一种毛细效应协助的非共价组装的涂层及其制备方法与流程

文档序号:15627337发布日期:2018-10-09 23:22阅读:449来源:国知局

本发明属于涂层材料及其制备领域,特别涉及一种毛细效应协助的非共价组装的涂层及其制备方法。



背景技术:

涂层是用物理的、化学的或者其他的方法,在金属或者非金属基底表面形成的一层或多层具有一定厚度的、不同于基底材料且具有一定强化、防护或特殊功能的覆盖层。自组装涂层是涂层技术的一种,它是利用逐层交替沉积的方法,借助各层分子间的弱相互作用,使层与层自发缔结和形成结构完整、性能稳定、具有某种特定功能的分子聚集体或超分子结构的过程,运用自组装涂层技术可以轻易地将功能性材料引入到薄膜中去。无机纳米材料是当前材料科学领域的研究热点之一,因其独特的结构形态和优越的理化性质引起了广泛的关注。当无机纳米材料运用到自组装涂层时,可以实现特定功能涂层的构筑,比如防腐蚀涂层,电磁屏蔽涂层等。

传统自组装的涂层的方法主要存在对组装溶液中的无机纳米材料的沉积量过少而导致功能较差的问题,因为在传统的组装方法中,仅靠无机纳米材料和柔性高聚物之间的超分子作用力并不能实现在基底材料的超高量吸附,且这种超分子相互作用并不稳定,在后续的组装过程中容易受到其他作用的破坏而进一步减少沉积量,所以其构筑的涂层并不能充分发挥其构筑基元的功能,如在电磁屏蔽领域,传统自组装的方法制备的电磁屏蔽涂层由于对导电纳米材料的沉积过少而导致屏蔽效能太差,这大大限制了该涂层的应用。因此,如何增加组装涂层中纳米粒子的沉积量而充分发挥涂层的功能是当前亟待解决的问题。



技术实现要素:

本发明所要解决的技术问题是提供一种毛细效应协助的非共价组装的涂层及其制备方法,本发明克服了传统的组装方法中对无机纳米材料的沉积量少而导致组装涂层功能差的缺点,提供了一种新的涂层制备技术,从而实现复杂结构表面的高效导电、电磁屏蔽涂层的构筑。

本发明的一种毛细效应协助的非共价组装的涂层,其特征在于:所述涂层原料包括基底材料、无机纳米材料和柔性高分子聚合物,其中无机纳米材料和柔性高分子聚合物交替沉积在基底材料表面。

所述基底材料为复杂结构的基底材料,在溶液中表现出强烈的毛细管效应。

所述基底材料为纤维织物材料,无机非金属多孔材料中的一种,这种基底材料对溶液具有较强的毛细作用。

所述组装利用了基底材料对无机纳米材料的毛细力,形成对无机纳米材料的超高量的物理吸附,并通过柔性高分子聚合物与无机纳米材料之间的非共价相互作用,使超高量的物理吸附转化为稳定负载。

其构筑基元分别为无机纳米材料和柔性高分子聚合物,两种构筑基元之间具有非共价相互作用而实现稳定的负载。其中所述的非共价相互作用包括静电力、氢键、配位键、π-π相互作用、电荷转移、分子识别、范德瓦尔斯力、亲/疏水作用等中的一种或多种。

所述无机纳米材料为碳纳米管、石墨烯、氧化石墨、氧化石墨烯、纳米氧化铁、氧化钛、氧化铬、氧化锌等中的一种或几种;柔性高分子聚合物为聚烯丙基胺盐酸盐、聚吡咯、聚苯胺、聚噻吩、聚甲基丙基酸、聚乙烯吡咯烷酮、聚二烯丙基二甲基氯化铵、聚乙烯亚胺、聚环氧乙烷、聚丙烯酸等中的一种或几种。

涂层中无机纳米材料和柔性高分子聚合物的负载量与基底材料、沉积次数和实验条件有关,一般可以达到1mg/cm2~100mg/cm2

本发明的一种毛细效应协助的非共价组装的涂层的制备方法,包括:

(1)将基底材料进行预处理,得到预处理的基底材料;

(2)将预处理的基底材料浸渍无机纳米材料溶液,使得无机纳米材料通过毛细力协助形成在复杂基底表面的超高量吸附,烘干;

(3)将中间组装物浸渍柔性高分子聚合物溶液,实现与柔性高分子聚合物非共价键组装,并烘干;;

(4)重复步骤(2)、(3)实现多层组装,即得高负载涂层。

所述步骤(1)中预处理为超声洗涤和基底表面改性。

对基底材料的预处理为对基底材料的超声洗涤和基底表面的改性,洗涤的方法为用有机溶剂和去离子水先后超声洗涤,具体溶剂视所选择基底材料而定,如选择织物作为基底时,可以选择乙醇溶液和去离子水超声洗涤;对基底材料进行改性的方法为化学反应法,经过改性之后的基底能和纳米材料之间产生超分子作用力。

所述步骤(2)中无机纳米材料溶液的浓度为0.1~50mg/ml;溶液溶剂为去离子水、乙醇溶液等。

步骤(2)、(3)中组装为通过恒温培养摇床进行摇匀组装,时间为5-60min,优选10-30min。

步骤(3)中柔性高分子聚合物溶液的浓度为0.1~30mg/ml;溶液溶剂为去离子水、乙醇溶液等。

步骤(4)中重复步骤(2)、(3)为0-200次。

本发明中无机纳米材料通过毛细力协助形成在复杂基底表面的超高量吸附,柔性高分子聚合物利用非共价相互作用力实现无机纳米材料在基底表面的稳定负载。

步骤(2)、(3)、(4)中涂层组装的方法为毛细效应协助、结合非共价相互作用的交替沉积组装,其方法为,将复杂结构基底材料在纳米材料溶液和高聚物溶液中交替沉积,并通过恒温培养摇床进行摇匀组装,每经过一次沉积,基底都要进行烘干。

本发明大大超越了传统非共价组装的沉积负载量,同时维持了组装涂层的稳定性,进而开拓了纳微尺度功能涂层的实际应用领域,如电磁屏蔽。且本发明的制备工艺简单,生产成本低,所制涂层在膜结构、厚度上具有良好可控性。

有益效果

1.本发明克服了传统的组装方法中对无机纳米材料的沉积量少而导致组装涂层功能差的缺点,提供了一种新的涂层制备技术,从而实现复杂结构表面的高效导电、电磁屏蔽涂层的构筑;

2.本发明的制备方法借助了基底材料的毛细效应,实现了无机纳米材料的吸附量超越了传统组装两个数量级的超高量吸附,并借助热能和非共价相互作用,实现了涂层的稳定构筑,大大提升了涂层在其应用领域上的功能;

3.本发明的制备方法简单、省时,组装的单层膜的厚度在几个埃至几个纳米范围内很容易进行调控。

附图说明

图1为实施例1利用毛细效应协助、结合非共价相互作用组装10层、20层和30层膜的电磁屏蔽织物在8.2-12.4ghz频率范围内的电磁屏蔽效能比较图;

图2为实施例1中利用利用毛细效应协助、结合非共价相互作用组装涂层的电磁屏蔽织物的总的电磁屏蔽效能、吸收效能和反射效能与沉积的膜的层数的关系图;

图3为实施例1中利用利用毛细效应协助、结合非共价相互作用组装涂层的电磁屏蔽织物的导电性的比较图。

具体实施方式

下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

实施例1

(1)对化妆棉无纺布进行预处理,使其带上正电荷,具体预处理步骤如下:

将化妆棉无纺布浸泡在乙醇溶液中,并超声振荡洗涤10min,然后再用去离子水浸泡化妆棉无纺布,并超声振荡洗涤10min。烘干之后,在室温之下将织物浸渍于50g/l的3-氯-2-羟丙基三甲基氯化铵和18g/l的氢氧化钠的混合溶液中24小时,通过3-氯-2-羟丙基三甲基氯化铵的开环聚合生成2,3-环氧丙基三甲基氯化铵(c.yilmaz,a.sirman,a.halder,a.busnaina,acsnano2017,11,7679.,其与化妆棉织物的羟基反应提供给织物表面丰富的正电荷。处理结束后再用去离子水浸泡化妆棉织物,最后将织物放在恒温烘箱中进行干燥;

(2)将预处理过的化妆棉织物浸渍于10mg/ml的碳纳米管溶液中,并通过恒温培养摇床培养10min,利用织物表面对溶液的毛细力,使织物吸附上大量的碳纳米管,并用恒温烘箱中进行干燥得到中间组装物a;

(3)将中间组装物a浸渍于含氯化钠(0.5mol/l)的聚烯丙基胺盐酸盐溶液(1mg/ml)中,并通过恒温培养摇床培养10min,同样利用织物表面对溶液的毛细力吸附聚烯丙基胺盐酸盐,并借助碳纳米管和聚烯丙基胺盐酸盐之间的静电相互作用实现碳纳米管的稳定负载,并用恒温烘箱中进行干燥得到中间组装物b;

(4)重复步骤(2)和(3)十次,在基底上组装形成十层电磁屏蔽膜(碳纳米管/聚烯丙基胺盐酸盐)10,然后在恒温烘箱烘干,即得电磁屏蔽涂层织物。

将实施例1制得的电磁屏蔽涂层织物进行屏蔽效能测试,屏蔽效能测试方法如下:将制备的电磁屏蔽涂层织物夹持在两个波导的中间,利用矢量网络分析仪测试分散系数s11和s21,并利用微波相关理论计算出屏蔽效能。

测试结果显示:在8.2-12.4ghz的频率范围内,(碳纳米管/聚烯丙基胺盐酸盐)*10的涂层织物的屏蔽效能可以达到5.1db,(碳纳米管/聚烯丙基胺盐酸盐)*20的涂层织物的屏蔽效能可以达到8.8db,而(碳纳米管/聚烯丙基胺盐酸盐)*30的涂层织物则可以达到11.9db。图1为(碳纳米管/聚烯丙基胺盐酸盐)*10、(碳纳米管/聚烯丙基胺盐酸盐)*20、(碳纳米管/聚烯丙基胺盐酸盐)*30的织物涂层在8.2-12.4ghz的频率范围内的电磁屏蔽效能图。

将实施例1制得得电磁屏蔽涂层织物进行了电导率的测试测试,测试结果如下:

(碳纳米管/聚烯丙基胺盐酸盐)*10的涂层织物的电阻为1.5s/m,(碳纳米管/聚烯丙基胺盐酸盐)*20的涂层织物的屏蔽效能可以达到3.4s/m,而(碳纳米管/聚烯丙基胺盐酸盐)*30的涂层织物则可以达到5.3s/m。

将实施例1制得得电磁屏蔽涂层织物进行了碳纳米管和聚烯丙基胺盐酸盐的总的沉积量的测试,测试结果如下:

(碳纳米管/聚烯丙基胺盐酸盐)*10的织物涂层其对碳纳米管和聚烯丙基胺盐酸盐的沉积量为10.3mg/cm2,(碳纳米管/聚烯丙基胺盐酸盐)*30的织物涂层的沉积量为31.4mg/cm2

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1