的DNA来自ES细胞基因组还是体细胞基因组。结果,无论体细胞中的基因存在或不存在或无论融合细胞中的基因存在或不存在,体细胞源性基因组均与融合细胞中的乙酰化组蛋白H3-Lys4、乙酰化组蛋白H3和乙酰化组蛋白H4发生反应。
已知,乙酰化组蛋白可构成松弛的染色质结构。另一方面,已知,组蛋白H3-Lys4和组蛋白H3-Lys9的甲基化是互补修饰,组蛋白H3-Lys9在紧密染色质中甲基化,而组蛋白H3-Lys4在松弛染色质中甲基化。分析基因组中分散的重复序列和融合细胞中的每一基因提示了再程序化的体细胞基因组形成了松弛的染色质结构。特别地,似乎组蛋白H3-Lys4的甲基化在再程序化中发挥重要作用。
(结果)根据细胞亚种内部的基因组DNA的碱基序列的多态性,就可能确定来自体细胞核的基因组是否被修饰。该实施方案的结果,由于细胞融合,体细胞基因组被完全乙酰化而具有松弛的染色质结构。重要的是,在再程序化的基因组中,组蛋白H3-Lys4被特异性甲基化。已知组蛋白H3的乙酰化伴随组蛋白H3-Lys4的甲基化。甲基化比乙酰化更加稳定的外生性。因此,这提示了组蛋白H3-Lys4的甲基化是再程序化基因组的特征性修饰。甲基化组蛋白H3-Lys4的酶或甲基化所涉及的因子即被认为是一种再程序化因子(参见图11)。
(实施例4制备MHC缺陷ES细胞-体细胞的融合细胞)在实施例4中,用MHC(H-2)I型缺陷小鼠和MHC(H-2)II型缺陷小鼠制备MHC(H-2)I型和II型缺陷小鼠。从制得的小鼠中获取H-2I型(-/-)和II型(-/-)ES细胞,将该细胞用于制备融合细胞。详细方法如下述(参见图12)。
MHC I型KbDb-/-小鼠由Vugmeyster Y.等惠赠(Vugmeyster Y.等,Proc.Natl.Acad.Sci.USA,95,12492-12497(1998))。
MHC II型敲除小鼠由Madsen L.等惠赠(Madsen L.等,Proc.Natl.Acad.Sci.USA,96,10338-10343(1999))。
在典型繁殖条件下喂养和交配此两品系小鼠。繁殖条件与Kyoto大学所确定的动物实验所需要的条件一致。通过交配,制备了双敲除小鼠。I型和II型基因以0.3厘米的相邻距离而定位于同一染色体上,。因此,获得同时缺陷两个基因的小鼠概率为3/1000小鼠。缺陷区域的特异性PCR引物和探针(由于I型和II型基因的物理缺陷,该基因组用作探针)用于实施通过基因组PCR和Southern印迹分析的筛选。事实上,从通过交配获得的500多小鼠中得到了2个小鼠。
MHC II型KQ小鼠在包含5个基因的区域缺陷大约80kb。从所述小鼠的胚胎中建立ES细胞。建立的ES细胞用于敲除MHC I KbDb。按照Vugmeyster等的方法(如前)实施敲除方法。将得到的双敲除小鼠注射到胚泡中以制备嵌合小鼠。按照“Manipulation the mouseembryoA laboratory manual”2nd,Hogan B.等,CSHL Press USA。来实施嵌合小鼠的制备。从通过交配嵌合小鼠获得的双敲除个体中建立双敲除ES细胞。
然后,将双敲除的ES细胞与胸腺细胞融合来制备融合细胞。按照记载于实施例2中的Tada,M.,Tada,T.,Lefebvre,L.,Barton,S.C.Surani,M.A.,EMBO J.,16,6510-6520(1997)实施细胞融合方法。
采用实施例2中记载的方法来研究获自细胞融合的融合细胞的基因组以便确定在体外诱导分化条件下,融合细胞中的体细胞基因组能否分化为特定细胞类型。按照记载于实施例2中的方法实施所述测定。该测定方法如下述。
二倍体细胞中含有针对1个基因的2个基因座(父系和母系)。通过同源重组去除每个基因座。可以使用去除的基因*2个药物选择性标记物来实施这一步骤。为了去除I型和II型基因,neo基因用于基因座起始去除而puro基因用做另一个用于去除等位基因的选择性标记物。因此,I型和II型基因可在培养条件下被完全去除。因此,揭示了可使用不同选择性标记物通过两次普通敲除而制备双敲除。
在这一实施例中,融合细胞克隆可培养8-11天以促进分化为神经细胞。通过这一诱导,来自融合细胞的大多数克隆和宿主ES细胞产生针对神经上皮干细胞特异的Nestin和有丝分裂后神经细胞特异的TuJ的正向免疫反应。极少能发现该正向针对干细胞特异的E-Cadherin的克隆。这些数据显示了融合细胞的多能性得以再现以及融合细胞受控而分别分化为神经细胞系。
本发明人随后检测了经体外11日诱导分化的融合细胞源性多巴胺能神经细胞是否能在移植后整合到小鼠大脑的纹状体中,如实施例2中所述。通过注射后15日的X-gal染色(蓝色阳性细胞)来检测移植物中细胞的存活。采用抗TH和LacZ的抗体对移植物冷冻切片行免疫组织化学双染色分析,结果清楚证实了融合细胞源性神经中枢细胞在注射位点表达多巴胺能神经细胞特异性蛋白。因此,即使在将融合细胞在体外诱导分化为特定类型细胞后,体细胞基因组仍能够表达神经细胞特异性基因。这些数据显示出MHC缺陷的融合细胞能够用于制备用于疾病和衰老治疗中的替代组织的可能性。
(应用于人类)当使用人类细胞时,使用人类作为宿主制备缺陷细胞将带来伦理学问题。因此,所有操作均在培养条件下实施。二倍体细胞含有针对1个基因的2个基因座(父系和母系)。通过同源重组可以去除每个基因座。特别地,可以采用去除的基因×2个药物选择性标记物来实施该方法。例如,为了去除I型和II型基因,将neo基因作起始去除的基因座的标记,将puro基因用作去除等位基因的另一选择性标记。由此,可在培养条件下,完全去除I型和II型基因。另外,发现将neo基因导入起始去除的基因座和使用高浓度G418实施筛选时,等位基因可被neo基因替换。
该由此而获得细胞用于制备ES源性MHC缺陷融合细胞。为了检测从再程序化体细胞基因组表达的组织特异性基因是否相似于ES基因组,对从回收RNA获得的RT-PCR产物进行测序。在测序的12个克隆中,有7个克隆发现来自体细胞基因组。
再程序化的人源多能干细胞用于实施多种分化预实验。发现再程序化细胞分化为血管、神经细胞、肌细胞、造血细胞、皮肤、骨、肝脏、胰腺等。
(实施例5制备个体的去除基因组的定制ES细胞)为完全避免排斥反应,需要制备源自个体体细胞的定制多能干细胞。然后,制备将源自ES细胞的全部基因组完全去除的融合细胞。
在体细胞-ES融合细胞中,再程序化的体细胞基因组具有与ES细胞基因组相似的分化能力。因此,通过采用基因操作从融合细胞中仅去除ES细胞基因组,可以获得定制的多能干细胞。本发明人对细胞融合中的体细胞源性Oct4基因的再活化实验(Tada等,Curr.Biol.,2001)揭示了在融合后体细胞基因组的将再程序化大概需要2日。换言之,细胞融合后必须选择性去除ES细胞基因组。
基于这一认识,本发明人制备了转基因ES细胞,其中至少一个LoxP序列被引入其每一染色体中)。使用逆转录病毒载体(基于莫洛尼小鼠白血病病毒(Moloney Murine Leukemia Virus(MMLV)或小鼠干细胞病毒(Murine Stem Cell Virus(MSCV))的逆转录病毒表达载体)制备隔离子-聚合酶II启动子-GFP-LoxP-隔离子的构建体(图14)。隔离子用于隔绝周围基因对LoxP的影响,聚合酶II启动子用于使GFP恰当的表达以便使基因拷贝数可用细胞分选仪进行线性鉴别。目前具有最低毒性的GFP(hGFP(Clonetech))用于筛选含有导入基因的ES细胞。LoxP序列拷贝数与GFP的表达水平相关。根据Chung,J.H.等Proc Natl Acad Sci USA 94,575-580(1997)实施制备。构建体具有LTR-pol II启动子-hGFP-LoxP-LTR(隔离子)的结构(图14)。
先用上述实施例描述的方法制备ES细胞。用胰蛋白酶处理带有逆转录病毒的ES细胞,以制备单细胞悬液,然后与产生病毒的细胞(包装细胞系)的培养上清共培养1至2小时,由此用逆转录病毒感染ES细胞。用GFP作为标记。用细胞分选器(sorter)(FACS Vantage(BDBiosciences))分选使转基因ES细胞浓缩。分选按如下方法进行。将隔离子-聚合酶II启动子-GFP-LoxP-隔离子基因导入ES细胞。然后用细胞分选器收集转基因ES细胞,其中用GFP基因的表达水平作为参比。这一操作进行数次。
通过DNA FISH测定插入位点。按照Kenichi Matsubara和HiroshiYoshikawa编,Saibo-Kogaku[Cell Engineering],special issue(别册),Jikken Purotokoru Shirizu[Experiment Protocol Series],“FISH JikkenPurotokoru Hito·Genomu Kaiseki kara Senshokutai·Idenshishindanmade[FISH Experiment/Gene diagnosis]”,Shujun-sha(Tokyo)等来实施DNA FISH。
克隆若干次实施基因导入的ES细胞。隔离子-聚合酶II启动子-GFP-LoxP-隔离子用作探针而在染色体上绘图。选择每个染色体含有至少一个基因的转基因ES细胞。
然后在上述实施例中获得体细胞。在与上述实施例中相似的条件下制备转基因ES细胞和体细胞的融合细胞。通过电穿孔或脂质转染将暂时表达Cre酶的质粒(为一环形质粒,其中Cre酶基因控制性与Pgkl或CAG启动子相连)导入融合细胞中。质粒暂时表达Cre酶(导入后3~5日),然后被分解。由于Cre酶的作用,LoxP序列经受同源重组,因此仅将来自ES细胞基因组的染色体修饰为具有双着丝粒或无中心的染色体,而在细胞周期中通过细胞分裂而被去除。使用上述每一细胞特异性引物和探针来确定所述去除。在若干次细胞分裂之后,仅保留来自再程序化体细胞的双倍体基因组。因此,仅保留了再程序化的体细胞基因组。因此制备了推定体细胞源性定制多能干细胞。
转基因ES细胞一经建立,即可通过使用来自特定患者的体细胞的融合而很容易地建立定制ES细胞。因此,在该实施例中,在小鼠模型实验系统中成功制备建立定制ES细胞。该技术不仅可应用与小鼠还可应用于其它生物体(特别是,包括人类的哺乳动物)。因此,将可改技术应用于人类ES细胞来制备来自个体体细胞的人类定制多能干细胞。
与核移植克隆不同,不使用人类未受精卵的通过细胞融合的体细胞基因组的再程序化包括在ES细胞的应用范围中而且可以按照指导方案进行操作。这是一种新的基因工程技术,其对再生医学具有巨大的影响,而可将伦理问题最小化。
(实施例6分化为造血细胞、组织和器官)然后,确定用上述实施例中制备的多能干细胞能分化或纯化为造血干细胞。根据Kaufman,D.S.,Hanson,E.T.,Lewis,R.L.,Auerbach,R.和Thomson,J.A.(2001),Hematopoietic colony-forming cellsderived from human embryonic stem cells.Proc Natl Acad Sci USA98,10716-21的记载而实施相似的实验。结果发现在分化细胞中存在由细胞分化成的造血干细胞。因此,这揭示了本发明的多能干细胞仍然保持了分化为造血干细胞的能力。而造血干细胞在实际临床应用中具有实用性。
(实施例7分化为单核细胞、组织和器官)然后,确定用上述实施例中制备的多能干细胞能够分化或纯化为肌细胞。根据Boheler,K.R.,Czyz,J.,Tweedie,D.,Yang,H.T.,Anisimov,S.V.和Wobus,A.M.(2002),“Dfifferentiation of pluripotentembryonic stem cells into cardiomyocytes(多能胚胎干细胞分化为心肌细胞)”,Circ.Res.,91,182-201的记载而实施相似的实验。结果发现在分化细胞中存在由细胞分化成的心肌细胞。因此,这揭示了本发明的多能干细胞仍然保持了分化为肌细胞的能力。而肌细胞在实际临床应用中具有实用性。
虽然本说明书描述了优选的实施方案,但除所附权利要求中所记载的以外,这些实施方案并非意在本发明保护范围进行限制。本说明书所引用的所有专利、公开的专利申请和公开应被理解为全文引于本说明书作为参考。
工业实用性本发明在有效地建立不会诱发免疫排斥反应的,不以卵细胞为起始的能够作为治疗疾病供体的细胞、组织和器官的方面具有划时代的实用性。本发明能够提供不能通过传统技术获得的含有与成年个体相同基因组的多能干细胞。因此,本发明不仅能避免传统方法自身固有的问题和伦理学问题,还可以避免免疫排斥反应,而且能够以简单的方式为个体提供定制干细胞。因此,本发明具有深远的工业实用性。
序列表<110>NAKATSUJI,NorioTADA,TakashiReproCELL Inc.
TADA.Masako<120>定制多能干细胞及其应用<130>TR004 PCT<140>PCT/JP02/09732<141>2002-09-20<150>JP 2001-290005<151>2001-09-21<160>52<170>PatentIn version 3.1<210>1<211>20<212>DNA<213>人工序列<220>
<223>引物<400>1ctaggtgagc cgtctttcca20<210>2<211>20<212>DNA<213>人工序列<220>
<223>引物<400>2ttcagggtca gcttgccgta20
<210>3<211>24<212>DNA<213>人工序列<220>
<223>引物<400>3gtaggcacct gtggggaaga aact 24<210>4<211>25<212>DNA<213>人工序列<220>
<223>引物<400>4tgagagctgt ctcctactat cgatt 25<210>5<211>27<212>DNA<213>人工序列<220>
<223>引物<400>5acaagcttca aagcacaatg cctggct27<210>6<211>30<212>DNA<213>人工序列<220>
<223>引物<400>6gggtctagac tctcagccgg ctccctcagg 30<210>7<211>24<212>DNA<213>人工序列<220>
<223>引物<400>7ctcggatcct acttctagct ttct24<210>8<211>20<212>DNA<213>人工序列<220>
<223>引物<400>8aaataccttg tgaaaacctg20<210>9<211>20<212>DNA<213>人工序列<220>
<223>引物<400>9cagatccttg cagttcatcc20<210>10
<211>20<212>DNA<213>人工序列<220>
<223>引物<400>10tccacagtca cttgggttcc20<210>11<211>23<212>DNA<213>人工序列<220>
<223>引物<400>11tttccctccc ggagattccc taa23<210>12<211>29<212>DNA<213>人工序列<220>
<223>引物<400>12cctgaggaga cggtgactga ggttccttg 29<210>13<211>25<212>DNA<213>人工序列<220>
<223>引物
<400>13aatcgcat ta aaaccctccg aacctv25<210>14<211>24<212>DNA<213>人工序列<220>
<223>引物<400>14tagcacaagt ggaattgtgc tgcg24<210>15<211>24<212>DNA<213>人工序列<220>
<223>引物<400>15gtaggcacct gtggggaaga aact 24<210>16<211>25<212>DNA<213>人工序列<220>
<223>引物<400>16tgagagctgt ctcctactat cgatt 25<210>17<211>27<212>DNA<213>人工序列
<220>
<223>引物<400>17acaagcttca aagcacaatg cctggct27<210>18<211>31<212>DNA<213>人工序列<220>
<223>引物<400>18gggtctagac tctcagccgg ctccctcagg g 31<210>19<211>20<212>DNA<213>人工序列<220>
<223>引物<400>19aaggagtgct gccatggtga20<210>20<211>20<212>DNA<213>人工序列<220>
<223>引物<400>20cctaggtttc ttgcagcctc20
<210>21<211>18<212>DNA<213>人工序列<220>
<223>引物<400>21tcgtattcca acaggagg 18<210>22<211>20<212>DNA<213>人工序列<220>
<223>引物<400>22cactcttcct tctggagatg20<210>23<211>22<212>DNA<213>人工序列<220>
<223>引物<400>23ttggggtcgc tgcggtctag cc 22<210>24<211>22<212>DNA<213>人工序列<220>
<223>引物
<400>24ggtcgtctat caggttgtca cg 22<210>25<211>20<212>DNA<213>人工序列<220>
<223>引物<400>25tgtcagagga gcccgaggtc20<210>26<211>20<212>DNA<213>人工序列<220>
<223>引物<400>26ccaagagcag cccatcaaag20<210>27<211>20<212>DNA<213>人工序列<220>
<223>引物<400>27ggagtgtcgc ttagaggtgc20<210>28<211>20<212>DNA<213>人工序列
<220>
<223>引物<400>28tccagaaagc caagagaagc20<210>29<211>23<212>DNA<213>人工序列<220>
<223>引物<400>29tgaagagagc ggacaaggag atc23<210>30<211>24<212>DNA<213>人工序列<220>
<223>引物<400>30tctggagtta agaaatcgga gctg 24<210>31<211>24<212>DNA<213>人工序列<220>
<223>引物<400>31gccgagcaga ccaaggaggc catt 24
<210>32<211>24<212>DNA<213>人工序列<220>
<223>引物<400>32ctggatggtg tcctggtagc tgct24<210>33<211>19<212>DNA<213>人工序列<220>
<223>引物<400>33aggacggctc tctgaagaa 19<210>34<211>20<212>DNA<213>人工序列<220>
<223>引物<400>34ttgaccgagt tgaaggcgaa 20<210>35<211>26<212>DNA<213>人工序列<220>
<223>引物
<400>35tgaaggtcgg tgtgaacgga tttggc 26<210>36<211>21<212>DNA<213>人工序列<220>
<223>引物<400>36catgtaggcc atgaggtcca c 21<210>37<211>23<212>DNA<213>人工序列<220>
<223>引物<400>37gcccgcgctc caactgctct gat23<210>38<211>22<212>DNA<213>人工序列<220>
<223>引物<400>38cctacggtgg tgcgccctct gc 22<210>39<211>21<212>DNA<213>人工序列
<220>
<223>引物<400>39tgccatccgc tacattgaga g 21<210>40<211>22<212>DNA<213>人工序列<220>
<223>引物<400>40ccgggtagca ggctgtgagt tg 22<210>41<211>297<212>DNA<213>人工序列<220>
<223>探针<400>41gcaaagccag gttccttcct tcttccaaat attttcatat tttttttaaa gatttattta 60ttcattatat gtaagtacac tgtagctgtc ttcagacact ccagaagagg gcgtcagatc120ttgttacgta tggttgtgag ccaccatgtg gttgctggga tttgaactcc tgaccttcgg180aagagcagtc gggtgctctt atccactgag ccatctcacc agcccctggt ttattttttt240aattattatt tgctttttgt ttatcaagac agggtttctc tgcatagctc taattgt 297<210>42<211>391<212>DNA<213>人工序列
<220>
<223>探针<400>42gaattcgatt ggtggcctat ttgctcttat taaaagaaaa agggggagat gttgggagcc 60gcccccacat tcgccgttac aagatggcgc tgacatcctg tgttctatgt ggtaaacaaa 120taatctgcgc atgtgccaag ggtatcttat gactacttgt gctctgcctt ccccgtgacg 180tcaactcggc cgatgggctg cagccaatca gggagtgaca cgtccgaggc gaaggagaat 240gctccttaag agggacgggg tttcgttctc tctctctctt gcttttctct ctctcttgct 300tttctctctc tcttgcttct tgctctcttg cttcttgcac tctgttcctg aagatgtaag 360aataaagctt tgtcgaatca ctagtgaatt c 391<210>43<211>20<212>DNA<213>人工序列<220>
<223>引物<400>43ctagacgggt gggtaagcaa 20<210>44<211>20<212>DNA<213>人工序列<220>
<223>引物<400>44caggaggcct tcattttcaa 20
<210>45<211>19<212>DNA<213>人工序列<220>
<223>引物<400>45cgcctcagtt tctcccacc 19<210>46<211>18<212>DNA<213>人工序列<220>
<223>引物<400>46agccttgacc tctggccc18<210>47<211>20<212>DNA<213>人工序列<220>
<223>引物<400>47ctccaaagcc aaaacctgtc 20<210>48<211>20<212>DNA<213>人工序列<220>
<223>引物
<400>48gctgactgga ggtgttccat 20<210>49<211>20<212>DNA<213>人工序列<220>
<223>引物<400>49gggtgacaag aggtctggaa 20<210>50<211>20<212>DNA<213>人工序列<220>
<223>引物<400>50cagcgtgtag ctcatcttgg 20<210>51<211>20<212>DNA<213>人工序列<220>
<223>引物<400>51cagggaagtt atgggggtct 20<210>52<211>20<212>DNA
<213>人工序列<220>
<223>引物<400>52agaagaacgg gggagaagag 20
权利要求
1.分离的多能干细胞,包括所需基因组。
2.根据权利要求1的多能干细胞,其为非ES细胞。
3.根据权利要求1的多能干细胞,其中至少缺失部分移植抗原。
4.根据权利要求1的多能干细胞,其中缺失全部移植抗原。
5.根据权利要求1的多能干细胞,其中移植抗原包括至少一种主要组织相容性抗原。
6.根据权利要求3的多能干细胞,其中主要组织相容性抗原包括I型抗原。
7.根据权利要求1的多能干细胞,其中基因组被再程序化。
8.根据权利要求1的多能干细胞,其通过对细胞再程序化来制备。
9.根据权利要求8的多能干细胞,其中细胞为体细胞。
10.根据权利要求1的多能干细胞,其由干细胞和体细胞融合来制备。
11.根据权利要求10的多能干细胞,其中干细胞为ES细胞。
12.根据权利要求10的多能干细胞,其中干细胞为组织干细胞。
13.根据权利要求1的多能干细胞,其具有来自所需个体的基因组而且不是所需个体的ES细胞或卵细胞。
14.根据权利要求1的多能干细胞,其具有来自所需个体的体细胞的染色体。
15.根据权利要求1的多能干细胞,其不是直接来自于胚胎。
16.根据权利要求1的多能干细胞,其来自体细胞。
17.根据权利要求1的多能干细胞,其中所需个体以外的移植抗原降低。
18.根据权利要求1的多能干细胞,其来自所需个体卵细胞以外的细胞。
19.根据权利要求1的多能干细胞,其中所需基因组是早期胚胎以外阶段的个体的基因组。
20.根据权利要求1的多能干细胞,其是ES细胞和体细胞融合的未分化体细胞融合细胞,其中ES细胞中部分或全部移植抗原缺失。
21.根据权利要求1的多能干细胞,其是ES细胞和体细胞融合的未分化体细胞融合细胞,其中ES细胞中全部移植抗原缺失。
22.根据权利要求20的多能干细胞,其中移植抗原为主要组织相容性抗原。
23.根据权利要求22的多能干细胞,其中主要组织相容性抗原为I型抗原。
24.根据权利要求20的多能干细胞,其中体细胞为来自移植个体的淋巴细胞、脾细胞或精巢源性细胞。
25根据权利要求20的多能干细胞,其中至少一种ES细胞和体细胞是人源性细胞。
26.根据权利要求20的多能干细胞,其中体细胞是人源性细胞。
27.根据权利要求20的多能干细胞,其中至少一种体细胞和干细胞是经遗传修饰的。
28.一种制备具有所需基因组的多能干细胞的方法,包括如下步骤1)使干细胞中的部分或全部移植抗原缺失;和2)将干细胞和具有所需基因组的体细胞融合。
29.根据权利要求28的方法,其中干细胞是ES细胞。
30.根据权利要求28的方法,其中ES细胞是定制的ES细胞。
31.根据权利要求28的方法,其中移植抗原为主要组织相容性抗原。
32.根据权利要求31的方法,其中主要组织相容性抗原为I型抗原。
33.根据权利要求28的方法,其中体细胞为来自移植个体的淋巴细胞、脾细胞或精巢源性细胞。
34.根据权利要求28的方法,其中至少一种ES细胞和体细胞是人源性细胞。
35.根据权利要求28的方法,包括缺失全部移植抗原。
36.一种制备具有所需基因组的多能干细胞的方法,包括如下步骤(i)提供具有所需基因组的细胞;和(ii)将细胞暴露于含有再程序化因子的组合物中。
37.根据权利要求36的方法,其中细胞是体细胞。
38.根据权利要求36的方法,其中制备再程序化因子的至少一种药剂选自下列之一细胞周期调节剂、DNA解旋酶、组蛋白乙酰化剂和直接或间接与组蛋白H3 Lys4甲基化相关的转录因子。
39.一种细胞、组织或器官,其从具有所需基因组的多能干细胞分化而来。
40.根据权利要求39的细胞,其中细胞为肌细胞、软骨细胞、上皮细胞或神经细胞。
41.根据权利要求39的组织,其中组织为肌、软骨、上皮或神经。
42.根据权利要求39的器官,其中器官选自下述之一脑、脊髓、心脏、肝脏、肾脏、胃、肠和胰腺。
43.根据权利要求39的细胞、组织或器官,其中细胞、组织或器官用于移植。
44.根据权利要求39的细胞、组织或器官,其中所需基因组与移植细胞、组织或器官的宿主的基因组基本上相同。
45.一种药物,包括具有所需基因组的细胞、组织或器官,其中细胞、组织或器官从多能干细胞分化而来。
46.一种治疗或预防由于个体的细胞、组织或器官缺陷而致疾病或紊乱的药物,包括具有与个体基因组基本上相同的基因组的多能干细胞。
47.一种治疗或预防由于个体的细胞、组织或器官缺陷而致疾病或紊乱的方法,包括如下步骤制备具有与个体基因组基本上相同的基因组的多能干细胞;从多能干细胞分化细胞、组织或器官;和将对个体施用细胞、组织或器官。
48.一种治疗或预防由于个体的细胞、组织或器官缺陷而致疾病或紊乱的方法,包括如下步骤在个体中施用具有与个体基因组基本上相同的基因组的多能干细胞。
49.一种治疗或预防由于个体的细胞、组织或器官缺陷而致疾病或紊乱的方法,包括如下步骤在个体中施用药物,所述药物包括从具有与个体基因组基本上相同的基因组的多能干细胞分化而来细胞、组织或器官。
50.多能干细胞在制备用于治疗或预防由于个体的细胞、组织或器官缺陷而致疾病或紊乱的药物中的用途,其中所述药物包括具有与个体基因组基本上相同的基因组的多能干细胞。
51.多能干细胞在制备用于治疗或预防由于个体的细胞、组织或器官缺陷而致疾病或紊乱的药物中的用途,其中所述药物包括从具有与个体基因组基本上相同的基因组的多能干细胞分化而来细胞、组织或器官。
52.包含所需基因组的多能干细胞在制备包含多能干细胞的药物中的用途。
53.具有所需基因组的多能干细胞在制备包含从多能干细胞分化而来的细胞、组织或器官的药物中的用途。
54.一种再程序化因子,其选自下列之一组蛋白H3-Lys4甲基化酶或与组蛋白H3-Lys4甲基化相关的因子、细胞周期调节剂、DNA解旋酶、组蛋白乙酰化剂,和转录因子。
55.根据权利要求54的再程序化因子,其中因子是转录因子Sp1或Sp3,或其辅因子。
全文摘要
本发明提供了不会诱发免疫排斥反应的以及不以卵细胞为起始的能够作为治疗疾病供体的细胞、组织和器官。通过提供含有所需基因组的多能干细胞来实现该目的。通过如下方法获得这些细胞用再程序化因子进行处理,构建MHC缺失干细胞和体细胞的融合细胞,以及构建干细胞和体细胞的融合细胞后,采用遗传工程技术例如用逆转录病毒进行处理从而去除干细胞源性基因组。
文档编号A61K35/12GK1703508SQ0282323
公开日2005年11月30日 申请日期2002年9月20日 优先权日2001年9月21日
发明者中辻宪夫, 多田高, 多田政子 申请人:中辻宪夫, 多田高, 细胞重编株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1