聚乙烯醇纤维以及包含它的无纺布的制作方法

文档序号:1659748阅读:185来源:国知局
专利名称:聚乙烯醇纤维以及包含它的无纺布的制作方法
技术领域
本发明涉及聚乙烯醇(以下缩写为“PVA”)纤维,它具有平整的横截面以及能够很容易地原纤化,还涉及包含这种纤维的无纺布,以及在无纺布上施加高剪切力制备的原纤化的织物。
背景技术
迄今为止,仍然根据通常的方法生产原纤化的PVA纤维,该方法包括将PVA与其它的聚合物、油、脂肪或者与PVA不溶混的表面活性剂混合然后纺丝,形成最终具有海岛状结构的纤维,接着在其界面劈开该结构,形成裂散纤维。例如为此提出了一种工艺方法,该方法如下将PVA聚合物和其它可与乙烯醇聚合物混溶的聚合物一起溶于溶剂中,例如该聚合物为聚丙烯腈和/或其共聚物、聚甲基丙烯酸甲酯、纤维素聚合物、淀粉等等,在最终混合物中形成相分离结构,然后将该混合物作为纺丝溶液进行湿式纺丝形成具有海岛状结构的纤维,接着将纤维捶成原纤化的纤维(例如参见专利参考文献1-9)。
然而,为了在上述方法中获得充足的原纤化,聚合物混合物中PVA聚合物含量大体上必须为30-70%质量。因此,所获得纤维的PVA聚合物含量低,纤维将失去PVA聚合物的固有性质,例如耐化学性、亲水性、耐侯性和高韧度。通常,配制PVA纤维使其具有耐水性能,但是该方法问题在于因为用于处理的强酸或者强碱的水解导致纤维降解。当PVA纤维与纤维素聚合物一起配制使用时,进一步问题在于聚合物混合物在PVA聚合物/纤维素聚合物的界面大量交联,因此,最终纤维的原纤维性显著降低。
类似地,液体物质(例如油和/或表面活性剂)与PVA聚合物一起溶于溶剂中形成具有相分离结构的液体混合物,然后将所得混合物作为纺丝溶液进行湿式纺丝形成海岛结构的纤维,其中由液体物质形成岛屿组分,接着将纤维捶成原纤化的纤维。然而,根据该方法,为了使生产的纤维能够被原纤化,所添加的液体物质必须至少为30%质量。因此,在湿式纺丝过程中,液体物质可能在凝固浴中流出,因此可能污染该浴。为此,根据该方法进行原纤维化纤维的工业生产是困难的。另外,液体物质的大部分在凝固浴中流出,因此最终产品中物质的保留率低,纤维的原纤化不足。
另一方面,在交替排列的不同类聚合物的熔融纺丝方法中,为了获得能分裂的纤维,例如提出纺丝PVA聚合物和聚酯聚合物的混合物,得到可分裂纤维的方法(例如参见专利参考文献10)。然而,可熔融纺丝的PVA聚合物易溶于水,因此它的耐水性很差,另外,不可能配制它来改进抗水性。因此,在处于熔融状态的多组分的纺丝方法中,不可能获得原纤化的PVA纤维。
JP-A 49-10617[专利参考文献2]JP-A 51-17609[专利参考文献3]JP-A 8-284021[专利参考文献4]JP-A 8-296121[专利参考文献5]JP-A 8-81818[专利参考文献6]JP-A 10-102322[专利参考文献7]JP-A 10-219515[专利参考文献8]JP-A 10-219517[专利参考文献9]JP-A 10-237718[专利参考文献10]JP-A 2001-11736发明内容在进行上述考虑的基础上,我们,本发明者经过刻苦研究,最后发现当将PVA纤维加工成具有非常平整的横截面时,甚至不需要向其中加入相关领域所述的任何外来聚合物,该纤维就能够容易地进行原纤化。另外,我们进一步发现,当在其中加入层状化合物时,纤维的横截面可以变得更加平整得多。我们还发现本发明的平整PVA纤维在不降低它们的物理性能,例如耐化学性、亲水性、耐侯性和韧性的条件下,能够被原纤化。
具体地,本发明提供了PVA纤维,它具有平整的横截面以及满足下列公式(1)的平均厚度D(μm)0.4≤D≤5 (1)其中D=S/L;S表示纤维的横截面积(μm2);L表示纤维横截面主侧面的长度(μm)。
优选本发明的PVA纤维满足以下公式(2)
10≤L/D≤50 (2)其中D表示纤维的平均厚度(μm);L表示纤维横截面主侧面的长度(μm)。
还优选本发明PVA纤维平整横截面的一端或者两端被分支。更优选PVA纤维包含0.01-30%质量的平均粒度为0.01-30μm的层状化合物。
本发明还提供一种生产干法无纺布的方法,该方法包括在含有上述提到的纤维作为其部分组分的织物上施加30kg/cm2或更多的喷水压力,或者在织物上刺针孔,使针孔密度达到至少250kg/cm2,由此将纤维原纤化;还提供根据该生产方法获得的干法无纺布。
本发明进一步提供生产湿法喷水无纺布的方法,该方法包括在原纸上施加30kg/cm2或更多的喷水压力,该原纸是由包含上述提到的纤维作为其必要的纤维组分的一部分的浆料制备的,由此将该纤维原纤化;还提供根据该生产方法获得的湿法无纺布。
本发明的PVA纤维在受到剪切力或者类似作用时,能够容易地分裂成单纤维,并在不降低其物理性能如耐化学性、亲水性、耐侯性和韧性的同时,能够容易地原纤化,因此原纤化纤维能够用于形成干法无纺布和湿法无纺布。另外,就吸水率和擦拭能力而言,包含本发明原纤化纤维的干法无纺布和湿法无纺布优于包含传统原纤化纤维的无纺布。
附图简述

图1是显示本发明PVA纤维横截面的显微照片。
图2是显示传统PVA纤维横截面的显微照片。
图3是显示分裂处理后本发明PVA纤维原纤化情况的显微照片。
图4是显示供生产本发明纤维用的不同喷丝板横截面的示意图。
优选实施方案的详细说明本发明的PVA纤维必须具有平整的横截面。如果它们的横截面是常规的蚕茧状或略圆状,那么当受到施加于其上的剪切力分裂它们时,纤维将不能分裂开。甚至如果可能的话,它们能分裂成至多两根,但是不能生产本发明提供的原纤化纤维。具体地,用扫描电子显微镜测量的纤维平整横截面的平均厚度D(μm)必须在满足下列公式(1)的范围0.4≤D≤5(1)其中D=S/L;S表示纤维的横截面积(μm2);L表示纤维横截面主侧面的长度(μm)。
在公式(1)中,如果纤维的平均厚度D超过5μm,那么纤维将不能轻易地分裂,并且需要使用施加到其上的较大的剪切力将其分裂,因此纤维的加工性能差。当D值较小时,纤维将更容易分裂;但是如果D小于0.4μm,那么在生产或者梳理时,纤维将分裂,由此纤维的生产率差。优选0.8≤D≤4.5,更优选1.5≤D≤4。
为了改进纤维的可分裂性,除上述公式(1)的条件外,需要纤维的平整横截面满足下列公式(2)的范围,10≤L/D≤50(2)如果L/D的值小于10,那么纤维将在施加到其上的剪切力下分裂,但是剪切力不能很好的传送到纤维上,因此,必须增大剪切力或者必须延长剪切时间。然而,这对于有效地将纤维原纤化是不利的。另一方面,如果L/D大于50,那么纤维的平整横截面将保持折叠,因此施加于纤维将其分裂的剪切力将不能很好地传送到纤维上,因此,不能将纤维充分地进行原纤化,另外,当将折叠的纤维梳理或者在湿式方法下制成纸时,它们将缠结在一起,并且很差地分散。最终,纤维将不能加工成优质的产品。更优选,10≤L/D≤30。
图1是显示本发明PVA纤维横截面的显微照片。图2是显示传统PVA纤维横截面的显微照片。当然图2传统PVA纤维的横截面是蚕茧状的,但是本发明PVA纤维的横截面非常地细平整,具体地,满足上述公式(1)和(2),其结果是横截面较小尺寸的长度非常小。更优选,为了获得本发明提供的无纺布,纤维平整横截面的一端或者两端是支化的。通过使用扫描电子显微镜可拍摄纤维横截面的图片。
本发明生产PVA纤维的方法没有特殊的限定。例如,可以使用干法纺丝、湿法纺丝或者干湿法纺丝中的任意一种方式生产纤维。从纤维的生产率和质量来看,优选湿法纺丝。湿法纺丝包括两个常规方法。一个是含水湿法纺丝的方法,它包括将PVA树脂溶于水中制备纺丝溶液,接着纺丝该溶液进入凝结用盐水溶液中,穿过喷丝板得到纤维;另一个是有机溶剂湿法纺丝方法,它包括将PVA树脂溶于有机溶剂制备纺丝溶液,接着纺丝该溶液进入凝结用有机溶剂浴中,穿过喷丝板得到纤维。此处任何一种方法均可适用。
含水湿法纺丝的方法描述如下。具体地,将要成为纤维的PVA树脂溶于水中制备纺丝溶液。就聚合度而言,对PVA树脂没有特殊的限定。通常,它的聚合度是从500-4000,但是优选1000-2500。如果聚合度小于500,树脂分子链彼此间的缠结较差,因此不能在牵引纤维的步骤中很好地伸展。因此,纤维的物理性能如纤维强度和抗水性较差。然而,如果树脂聚合度大于4000,包含树脂的纺丝溶液的粘度将大大增加。如果是这样的话,必须降低纺丝液中PVA树脂的浓度,并且纤维的生产率将变低。另外,通过从纤维中除去水导致的体积降低将变大,纤维不能具有预计的横截面。
供本发明使用的PVA树脂没有特殊的限定,它可以与一个或者多个羧基、磺酸基、乙烯基、硅烷基、甲硅烷醇基、氨基以及铵基进行共聚。这里使用的PVA皂化度也没有特殊的限定。例如PVA可以具有85-99.9%的皂化度,优选96%-99.9%。
与上述的PVA树脂一起,本发明的PVA纤维可以包含向其中加入的层状化合物。当包含层状化合物时,纤维更易于分裂。层状化合物是,例如绿土、蒙脱石或云母。它可以是天然产物或者合成产物。然而,为了将该化合物加入到用于纤维的纺丝溶液中,该化合物的平均粒度优选0.01-30μm。如果其平均粒度大于30μm,那么化合物可能阻塞纺丝板和过滤器,并且干扰平稳的纺丝操作。另一方面,如果其平均粒度小于0.01μm,那么层状化合物颗粒将聚集,因此,最终次级颗粒将大于10μm,并且阻塞纺丝板和过滤器,因此干扰纺丝良好操作。更优选,化合物的平均粒度为0.1-10μm。加入到纤维中的层状化合物的量优选为纤维的0.01-30%质量。如果量小于0.01%质量,那么化合物对于提高纤维的可分裂性来说是无效的。相反,如果量大于30%质量,那么纺丝板的稳定性将变差,另外,所生产纤维的物理性能将显著地变坏。更优选,板量为0.1-10%质量。
关于它的形状,用于生产本发明PVA纤维的喷口具有如图4的狭缝状横截面。具体地,横截面可以是矩形的,它的主侧面长为180-1000μm,次侧面为30-80μm;或者可以是在矩形的主侧面端环绕的半圆形;或者可以是在矩形主侧面端环绕的圆形,形成“狗骨头”的形状。通过喷口所获得纤维的横截面并不总是对应于喷口的横截面。因此,最好是喷口横截面的主侧面与次侧面的比为5-50。使用落入该范围的喷口能够使生产的PVA纤维具有本发明计划的横截面。
纺丝溶液流过具有上述形状的喷口,然后纺丝进入饱和硫酸钠水溶液。然后,将所得的纤维卷到第一辊柱上,当它们仍然含水时,在湿式条件下拉伸3-4次。接下来,在恒定长度条件下,在130℃热空气干燥机中进行干燥,然后在干热条件下,在230℃的热风炉中进一步拉伸2-3次,得到本发明的纤维。本发明的纤维可以直接按原样使用。毋庸置疑,它们可以与甲醛一起配制,使它们具备耐水性。
根据下面所述的方法,可以用干法将这样生产的纤维制成干法无纺布。
例如,可以将纤维机械卷曲,然后切成长度为2-100mm的短纤维,接着梳理成织物。在形成织物时,可以单独使用本发明的纤维,但是也可以与一种或者多种不同类型的其它纤维结合使用,例如该纤维可以是人造丝、粘胶纤维、溶剂纺丝醋酸纤维素、聚酯、尼龙、丙烯酸、聚乙烯、聚丙烯或棉纤维。这样形成的纤维织物受到施加于其上的30kg/cm2或者更多的喷水压力,或者针刺成250纤维/cm2或者更大的密度。结果将织物中的本发明的PVA纤维分裂然后原纤化,接着获得如图3所示的本发明干法无纺布。因此获得的干法无纺布可以进行进一步的二次处理。
另一方面,可以将纤维切成长度为2-20mm的短纤维,然后它们可以与粘合纤维一起湿法成片,形成湿法无纺布。在这个过程中,本发明的纤维可以与任何一种其它的纤维,如上述干法无纺布提到的纤维结合。将包含本发明纤维的浆料作为至少一部分组分形成纸张,所得的纸受到施加于其上的喷水30kg/cm2或更大。结果将在纸内的本发明PVA纤维分裂并且原纤化,获得如图3所示的本发明湿法无纺布。因此获得的湿法无纺布可以进行进一步的二次处理。
此外,可以使用Niagara打浆机、精炼机、碎浆机或者类似打浆机,搅打本发明的纤维,然后可以将包含这种搅打纤维的浆料压入在其中含有原纤化的PVA纤维的湿法无纺布中。如果需要,可以将浆料与水泥浆一起压入湿法板岩。同时如果需要,可以将本发明的纤维与塑料或者橡胶捏合在一起,以生产用原纤化的PVA纤维增强的塑料或者橡胶产品。
参考下面的例子描述本发明,然而,其并不是用来限制本发明的范围。下面的例子中,根据下述方法测定或者评估PVA树脂的聚合度;PVA纤维横截面的平均厚度D;纤维的横截面积S;纤维横截面主侧面的长度L;PVA纤维原纤化的加工性能;PVA纤维形成的无纺布的亲水性、耐化学性和擦拭能力。
PVA树脂的聚合度将PVA聚合物溶于热水中形成1-10g/l(Cv)的聚合物浓度,根据日本工业标准K6726的试验方法,在30℃下,测定最终聚合物溶液的相对粘度ηrel。根据下述公式(I)获得聚合物的特性粘度[η],根据下述公式(II)计算其聚合度PA。
=2.303·log(ηrel)/Cv (I),PA=([η]×104/8.29)×1.613 (II)。
PVA纤维横截面的平均厚度D(μm);纤维的横截面积S(μm2);纤维横截面主侧面长度L(μm)通过使用扫描电子显微镜(由Hitachi制造)进行测定。
PVA纤维的原纤化加工性能使用平行的梳棉机,生产重量为60g/m2的无纺布,并且使其在90kgf/cm2的压力下进行喷水。在如此加工的无纺布中,使用扫描电子显微镜(由Hitachi制造)证实原纤维的存在与否。认为至少有2根纤维从1根纤维上分裂的样品是优良的。
无纺布的亲水性根据日本工业标准P8141的方法,使用Klemm型吸水检验机,对该样品进行分析并且评估。
无纺布的耐化学性对10g的无纺布进行抽样,并且将其浸入1升加热到60℃的氢氧化钠(0.5摩尔/升)水溶液中,持续8个小时。然后,用水进行充分地冲洗,接着在105℃热空气干燥机中干燥4个小时。测量其绝对干燥的质量a(g),并且根据下列公式获得该样品的溶解度。这表明了所测试的无纺布的耐化学性。
溶解度(%)=(1-a/10)×100。
无纺布的擦拭能力将无纺布切成一个5cm×5cm的块。在其上放置200g的重量,将其用于擦拭被0.15ml Indian墨汁弄脏的透明丙烯酸板。使用色差仪(Nippon DenshokuKogyo的Z-300A)测定没有用Indian墨汁弄脏的原始丙烯酸板的透明度A以及用Indian墨汁弄脏然后用无纺布块擦拭后的丙烯酸板的透明度B。根据下列公式获得擦拭操作后的残留率。关于擦拭能力,透明度A和透明度B之间差异较小的样品较好。
擦拭之后的残留率(%)=A-B其中A表示最初没有用Indian墨汁弄脏的丙烯酸板的透明度(%),B表示用Indian墨汁弄脏然后擦去的丙烯酸板的透明度(%)。
实施例1(1)将含水纺丝溶液(该溶液为15%质量平均聚合度为1700和皂化度为99.9mol%的PVA树脂以及0.3%重量的硼酸),纺丝进入PH值控制在至少12的饱和硫酸钠的凝固浴中,穿过具有4000个30μm(长)×450μm(宽)矩形狭缝口的喷丝头,然后将所得的纤维卷绕在第一辊上,接着用湿法拉伸4次。然后,在130℃下干燥,接着在230℃,干热条件下干燥3次,得到平整的PVA纤维,它的单纤维细度为1.5dtex以及具有如表1中的D和L/D。将如此获得的平整PVA纤维在含10%质量硫酸的5%质量的甲醛水溶液中进行缩醛化60分钟。
(2)将上述(1)获得的PVA纤维机械卷曲,然后切成51-mm的块。将其梳理形成织物。在压力为60kg/cm2的喷水装置下,加工该织物,得到重量为90g/m2的干法无纺布。这样获得的无纺布,在喷水处理后,将PVA纤维很好地原纤化,如图3的显微镜照片一样。无纺布的亲水性、耐化学性以及擦拭能力也都很优良,如表1所示。
实施例2(1)将含水纺丝溶液(该溶液为15%质量平均聚合度为1700和皂化度为99.9mol%的PVA树脂),纺丝进入饱和硫酸钠的凝固浴中,穿过具有4000个30μm(长)×600μm(宽)矩形狭缝口的喷丝头,然后将所得的纤维卷绕在第一辊上,接着用湿法位伸4次。然后,用与实施例1相同的方法,在130℃下干燥,接着在230℃,干热条件下干燥2次,得到平整的PVA纤维,它的单纤维细度为2.0dtex以及具有如表1中的D和L/D。用与实施例1相同的方法缩醛化获得的平整PVA纤维。
(2)将上述(1)获得的PVA纤维切成10-mm的块,并将90质量份的这样切的纤维与10质量份的Kuraray′s维尼纶粘合纤维VPW101混合,然后用湿法成片。在压力为60kg/cm2的喷水装置下,加工该薄片,得到重量为90g/m2的湿法无纺布。这样获得的无纺布,在喷水处理后,将PVA纤维很好地原纤化,如图3的显微镜照片一样。无纺布的亲水性、耐化学性以及擦拭能力也都很优良,如表1所示。
实施例3(1)将含水纺丝溶液(该溶液为15%质量平均聚合度为1700和皂化度为99.9mol%的PVA树脂以及0.8%质量的层状化合物(Corp Chemical的合成云母,SIME-88)),纺丝进入饱和硫酸钠的凝固浴中,穿过具有4000个30μm(长)×150μm(宽)矩形狭缝口的喷丝头,然后将所得的纤维卷绕在第一辊上,接着用湿法拉伸4次。然后,在130℃下干燥,接着在230℃,干热条件下干燥2次,得到平整的PVA纤维,它的单纤维细度为2.0dtex以及具有如表1中的D和L/D。用与实施例1相同的方法缩醛化如此获得的平整PVA纤维。
(2)使用与实施例1相同的方法,将上述(1)中获得的PVA纤维形成干法无纺布。这样获得的无纺布,在喷水处理后,将PVA纤维很好地原纤化,如图3的显微镜照片一样。无纺布的亲水性、耐化学性以及擦拭能力也都很优良,如表1所示。
对比实施例1(1)将含水纺丝溶液,该溶液为15%质量平均聚合度为1700和皂化度为99.9mol%的PVA树脂,纺丝进入饱和硫酸钠的凝固浴中,穿过具有4000个30μm(长)×120μm(宽)矩形狭缝口的喷丝头,然后将所得的纤维卷绕在第一辊上,接着用湿法拉伸4次。然后,在130℃下干燥,接着在230℃,干热条件下干燥2次,得到平整的PVA纤维,它的单纤维细度为2.0dtex以及具有如表1中的D和L/D。用与实施例1相同的方法缩醛化获得的平整PVA纤维。
(2)使用与实施例1相同的方法,将上述(1)中获得的PVA纤维形成干法无纺布。由于PVA纤维的平整横截面(L/D)不能满足本发明的条件,如表1,因此甚至在喷水处理后,纤维都不能很好地原纤化。无纺布的亲水性、耐化学性优良,但是其擦拭能力不好。
对比实施例2(1)将含水纺丝溶液,该溶液为15%质量的平均聚合度为1700和皂化度为99.9mol%的PVA树脂,纺丝进入饱和硫酸钠的凝固浴中,穿过具有4000个直径均为60μm圆形缝口的喷丝头,然后将所得的纤维卷绕在第一辊上,接着用湿法拉伸4次。然后,在130℃下干燥,接着在230℃,干热条件下干燥2次,得到蚕茧状的PVA纤维,它的单纤维细度为0.5dtex。用与实施例1相同的方法缩醛化获得的蚕茧状PVA纤维。
(2)使用与实施例1相同的方法,将上述(1)中获得的PVA纤维形成干法无纺布。由于PVA纤维具有蚕茧状的横截面,因此在喷水处理中它们不能很好地原纤化。无纺布的亲水性、耐化学性优良,但是其擦拭能力不好。如对比实施例1一样。
对比实施例3(1)将DMSO(二甲亚砜)溶液(该溶液为8%质量与5mol%醋酸乙烯酯共聚的聚合度为1000的聚丙烯腈树脂,以及聚合度为1700和皂化度为99.9mol%的12%质量的PVA树脂),纺丝进入5℃的甲醇/DMSO(7/3质量)的凝固浴中,穿过具有10000个直径均为80μm圆孔的喷丝头,然后将所得纤维卷在第一辊上。当湿法拉伸3次后,将它们在20℃的甲醇中萃取,直到其中的DMSO残留率达到0.1%质量,然后在150℃下干燥。接着,进一步在230℃下干燥5次,得到PVA纤维,它的单纤维细度为2dtex,并具有圆形截面。
(2)使用与实施例1相同的方法,将上述(1)中获得的PVA纤维形成干法无纺布。如表1所示,PVA纤维被很好地原纤化,但是由此形成无纺布的亲水性、耐化学性和擦拭能力都劣于本发明(实施例1-3)平整PVA纤维形成的无纺布。
表1

本发明的PVA纤维在受到施加于其上的剪切力时,能够容易地分裂成单纤维,并在不降低其物理性能如耐化学性、亲水性、耐侯性和韧性的同时,能够容易地原纤化。原纤化纤维可以形成干法或者湿法无纺布。另外,就吸水性和擦拭能力而言,由本发明原纤化纤维形成的干法无纺布和湿法无纺布优于由传统原纤化纤维形成的无纺布。进一步,当本发明的原纤化PVA纤维与水泥浆一起成片时,它们可以形成湿法板岩。当将本发明的纤维与塑料或者橡胶捏合在一起时,它们可以形成由原纤化的PVA纤维增强的塑料或者橡胶产品。
权利要求
1.聚乙烯醇纤维,它具有平整的横截面并且具有满足下述公式(1)的平均厚度D(μm)0.4≤D≤5 (1)其中D=S/L;S表示纤维的横截面积(μm2);L表示纤维横截面主侧面的长度(μm)。
2.权利要求1的聚乙烯醇纤维,它满足下列公式(2)10≤L/D≤50 (2)其中D表示纤维的平均厚度(μm);L表示纤维横截面主侧面的长度(μm)。
3.权利要求1或2的聚乙烯醇纤维,其中纤维平整横截面的一端或者两端被分支。
4.权利要求1-3任一项的聚乙烯醇纤维,其中包含0.01-30%质量的平均粒度为0.01-30μm的层状化合物。
5.一种制备干法无纺布的方法,它包括在含有权利要求1-4任意一项的纤维作为其部分组分的织物上施加30kg/cm2或更多的喷水压力,或者在织物上刺针孔,使针孔密度为至少250kg/cm2,由此将纤维原纤化。
6.一种根据权利要求5的方法获得的干法无纺布。
7.一种生产湿法喷水无纺布的方法,它包括在原纸上施加30kg/cm2或更多的喷水压力,该原纸是由包含权利要求1-4任意一项的纤维作为其必要纤维组分的一部分的浆料制备的,由此将该纤维原纤化。
8.一种根据权利要求7的方法获得的湿法无纺布。
全文摘要
提供了一种PVA聚合物的容易原纤化的纤维,它具有优良的耐化学性、亲水性、耐候性和抗水性。PVA纤维具有平整的横截面以及满足下列公式(1)的平均厚度D(μm)0.4≤D≤5(1),其中D=S/L;S表示纤维的横截面积(μm
文档编号D04H1/46GK1530474SQ200410031459
公开日2004年9月22日 申请日期2004年3月10日 优先权日2003年3月10日
发明者镰田英树, 早川友浩, 浩 申请人:可乐丽股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1