非接触组织烧灼装置及其方法

文档序号:1096928阅读:170来源:国知局
专利名称:非接触组织烧灼装置及其方法
技术领域
本发明涉及心脏内部区域人体组织的定位和烧灼系统和方法。更具体地,本发明涉及利用具有用于治疗心律失常,例如心房纤维性颤动和心室心动过速的冲洗烧灼元件的可偏转导管来烧灼心脏组织的导管和方法。
背景技术
异常心率通常称为心律失常,对于异常的快速心律称为心动过速。本发明涉及通常由于靠近心脏腔室的心脏内表面处存在“致心律失常部位”或“副房室通道”而导致的心动过速的治疗。心脏包括多个正常通道,这些通道负责使电信号从上部房室向下部房室传播以进行正常的收缩和舒张。致心率失常部位或副房室通道可使正常通道旁路或短路,潜在地导致非常快速的心脏收缩或心动过速。
心动过速的治疗可通过各种方法可完成,包括药物、可植入起搏器/除颤器、手术和导管烧灼。虽然许多病人选择药物治疗,但药物只能掩饰症状而不能治愈根本病因。可植入装置只能在心律异常发生后对其进行校正。相反,手术和基于导管的治疗将通过阻塞或烧灼造成心动过速的异常致心率失常组织或副通道而真正治愈疾病。
本发明特别感兴趣的是射频(RF)烧灼技术,该技术已证明在心动过速治疗中极为有效且对病人产生最小的副作用和危险。RF导管烧灼通常在实行初始定位调查之后进行,在此致心率失常部位和/或副通道的位置由连接至可购买到的EP监视系统的诊断电生理导管来确定。在定位调查之后,通常将烧灼导管引入到心脏内的目标区域并进行操作以使烧灼尖端电极正确地放置到目标组织部位。而后通过尖端电极向心脏组织施加RF能量或其它合适的能量以烧灼致心率失常部位或副通道的组织。通常成功地破坏这些组织,就可消除导致心动过速的异常信号波形。
心房纤维性颤动(AF)是心率异常的一种,其确信是由心房内电兴奋的功能性重返的多个小波的同时发生而导致的,这引起一种情况,在该情况下,电活动的传导变得如此紊乱以至于心房不规律地收缩。AF为与较高发病率和死亡率相关的常见心律失常。不规则心脏功能可产生多种临床症状并导致与AF有关的血液动力学异常,包括中风、心力衰竭和其它血栓栓塞情况。AF是脑中风的主要原因,其中左心房的纤颤动作导致血栓形成。血栓栓塞随后被驱入左心室并进入中风可能发生的脑循环。
许多年来,AF唯一有效的治疗方法就是手术,其具有较大的心房切口,该切口用于分隔在使AF永久存在的临界值以下的心房容量。手术“迷路(maze)”过程,如所公知的,包括在左心室内制造垂直切口,该垂直切口从上肺静脉到内肺静脉并终止于二尖瓣环,另外的一个水平切口连接到该垂直线的顶端。相信在肺静脉(PV)口内或处起源的异位心跳可能是突发性或永久性AF的根源。因此,已采用一连串多点RF烧灼以在左心房内产生线性波形来在突发性或慢性AF病人身上重复手术过程。虽然手术成功,但在有此情况下,该技术可在伤口间留下间隙,为再进入回路的重新出现创造了机会。采用这种方法的另一个问题是肺静脉(PV)狭窄的高发生率。
已采用不同的能量源来使肺静脉从心房电隔离开来。这些能量源包括RF、激光、微波、低温灼蚀、光和超声能量。每种能量具有其优点和缺点,且PV隔离已获得了不同程度的成功。此外,一些研究人员最近提出,采用超声能量进行导管烧灼可减小PV狭窄的发生率。
心室心动过速(VT)是另一种可由基于导管的定位和烧灼系统进行治疗的异常心率。VT是由于产生自心室而不是产生于已知的窦房(SA)节心脏自然起搏的电兴奋而引起的心律异常。由于电兴奋不是从SA传导至心室,心室就会很快地异常收缩。因此,心脏的四个腔室就不可能在心跳之间完全注入血液,从而泵入身体其余循环通道的血液就会较少。长此下去,VT可导致心力衰竭或恶化为心室纤维性颤动,进而导致心肌梗塞。VT最常见的治疗方法为抗心律失常药物,但是如果药物无效,则可推荐采用心律复律法。仍然遭受VT疾病的患者可需要植入心率复律起搏器。虽然RF导管烧灼已用于治疗VT,但是成功的情况仅限于哪些由于缺血性心脏病而导致的VT。这可能是由于RF能量很难达到足够的组织穿透以烧灼位于心脏内部疤痕组织下面的心律失常回路。此外,心室天然比心房组织厚得多,从而当采用传统RF烧灼技术时,产生透壁伤口更为艰难。
最近,冲洗尖部的RF烧灼导管已用于产生较深和较大的伤口,从而能够穿透心壁,然而,还需要进一步的改进。这可能由于心室小梁的心脏内部表面不规则性,从而可能对使RF烧灼导管的烧灼电极与足够的组织接触提出了技术挑战。
然而,采用超声能量进行的心脏烧灼不需要与下面的组织良好的接触。超声能量在周围介质内以机械波的形式传播,且在组织中振动转换为热。因此组织与超声换能器不需要象与RF烧灼电极那样紧密接触。在组织的指定区域内,目标区域处的组织可被加热到足够高的温度以获得烧灼,而目标区域周围的组织只受到低强度超声能量而不会受到损伤。
为在组织中产生热效应,超声发射元件具有换能器。超声换能器的压电特性产生了这些材料的局限性。一个主要的局限性是当换能器的温度升高时,其性能持续下降直到不能观察到声波为止。保持这种材料的工作温度冷却的一个方法是冲洗换能器。通过导管引入或泵入象水这样的冷却介质以消散壳体内的热量并有效冷却换能器,包括冷却外部组织表面以避免不需要的组织损伤。Schaer等人在美国专利No.6,522,930中描述了一种组织烧灼装置,其中烧灼元件覆盖有允许受压流体通过的管状多孔膜,以使烧灼元件与组织可烧灼地耦合。McLaughlin等人在美国专利No.5997,532中也描述了一种在尖部电极上覆盖有多孔、非导电缓冲层的烧灼导管。在Schaer等人和McLaughlin等人的导管中,从多孔膜或多孔尖部电极渗出以冷却组织烧灼元件界面的冲洗流体量可产生忽大忽小的烧灼面积。这种现象在不规则的心脏内部表面,如心室小梁,可以表现得更为显著。
因此,仍然需要一种能够提供改进的在治疗位置处,特别是在不规则心脏内部表面烧灼操作的基于导管的系统和方法。

发明内容
本发明的一个目的是提供一种能够准确将导管定位在所需治疗位置的系统和方法。
本发明的另一个目的是提供在治疗位置,特别是在不规则心脏内部表面进行改进的烧灼操作的系统和方法。
为实现本发明的目的,提供一种用于烧灼心脏内部区域人体组织的导管。该导管包括手柄组件、轴和连接到轴远端的远侧末端部分。该远侧末端部分具有非柔顺且非多孔性盖和烧灼元件,该盖具有形成孔的管状壁,该烧灼元件安装在孔内并与盖的壁隔开。


图1示出根据本发明一个实施例的定位和烧灼系统。
图2是图1中系统的导管的侧视图。
图3是图1和2中导管远侧末端部分的放大横截面图。
图4是图1和2中导管远侧末端部分的放大侧视图。
图5是沿图4中线A-A的远侧末端部分的横截面图。
图6是沿图3中线B-B的远侧末端部分的横截面图。
具体实施例方式
下面的详细描述是实施本发明目前最佳采用的模式。本描述不起限定意义,而只是为了说明本发明实施例的总的原理。本发明的范围由附加的权利要求书进行最佳限定。在某些实例中,省略了公知的装置、组成、部件、机构和方法的具体描述以免这些不必要的细节使本发明变得模糊不清。
本发明提供一种用于烧灼心脏内部区域人体组织的导管。该导管包括手柄组件、轴和连接到轴远端的远侧末端部分。该远侧末端部分具有非柔顺性且非多孔性盖和烧灼元件,该盖具有形成孔的管状壁,该烧灼元件安装在孔内并与盖壁间隔开。
即使本发明在此后将结合治疗AF或VT进行描述,应当懂得,本发明的原理并非由此限定,而是还可用于其它应用(例如,副通道、心房扑动的治疗),以及其它身体通道(例如,右心房、左心房、上静脉腔、或心室、肺静脉)。
图1-6示出根据本发明一个实施例的导管系统20。该导管系统20具有管状轴22,该管状轴22具有远端26、近端28和穿过轴22延伸的主腔30。远侧末端部分24固定到轴22的远端26上。手柄组件32利用导管技术中公知的技术连接到轴22的近端28上。
远侧末端部分24具有容纳在非柔顺性且非多孔性管状盖62内的烧灼元件60。该烧灼元件60与盖62的壁间隔开且不接触。盖62具在其中延伸的孔64。轴22的远端26滑动配合到盖62近端66的孔64内,且通过胶接固定到盖62上。内套筒68通过胶接固定到轴22远端处的主腔30内。内套筒68由塑料材料,如PEEK制成,并具有分离导线的多个通道67(参见图6)、内部支撑件102和流体腔,从而当导管在使用过程中受到机械力时,包括末端挠曲、扭矩以及向患者推进和从患者拉出,它们在盖内不会彼此干扰。盖62可由非柔顺性材料制成,如聚乙烯、聚亚安酯、聚烯烃和聚甲基戊烯等,其能够允许超声能量从中传递通过。盖62从其近端66延伸并终止于在其上设有开口94的封闭的末端92。
烧灼元件60可具体实施为包括将电能转换为超声能量的压电晶体的换能器或电极。换能器60为管状,且在换能器60和管状外部支撑件104之间放置O形环108,从而在支撑件104和换能器60之间形成空气间隙以使超声波在换能器60内部的传输最小化。硅树脂粘合剂110密封换能器60的端部。冲洗流体灌入换能器60和盖62之间,从而超声能量可穿过流体和盖62进入人体组织。流体起到冷却换能器的作用,以及用作传输超声能量的媒介。由于换能器60的直径小于盖62的内部直径,因此换能器60不与人体组织接触。
冲洗管100在轴22的主腔30内延伸,且具有远端,该远端终止于盖62的近端66内,处在接近换能器60的位置处。冲洗流体通过标准输注管35以及穿过冲洗管100的路厄式接头34从泵120引入以输送到盖62的孔64内,用于冷却换能器60。
内部支撑件102穿过轴22的主腔30以及盖62的孔64延伸,终止于末端92内的开口94附近。内部支撑件102用于为导管轴22和远侧末端部分24提供支撑,且容纳在外部支撑件104内部,外部支撑件104穿过内部套筒68延伸至孔64内。内部支撑件102可以是由金属、合金或聚合物构成的线圈、扁平线或杆的形式。
多个热电偶导线54可在其末端处固定到盖62的内表面上,且用于检测烧灼部位的温度。
在远侧末端部分24附近围绕轴22的外表面以间隔的方式设置多个环形电极58。环形电极58可由附着在轴22周围的固体导电材料制成,如铂-铱,不锈钢或金。可选择地,环形电极58可通过用导电材料,如铂-铱或金涂覆在轴22外表面而形成。该涂层可通过喷射、离子束沉积或类似的已知技术来施加。环形电极58的数目可基于所使用区域的具体几何形状和所需的功能性而改变。
如下面更为详细的描述,环形电极58用于对将被治疗的心脏区域进行定位。当完成定位后,换能器60放置在将要进行烧灼的位置,且穿过腔管100的冲洗流体增加到泵20上所设置的所需流速。冲洗液的流量由软件控制且其指令通过电缆45从发生器52传送到泵120。而后,从换能器60发射出的能量穿过盖62内的冲洗介质(例如,流体、盐水、造影介质或混合物)完成烧灼。
标准路厄式接头34采用导管技术中公知的技术连接到从手柄组件32近端36伸出的管38的近端上。路厄式接头34为冲洗介质提供流路,从而引入冲洗介质以冷却位于轴22的远侧末端部分24处的换能器60。冲洗介质通过输注管35输送并进入从路厄式接头34伸出的冲洗管100,且终止于盖62的孔64中。冲洗介质从位于盖62远端处的换能器60远侧的孔98排出。在另一实施例中,盖62完全封闭,沿有位于远侧的孔98,并且进入孔64的冲洗介质通过另一个腔管(未示出)向导管近端抽出。
连接器组件40也采用导管技术中的公知技术连接到手柄组件32的近端36。连接器组件40具有将手柄组件32连接到通向超声发生器52的电缆46的连接器44的近端连接器42。EP监视系统50通过另一电缆48连接到超声发生器52。EP监视系统50可以是传统的EP监视器,其(通过超声发生器52)接收由电极58检测到的电信号,并处理和显示这些心脏内信号以帮助医生确定致心率失常部位或通道。超声发生器52可以是传统的超声发生器,其产生烧灼能量并向换能器60传送烧灼能量,换能器60发射声能以烧灼从盖62位置处径向延伸的组织。
导线51从超声发生器52沿电缆46和48(通过连接器组件40、手柄组件32和轴22的腔30)延伸到远侧末端部分24,导线51在该处连接到环形电极58。热电偶导线54连接盖62,并且超声导线55连接换能器60。热电偶导线54和超声导线55可从盖62和换能器60穿过内部套管68的通道67以及穿过轴22的腔30和手柄组件32延伸到近端连接器42,它们在该处可由电缆46中的内部热电偶导线电连接到可显示温度的超声发生器52上。
手柄组件32还包括操纵机构70,其用于使轴22的远侧末端部分24偏转以操纵远侧末端部分24并将其放置到心脏内所需位置。参见图3,操纵机构70包括在轴22的主腔30内从其手柄组件32处的近端向其远端延伸的操纵线72,其终止于远侧末端部分24位置前的轴22的远端26处。操纵线72的远端固定到扁平线75上,扁平线75固定在手柄组件32内。扁平线75在腔30内从锚定件向其位于稍稍靠近内部套筒68处的远端延伸。扁平线75在扁平线75和操纵线72的远端连接到操纵线72,从而受操纵线72的控制。具体地,通过将操纵机构70朝远侧方向向前推,操纵机构70将向近侧方向拉动操纵线72,使得远侧末端部分24向一个方向偏转。通过向近侧方向拉回操纵机构70,解除对操纵线72的作用,则远侧末端部分24回到其中立位置或向相反方向偏转,具有双向性。
现在将描述导管系统20的操作和使用。为将远侧末端部分24引入并部署在心脏内,医生采用传统导引器套来建立对所选动脉或静脉的入口。医生引导轴22通过导引器上的传统止血阀,并逐渐推进导管通过入口静脉或动脉进入心脏内所需位置。医生利用荧光镜或超声图像观察导管的行进。为此目的,导管可包括不透射线的化合物,如硫酸钡。可选择地,可在导引器套的远端设置不透射线标记。
轴22和导引器套可由操纵机构70移动至右心房。一旦位于右心房或心室内,当电极58接触目标心内组织时,就建立了良好的接触,且通过环形电极58记录所选区域内的心脏内信号。在EP监视系统50上处理和显示定位操作结果。EP监视系统50内的差分输入放大器(未示出)处理通过导线51从环形电极58接收的信号,并将它们转换为可以显示的图形图像。热电偶导线54还可用于监视周围组织的温度,并向超声发生器52提供温度信息。
一旦通过由环形电极58的定位以及荧光镜观察确定了换能器60的所需位置,医生就可以在开始烧灼前,通过开启控制流体流速的超声发生器52电源来增加冲洗流体流速。超声发生器52释放高频能量,该能量通过导线55传送到位于盖62内部的超声换能器60。声能以放射状形式从换能器60辐射,传播穿过冲洗介质(其起到能量传输介质的作用),喷射盖62,而后到达选定组织(通常以压力波形的形式)以烧灼组织。
虽然上述描述参照本发明的具体实施例,应当懂得,在不偏离本发明精神的情况下可以进行各种更改。附加的权利要求书将覆盖这些落入本发明真正范围和实质内的修改。
权利要求
1.一种烧灼心脏内部区域人体组织的导管,包括手柄组件;具有主腔、连接到手柄组件上的近端以及远端的轴;以及连接到轴远端的远侧末端部分,该远侧末端部分具有具有形成孔的管状壁的非柔顺性和非多孔性盖;和容纳在该孔内并与盖的壁隔开的烧灼元件。
2.根据权利要求1所述的导管,其中该烧灼元件是换能器。
3.根据权利要求1所述的导管,还包括在管状壁和烧灼元件之间的孔内的冲洗流体。
4.根据权利要求1所述的导管,其中该盖具有封闭的末端,该末端设置有开口。
5.根据权利要求1所述的导管,还包括延伸穿过该腔并具有终止于该孔内的远端的冲洗管。
6.根据权利要求1所述的导管,还包括在远侧末端部分附近围绕轴的外表面以间隔的方式设置的多个环形电极。
7.根据权利要求1所述的导管,还包括固定在轴的远端处的主腔内的内部套筒。
8.根据权利要求1所述的导管,还包括延伸穿过轴的主腔和盖的孔的内部支撑件。
9.根据权利要求8所述的导管,其中内部支撑件是由金属、合金或聚合物构成的线圈、扁平线或者杆的形式。
10.根据权利要求8所述的导管,还包括延伸穿过内部套筒并进入孔内的外部支撑件,内部支撑件容纳在外部支撑件内。
11.根据权利要求1所述的导管,还包括连接于盖的多个热电偶导线。
12.根据权利要求1所述的导管,还包括在轴的主腔内延伸的操纵机构,该操纵机构终止于远侧末端部分位置之前的轴的远端。
13.一种在选定治疗部位烧灼组织的方法,包括a.提供一个导管,该导管包括具有远端的轴;和连接到轴的远端的远侧末端部分,该远侧末端部分具有具有形成孔的管状壁的非柔顺性和非多孔性盖,以及容纳在孔内并与盖的壁隔开的烧灼元件;b.将导管的远侧末端部分放置在所需的治疗部位;c.使冲洗流体流入烧灼元件和盖之间的孔中;d.向烧灼元件发送超声能量;以及e.从烧灼元件以放射状形式辐射声能,并穿过冲洗流体和盖辐射到治疗部位的组织。
14.根据权利要求13所述的方法,其中步骤(c)还包括改变冲洗流体的流速。
全文摘要
一种烧灼心脏内部区域人体组织的导管,包括手柄组件、轴和连接到轴远端的远侧末端部分。该远侧末端部分具有非柔顺性和非多孔性盖以及烧灼元件,该盖具有形成孔的管状壁,该烧灼元件容纳在孔内并与盖的壁隔开。
文档编号A61M25/00GK1720874SQ200510072658
公开日2006年1月18日 申请日期2005年5月16日 优先权日2004年5月15日
发明者阿兰·德拉拉马, 寿黄·阮, 维维安·陈, 凯瑞·哈塔, 陈政 申请人:艾尔文生物医药有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1