刚性多孔碳结构、其制法、用法及含该结构的产品的制作方法

文档序号:1768301阅读:1022来源:国知局
专利名称:刚性多孔碳结构、其制法、用法及含该结构的产品的制作方法
背景技术
发明领域本发明总的来说涉及刚性多孔碳结构。更具体地说,本发明涉及刚性三维结构,该结构包括纳米级碳纤维并且具有较高的表面积和孔隙率、较低的松散密度、较少的微孔和较高的抗碎强度,以及涉及制备和使用该结构的方法。本发明还涉及将这种结构用于多种目的,包括催化剂载体、电极、过滤器、绝缘器、吸附剂和色谱介质,涉及包括这种刚性多孔结构和包含在该碳结构中的第二种材料的复合结构。
相关技术描述多相催化反应已经广泛地用于石油、石油化工和化工工业中的化学过程中。这些反应通常是采用位于流体相中的反应物和产物以及位于固体相中的催化剂而进行的。在多相催化反应中,反应发生在相之间的界面处,即在反应物和产物的流体相与位于载体上的催化剂固体相之间的界面处。因此,位于载体上的多相催化剂的表面的性能是催化剂有效使用的重要因素。更具体地说,位于载体上的活性催化剂的表面积以及对于反应物化学吸附和产物解吸来说该表面积的可及性较为重要。这些因素影响该催化剂的活性,即反应物向产物的转化率。该催化剂的化学纯度以及催化剂载体对催化剂的选择性,即催化剂由几种产物形成其中一种产物的程度,以及催化剂的寿命具有重要的影响。
一般说来,催化活性与催化剂表面积成正比。因此,高表面积是人们需要的。但是,这些表面积必须是反应物和产物以及热流可以进入的。催化剂表面对反应物的化学吸附通过该反应物在催化剂和催化剂载体内部结构中的扩散而进行。反应物形成产物的催化反应之后是产物由催化剂和催化剂载体向外的扩散。热量必须能够流入和流出催化剂载体。
由于活性催化剂化合物经常是载带在载体的内部结构上,因此,对于反应物、产物和热流来说重要的是载体材料内部结构的可及性。载体材料的孔隙率和孔隙尺寸分布是该可及性的测量值。用作催化剂载体的活性碳和焦碳的表面积约为1000平方米/克、孔隙度小于1毫升/克。但是,该表面积和孔隙度中有许多,高达50%并且常常更多,与微孔,即孔隙直径为2纳米或更小的孔隙有关。这些孔隙由于扩散限制而难以进入。此外,它们很容易堵塞并由此而减活。因此孔隙主要是中孔(>2纳米)或大孔(>50纳米)的高孔材料是人们最需要的。
另外一点重要的是载体上的催化剂在使用过程中不会破碎或消耗掉,这是因为这些碎片容易包裹在反应气流中并且在随后必须从反应混合物中除去。置换消耗的催化剂的成本、将其与反应混合物分离的成本以及污染产品的危险均是该过程的障碍。在其它工艺中,例如当位于载体上的固体催化剂由工艺气流中过滤并且循环到反应区中时,其细粒会堵塞过滤器并且使该过程中断。
还有一点重要的是尽可能少地减小催化剂对反应物和产物的化学污染。对于催化剂载体来说,这一点是更为重要的,这是因为载体是它所载带的催化剂以及化学过程的潜在的污染源。此外,这些催化剂对可能会促进不需要的竞争反应的污染,即影响其选择性,或使该催化剂无效,即使其“中毒”的污染特别敏感。由石油残余物制成的焦碳和工业石墨或碳常常会含有极少量的硫或氮以及生理系统常见的金属,由于该原因它们可能是不合适的。
尽管人们已经采用活性碳或其它含碳材料作为催化剂载体,但是至今没有一种达到所需的孔隙率和孔隙尺寸分布、抗消耗性和纯度的质量要求,从而用于多种有机化学反应中。举例来说,如上所说,虽然这些材料具有较高的表面积,但是表面积中有许多是不可进入的微孔的形式(即直径小于2纳米)。
在此之前,人们已经制造出纳米级纤维毡、组合体和团料,以充分利用采用极细的纤维获得的高碳纯度和高可进入的表面积/克的优点。这些结构一般是由多根相互缠绕或相互成网格的纤维组成。虽然这些纳米级纤维的表面积低于气溶胶或活性大纤维的,但是由于纳米级纤维基本上是不含微孔的,因而纳米级纤维具有较高的可进入的表面积。
现有的由纳米级纤维制成的纳米级纤维团料、组合体或毡的特点之一是低机械完整性和高抗压性。由于纤维不是非常脆,因此这些结构还很容易加压或变形。结果该结构的尺寸在使用过程中,不能很容易地控制或保持。此外,在组合体或团料中的纳米级纤维不能紧密地保持在一起。因此这些组合体和团料会分开或很容易消耗。这些现有的毡、团料或组合体是相互缠绕的纤维的低孔隙密实压成的块形式和/或限于微观结构。
此外,上述纳米级纤维结构的抗压性可以增加,这取决于多种因素,包括制造的方法。举例来说,当纳米级纤维带悬浮液中排出悬浮的流体,特别是水时,液体的表面张力会将原纤维拉入致密的填充“毡”中。所获得的毡的孔隙尺寸由纤维间的空间确定,由于这些毡的受压,这些空间将会相当小。结果这些毡的流体流动特性会较差。
另外,该结构在受力或剪切下会塌陷或者会断开。上述纳米级纤维结构通常太脆和/或太受压,以至于不能作为固定床或色谱介质而用于这些产品中。流体流动的力使易变形的组合体、毡或团料受压,或者说限制流动。流体通过毛细管的流动由Poiseuille氏方程来描述,该方程将流速与压力差、流体速度、路径长度和毛细管的尺寸联系在一起。单位的流速随着孔隙尺寸的平方而变化,因此两倍大的孔隙会使流速增加四倍。在纳米级纤维结构中存在基本上大尺寸的孔隙会使流速增加,这是因为流动基本上是通过较大的孔隙。通过加压而使孔隙尺寸减小可以大大降低流速。此外当受到剪切时,这些结构还会分开,从而导致与该结构散开并且随着流动而输送的单根纳米级纤维。
如前所述,现有的团料,毡或组合体具有较低的机械性能。因此虽然以前的工作已经表明,纳米级纤维可以组合成流过流体的薄的膜状结构或颗粒状结构,但是,这些结构易变形并且受压以及会损耗。因此,当这些结构受到任何力或剪切,如流体或气体流动时,这些结构会塌陷和/或受压,形成致密的低孔隙率的具有较低的流体流动性能的材料。此外,虽然单根纳米级纤维具有较高的内表面积,但是,该纳米级纤维结构表面中多数是不可进入的,其原因在于该结构的受压以及孔隙尺寸的降低。
人们需要制备一种刚性多孔碳结构,该结构具有较高的可及表面积、高孔隙率、高刚性和基本上没有微孔。由于多孔碳结构存在需要流动通道和/或高机械完整性的应用,这一点是特别真实的。以及前的纳米级纤维结构的受压性和/或缺少刚性会对这些应用产生严重的限制或不足。由本发明的带来的刚性多孔碳结构的机械和结构特性可以使这些应用变得更容易和/或更为有效。
发明目的因此,本发明的目的在于提供具有高可及表面积的刚性多孔碳结构。
本发明的另一个目的在于提供一种材料的组合物,该组合物包括一种三维刚性多孔碳结构,该结构包含纳米级碳纤维。
本发明的另一个目的在于提供一种刚性多孔碳结构,该结构具有非碳颗粒状材料和活性位置,它们分布在该结构中的纳米级纤维的表面上。
本发明的另一个目的在于提供一种材料的组合物,该组合物包括具有低松散密度和高孔隙率的三维刚性多孔碳结构,该结构中可以加入一种或多种功能性第二种材料,这些材料可以是活性催化剂、电子活性成分等等,从而形成具有新型工业特性的复合材料。
本发明的另一个目的在于提供刚性多孔碳结构的制备方法以及使用刚性多孔碳结构的方法。
本发明的另一个目的在于提供基于三维刚性多孔碳结构的、具有工业价值的、经过改进的催化剂载体、过滤器介质、色谱介质、电极、EMI屏蔽和其它组合物。
本发明的另一个目的在于提供用于固定床催化剂反应的、经过改进的刚性催化剂载体和位于载体上的催化剂,以用于石油、石油化工和化学工业中的化学过程中。
本发明的另一个目的在于提供经过改进的、基本上纯净的刚性碳催化剂载体,该载体具有高孔隙率、活性、选择性、纯度和耐损耗性。
本发明的另一个目的在于提供包含纳米级纤维的刚性气溶胶复合物。
本发明的另一个目的在于提供一种刚性纳米级碳纤维毡,它包含位于毡表面上的碳颗粒。
本发明的上述和其它目的及优点可以很明显地从下列描述及附图中获得。发明概述本发明总的来说涉及刚性多孔碳结构和涉及其制造方法。更进一步地说,本发明涉及具有高表面积的刚性多孔结构,该结构基本上没有微孔。更进一步地说,本发明涉及增加包含相互缠绕的纳米级碳纤维的多孔结构的机械完整性和/或刚性。
本发明提供了用于改进碳结构刚性的方法,它是通过使纳米级纤维与其它的纳米级纤维在纤维交叉处形成键或胶合。该键合可以通过纳米级纤维表面的化学改性以促进键合而形成,它是通过加入“胶合”剂和/或使纳米级纤维热解从而在交叉点处熔合或连接而实现的。
多孔结构中的纳米级纤维可以是单根纤维的形式,也可以是纳米级纤维的结块颗粒。前者导致了具有非常均匀的性能的结构。后者导致了具有两层结构的结构,它由包括相互连接在一起形成多孔材料的纳米级纤维的结块颗粒的总的大孔结构和在各个结块颗粒中相互缠绕的纳米级纤维的微孔结构组成。
本发明的另一个方面涉及可提供具有特定尺寸的刚性多孔颗粒,例如具有适用于流化填充床中的尺寸的多孔颗粒的能力。该方法包括制备多种纳米级碳纤维或其团料,将纳米级纤维在其交叉处熔合或将团料熔合形成较大的松散固体材料并且将该固体材料减小成具有适用于所需用途的尺寸,例如适用于形成填充床的颗粒尺寸,的刚性多孔高表面积颗粒块。
根据本发明的另一个方面,通过溶胶-凝胶聚合过程将纳米级纤维导入气溶胶或干溶胶复合物中。
根据本发明的另一种实施方案,将该结构用作过滤器介质、催化剂载体、过滤材料、吸附剂、用于然料电池和电池中的电极的电子活性材料以及作为色谱介质。已经发现该碳结构适用于形成复合材料,该复合材料包括与颗粒固体、电子活性成分或催化活性金属或含有金属的化合物一起的结构。
附图简述

图1是由热解前的氧化原纤维制成的刚性多孔碳结构的SEM显微照像图。
图2表示由氧化的纳米级纤维制成的刚性碳结构通过吸附/解析而获得的累积孔隙体积,其中垂直轴表示解析孔隙体积,水平轴表示孔隙直径。
图3表示由“原样”纳米级纤维制成的刚性碳结构通过吸附/解析而获得的累积孔隙体积,其中垂直轴表示解析孔隙体积,水平轴表示孔隙直径。
图4是根据本发明的一种实施方案用于制造复合干溶胶和气溶胶的方法的流程图。
定义术语“组合体”、“毡”或“团料”是指相互缠绕的各个纳米级纤维材料的任何一种构型。术语“组合体”包括具有均匀特性的开放式松散结构。术语“毡”是指相当致密的毛毡类结构。术语“团料”是指致密的微孔颗粒结构。更进一步地说,术语“组合体”是指至少沿着一个尺寸轴具有相当或基本上均匀的物理性能的结构,较为合适的是在该组合体中的一个或多个平面上具有相当或基本上均匀的物理性能,即它们在该平面中具有各向同性的物理性能。该组合体可以由均匀分散的单根相互连接的纳米级纤维或纳米级纤维连接而成的团料材料组成。在其它的实施方案中,整个组合体相对于其一个或多个物理性能来说是相当或基本上各向同性的。较容易测量并且由此测定均匀性或各向同性的物理性能包括电阻率和光密度。
术语“可以进入的表面积”是指不是由于微孔,即直径或横截面小于2纳米的孔隙而形成的表面积。
术语“流体流速特性”是指流体或气体流过固体结构的能力。举例来说,它是流体或气体流过具有比横截面和比厚度或在该结构上的高度差的三维结构的体积的速度(即毫升/分钟/平方厘米/毫米厚度)。
术语“各向同性”是指在该结构的平面或体积内所有物理性能测定结果与测定的方向无关,是一个固定值。应当明白,这种非固体组份的测定必须在该结构有代表性的样品上进行,从而采用该空隙空间的平均值。
术语“纳米级纤维”是指横截面(例如具有边缘的带角纤维)或直径(例如圆形)小于1微米的细长结构。该结构可以是空心的,也可以是实心的。因此该术语包括“巴基管”和“纳米管”。该术语进一步定义如下。
术语“内部结构”是指组合体的内部结构,包括纤维的相对取向、纤维取向的偏差以及总的平均值、纤维相互之间的距离、由于纤维间的间隙和空间而产生的空隙空间或孔隙以及由于这些空隙空间和/或孔隙连接而成的流动通道或路径的尺寸、形状、数量和取向。根据另一个实施方案,该结构还可以包括与形成组合体的团料颗粒的尺寸、间距和取向有关的特性。术语“相对取向”是指单个纤维或团料相对于其它纤维或团料的取向(即对准的与不对准的)。纤维或团料取向的“偏差”和“总的平均值”是指该结构中纤维取向的范围(相当于该结构的外表面的对准和取向)。
术语“物理性能”是指多孔结构本身的可以测定的性能,例如表面积、电阻率、流体流动特性、密度、孔隙率等等。
术语“相当”是指当沿着该结构的一个轴或在该结构的一个平面或在其体积中测定时物理性能数值的95%,根据具体的情况,该值可以是平均值的正负20%。
术语“基本上”是指当沿着该结构的一个轴或在该结构的一个平面或在其体积中测定时物理性能数值的95%,根据具体的情况,该值可以是平均值的正负10%。
术语“基本上各向同性”或“相当各向同性”是指前面所说的物理性能数值的变化范围。发明详述纳米级纤维术语纳米级纤维是指多种具有非常小的直径的纤维,特别是碳纤维,包括原纤维、晶须、纳米管、巴基管等等。当将这些结构导入一种结构中时,由于它们的尺寸和形状它们就会产生相当的大的表面积。此外,这些纤维可以以高纯度和均匀性而制得。
优选地用于本发明中的纳米级纤维的直径小于1微米,优选地小于约0.5微米,更优选地为小于0.1微米,最优选地为小于0.05微米。
根据本发明的一种优选的实施方案,采用碳原纤维来形成刚性组合体。可以使碳原纤维的直径为3.5-70纳米。
在本申请中所说的原纤维巴基管、纳米管和晶须与市售的作为增强材料的连续碳纤维区分开。与具有相当大的但不可避免的有限纵横比的纳米级纤维不同的是,连续碳纤维的纵横比(L/D)至少为104,常常为106或更高。连续纤维的直径也远远大于原纤维的,它总是大于1.0微米,通常为5-7微米。
连续碳纤维可以通过热解有机母物纤维,通常是人造纤维、聚丙烯腈(PIN)和沥青而形成的。因此,它们会在其结构中含有杂原子。“人造”连续碳纤维的石墨性能会变化,但对它们可以进行后续的石墨化步骤。石墨平面(如果存在的话)的石墨化、取向和结晶程度的不同、可能存在的杂原子以及基体直径的极大差异使得连续纤维的纳米级纤维化学性能难以预见。
碳原纤维是蠕形碳沉积,其直径小于1.0微米,优选地小于0.5微米,更优选地小于0.2微米,最优选地小于0.05微米。它们以多种形式存在并且可以通过在金属表面催化分解多种含碳气体而制备。这种蠕形碳沉积几乎从出现电子显微技术时就已经被人们发现。一个较好的早期调查和参考可以参见Chemistrey and Physics ofCarbon,Walker和Thrower编辑,Vol.14,1978,p.83和Rodriguez,N.J.Marer.Research,Vol.8,p.3233(1993),每一篇文献均作为参考而引入本文。(还可以参见Obelin,A.和Endo,M.J.ofCrystal Growth,Vol.32(1976)pp.335-349,该文献作为参考而引入本文)。
Tennent的US4,663,230(作为参考而引入本文)描述了碳原纤维,该纤维没有连续的热碳上涂层并且具有多层依次的石墨外层,这些外层基本上与原纤维轴平行。因此其特征在于具有c-轴,该轴与石墨曲面层的切线垂直,它们基本上垂直于它们的圆柱轴。通常其直径不超过0.1微米并且长度与直径的比至少为5。较为合适的是,它们基本上没有连续的热碳外涂层,即由于用来制备它们的气体原料的热裂解而形成的热解沉积的碳。Tennent发明提供了较小直径的原纤维,通常为35-700埃(0.0035-0.070微米)以及一种依次的“如生成的”石墨表面。还生成了具有不太完善的结构但是没有热解碳外层的纤维碳。
Tennent等人的US5171560(作为参考而引入本文)描述了碳原纤维,这些纤维没有热外涂层并且具有基本上与原纤维轴平行的石墨层,从而使得在所说的原纤维轴上的所说的层向外延伸至少2个原纤维直径的距离。典型地,这些原纤维基本上是具有基本上固定的直径的圆柱形石墨纳米管并且由其c-轴基本上与其圆柱轴垂直的圆柱石墨板组成。它们基本上没有热解沉积碳,其直径小于0.1微米,长度与直径的比大于5。这些原纤维是本发明的主要感兴趣的。
当原纤维轴上的石墨层向外延伸小于2个原纤维直径的距离时,在横截面上石墨纳米级纤维的碳表面具有鱼骨外形。这些纤维称为鱼骨圆纤维。Geus的US4855091(作为参考而引入本文)提供了一种用于制备基本上没有热解外涂层的鱼骨圆纤维的方法。这些圆纤维也可以用于实施本发明。
根据本发明的一种实施方案,采用氧化的纳米级纤维来形成刚性多孔组合体。McCarthy等人的美国专利系列申请351967(1989年5月15日提出,该文献作为参考而引入本文)描述了一种用于氧化碳原纤维表面的方法,它包括在足以使原纤维表面氧化的反应条件(如时间、温度和压力)下将原纤维与包含硫酸和氯酸钾的氧化剂接触。根据McCarthy等人的工艺氧化的原纤维是非均匀氧化的,也就是说,碳原子被羧基、醛、酮、苯酚和其它羰基取代。
还可以通过用硝酸进行处理而使原纤维非均匀氧化。国际中请PCT/US94/10168描述了含有官能基团的混合物的氧化原纤维的形成过程。Hoogenraad,M.S.等人(“载于新碳载体上的金属催化剂”,发表在制备多相催化剂的科学基础方面的第6次国际会议,Brussels,Belgium,1994年9月)还发现在制备用原纤维携带的贵金属的过程中较为有利的是首先用硝酸氧化原纤维表面。这种用酸的预处理在支承在碳上的贵金属催化剂的制备过程中是一个标准步骤,对于这种碳的常规来源来说,它可以清洗不需要的材料的表面,其作用与使其功能化一样。
在公开发表的文章中,McCarthy和Bening(Polymer PreprintsACS Div,of Polymer Chem.30(1)420(1990))制备了氧化原纤维的衍生物,以证明该表面有多种氧化基团组成。选用它们制备的化合物、苯腙、卤代芳香酯、亚铊盐等等,其原因在于它们具有分析用途,例如具有明亮的颜色,或具有某些强烈的并且容易识别和区分的信号。这些化合物不是分离的,因而不象其中所说的衍生物那样具有实用意义。
可以采用过氧化氢、氯酸盐、硝酸和其它合适的试剂将纳米级纤维氧化。
在该结构中的纳米级纤维还可以如美国专利申请08/352400(1995年12月8日提出,发明人为Hoch和Moy等人,名称为“功能化的原纤维”)中所说进一步功能化,该文献作为参考而引入本文。
形态与上述催化生长的原纤维相似的碳纳米管已经在高温碳弧中生长(Iijima,Nature 354 56 1991,该文献作为参考而引入本文)。通常不能接受的(Weaver,Science 265 1994,该文献作为参考而引入本文)是,这些弧形生长的纳米级纤维,具有与Tennent的早期的催化生长的原纤维相似的形态。弧形生长的纳米级碳原纤维也适用于本发明。
纳米级纤维还可以是美国系列申请60/017787(CMS DocketNo.:370077-3630名称为“高表面积纳米级纤维,其制造方法,其使用方法以及含有该纤维的产物”,它同时提出,该文献作为参考而引入本文)中所说的高表面积纳米级纤维。纳米级纤维团料和组合体“未粘连的”母物纳米级纤维可以是单根纤维、纤维的团料或两者均有的形式。
当采用碳原纤维时,当存在团料时,该团料通常是鸟巢形的、编纱形的或开放网形形态。该团料缠绕得越多,如果需要高孔隙率,则需要更多的操作来达到合适的组成。这就意味着对于大多数应用来说,选择编纱或开放网形团料是最优选的。但是,通常鸟巢形的团料就足够了。
通过将纳米级纤维分散在含水或有机介质中而后过滤纳米级纤维以形成毡或组合体已经可以制备纳米级纤维毡或组合体。还可以通过将纳米级纤维与可碳化的树脂,如苯酚树脂在捏合机中完全混合而后挤出或造粒和热解制备组合体。通过在流体,如有机溶剂如丙烷中形成纳米级纤维凝胶或浆料而后将凝胶或浆料加热到超过介质临界温度的温度,除去超临界流体并且从进行该过程的容器中取出所形成的多孔毡或塞,还可以制备毡。参见美国专利申请08/428496,名称为“随机取向的碳原纤维的三维大型组合体以及含有该组合体的复合物材料”,发明人为Tennent等人,该文献作为参考而引入本文。
纳米级纤维还可以作为具有多种形态(通过描述电子显微镜来确定)的团料而制备,其中它们相互随机缠绕,形成类似鸟巢形(“BN”)的纳米级纤维缠绕球;或者作为由直至稍弯曲或扭曲的纳米碳纤维束组成的团料而制备,这些纳米级纤维具有基本上相同的相对方向并且具有编纱(“CY”)的外观,例如每一根纳米级纤维的纵向轴(除了各个弯曲或扭曲以外)以与束中周围纳米级纤维相同的方向延伸;或者作为由直至稍弯曲或扭曲的纳米碳纤维束组成的团料而制备,这些纤维相互松散地缠绕,形成“开放网形”(“ON”)结构。在纳米级纤维的开放网形结构中,缠绕大于在编纱团料(其中各个纳米级纤维具有基本上相同的相对取向)中所看到的但低于鸟巢的。CY和ON团料比BN更容易分散,从而使它们适用于复合材料制备过程中,此时需要在整个结构中具有均匀的性能。各个纳米级纤维束基本上呈线性还使得该团料适用于EMI屏蔽和电学应用中。
团料的形态可以通过选择催化剂载体而控制。球形载体使得纳米级纤维在所用方向上生长,导致形成鸟巢团料。采用具有一个或多个容易断开的平形表面的载体可以制得编纱和开放网形团料,例如该载体可以是沉积在具有一个或多个容易断开的表面的载体材料上并且表面积至少为1平方米/克的铁或含有铁金属催化剂颗粒。Moy等人在美国申请08/469430(名称为“用于制备碳原纤维的经过改进的方法和催化剂”,1995年6月6日提出,该文献作为参考而引入本文)中描述了一种原纤维,它是作为具有各种形态的团料(通过扫描电子显微镜来确定)的团料而制得的。
有关形成纳米级碳纤维团料的进一步的细节可以参见Tennent的US5165909、Moy等人的US5456897、Snyder等人的美国专利申请149573(1988年1月28日提出)和PCT申请US89/00322(1989年1月28日提出)(“碳原纤维”)WO89/07163和Moy等人的美国专利申请413837(1989年9月28日提出)和PTC申请US90/05498(1990年9月27日提出)(“原纤维团料及其制造方法”)WO91/05089,以及Mandeville等人的美国申请08/47986(1995年6月7日提出)和Bening等人的美国申请08/329774(1984年10月27日提出)和Moy等人的美国申请08/284917(1994年8月2日提出)和美国申请07/320564(1994年10月11日提出),所有这些文献均以转让给与本发明相同的转让人并且作为参考而引入本文。硬多孔碳结构及其制造方法本发明涉及由纳米级纤维制造刚性多孔结构的方法。所得到的结构可以用于催化、色谱、过滤系统、电极和电池等。1.刚性多孔纳米级碳纤维结构根据本发明的刚性多孔碳结构具有高可及表面积。也就是说,该结构具有高表面积,但是它们基本上没有微孔(即直径或截面小于2纳米的孔隙)。本发明涉及增加由相互缠绕的纳米级碳纤维组成的多孔结构的机械完整性和/或刚性。由本发明制得的结构具有比常规纳米级纤维结构更高的抗碎强度。本发明提供了一种改进碳结构刚性的方法,它是将纳米级纤维与其它的纳米级纤维在纤维交叉处连接或变成胶合。该连接可以通过使纳米级纤维表面化学改性以促进连接、通过加入“胶粘”剂和/或通过热解纳米级纤维从而在交叉点处形成熔合或连接而形成。
该纳米级纤维可以是分离的纤维或纳米级纤维团料颗粒的形状。前者使得该结构具有十分均匀的性能。后者是该结构具有两层结构,它由包含相互连接在一起的纳米级纤维团料颗粒的总的大结构和在单个团料颗粒中的相互缠绕的纳米级纤维的微结构组成。
根据本发明的一种实施方案,各个单个的纳米级纤维形成该结构。在这些情况下,各个原纤维束在颗粒中的分布基本上的均匀的,在纤维束之间具有基本上固定的间距。这些间距(与常规载体中的空隙类似)随着该结构的密度而变化,从最密实的(由氧化的原纤维加压成的片,密度=1-1.2克/立方厘米)约15纳米至在最轻的颗粒(如由开放网形团料制成的固体料块)中的平均50-60纳米。没有与常规的碳载体中的微孔(小于2纳米)相对应的孔隙或空间。图1是采用工业氧化的纳米级纤维形成的纳米级纤维结构的SEM图。
这些刚性多孔材料比目前用于固体床以碳为载体催化剂中的高表面积材料更优越。该结构的稳定性、孔隙度(孔隙体积和孔隙结构)以及碳的纯度均得到明显改善。这些性能与相当高的表面积结合在一起提供了具有适用的特性的独特材料。此外,没有其它的碳载体(也许没有其它种类的)具有高达400平方米/克的表面积,同时又不使该表面积大都埋在不可进入的微孔中。
本发明的一种实施方案涉及一种刚性多孔碳结构,该结构的可及表面积大于约100平方米/克,基本上没有微孔并且抗碎强度大于约1磅。优选地该结构包括相互缠绕、相互连接的纳米级碳纤维,其中所说表面积中不到1%是由微孔形成的。
优选地,该结构的碳纯度大于50%重量,更优选地大于80%重量,更优选地大于95%重量,最优选地大于99%重量。
优选地,由氧化的纳米级纤维(以1/8英寸直径柱形挤出物的形状测定)制得的结构的抗碎强度大于5磅/平方英寸,更优选地大于10磅/平方英寸,更优选地大于15磅/平方英寸,最优选地大于20磅/平方英寸。
优选地由“原样的”纳米级纤维(以1/4直径颗粒的形状测定)制得的结构的抗碎强度大于20磅/平方英寸,更优选地大于40磅/平方英寸,更优选地大于60磅/平方英寸,最优选地大于70磅/平方英寸。
根据另一种实施方案,该刚性多孔碳结构的可及表面积大于约100平方米/克、抗碎强度大于5磅/平方英寸并且密度大于0.8克/立方厘米。优选地该结构基本上没有微孔。
根据另一种实施方案,该刚性多孔碳结构的可及表面积大于约100平方米/克、孔隙率大于0.5立方厘米/克,基本上没有微孔、碳纯度大于95%重量并且抗碎强度大于约5磅/平方英寸。
优选地该结构的密度大于0.8克/立方厘米。根据另一种实施方案,该结构优选地具有大于1.0克/立方厘米的密度。
优选地该结构的可及表面积大于约100平方米/克、更优选地为大于150平方米/克、更优选地为大于200平方米/克、更优选地为大于300平方米/克、最优选地为大于400平方米/克。
根据一种实施方案,该结构包括在整个所说的结构均匀并且平均分散的纳米级纤维。也就是说,该结构是纳米级纤维的刚性和均匀的组合体。该结构包括在所说的纳米级纤维之间基本上均匀的通道和间距。该通道和间距是均匀的,从而使得每一个均具有基本上相同的横截面并且是基本上均匀地隔开。优选地,纳米级纤维之间的平均距离小于约0.03微米并且大于约0.005微米。平均间距随着该结构的密度而变化。
根据另一种实施方案,该结构包括以纳米级纤维团料颗粒相互连接形成所述结构的形式存在的纳米级纤维。该结构包括相互连接的团料颗粒之间的较大团料间距和这些团料颗粒中各个纳米级纤维之间的较小纳米级纤维间距。优选地,所说的各个团料之间的平均最大距离小于约0.1微米并且大于0.001微米。举例来说,该团料颗粒可以包括类似鸟巢的纳米级纤维随机绕成的球的颗粒和/或其中心轴通常相互平行对准的纳米级纤维束。
该纳米级纤维的平均直径小于约1微米。优选地,小于0.5微米,更优选地小于0.1微米,更优选地小于0.05微米,最优选地小于0.01微米。
优选地,该纳米级纤维是基本上呈圆柱形的碳原纤维,它们具有基本上恒定的直径,具有与所述原纤维轴同心的石墨层并且基本上不含热解沉积的碳。
本发明的另一个方面涉及提供具有特定尺寸的刚性多孔颗粒或料丸的能力,例如具有适用于流化填充床的尺寸的多孔颗粒或料丸。该方法包括制备多种纳米级碳纤维或团料,将该团料或纳米级纤维在其交叉处熔合或胶连,从而形成大量刚性松散固体材料,并且将该固体材料尺寸定至其尺寸适用于所需用途的刚性多孔高表面积颗粒小块,例如适用于形成填充床的尺寸。
上述结构可以通过使纳米级纤维在纤维交叉处与其它的纳米级纤维形成连接或变成胶连的而形成。可以通过将纳米级纤维的表面化学改性以促进连接、通过加入“胶连”剂和/或将纳米级纤维热解从而在交叉点处形成熔合或连接而形成连接。
该硬多孔结构可由常规的纳米级纤维或纳米级纤维团料形成,可以采用也可以不采用表面经过改性的纳米级纤维(即表面氧化的纳米级纤维)。为了增加纳米级纤维结构的稳定性,还可以在该结构的交叉点处沉积聚合物。这一点可以通过将低分子量聚合物胶凝材料(即低于约1000MW)的稀溶液渗入该组合体并且使该溶剂蒸发而达到。毛细管力将使该聚合物浓缩在纳米级纤维交叉处。应当明白为了明显改进该结构的刚度和完整性,只需要使小部分的纳米级纤维交叉点胶连起来。
本发明的一种实施方案涉及制备表面积至少大于100平方米/克的刚性多孔碳结构的方法,它包括下列步骤(a)使多种纳米级纤维分散在介质中以形成一种悬浮液;以及(b)将所说的介质从所说的悬浮液中分离以形成所说的结构,其中所说的纳米级纤维相互连接形成相互缠绕的纳米管的刚性结构,这些刚性管在该结构中的纳米级纤维交叉处连接在一起。
该纳米级纤维可以在整个结构中均匀且平均地分散或者以相互连接形成该结构的团料颗粒的形式。当需要前者时,纳米级纤维完全分散在介质中,形成个个纳米级纤维的分散液。当需要后者时,可以将纳米级纤维团料分散在介质中形成一种料浆并且用一种胶连剂将所说的团料颗粒连接在一起以形成所说的结构。
所用的介质可以选自水和有机溶剂。优选地,该介质包括选自醇、甘油、表面活性剂、聚乙二醇、聚乙烯亚胺和聚丙二醇的分散剂。
该介质应选择成它可以(1)使胶连剂细分散在团料中;以及(2)作为模板试剂,以使团料的内部结构在该混合物干燥时免于塌陷。
一种优选的实施方案,使用溶解在水或醇中的聚乙二醇(PEG)和甘油的组合作为分散介质,并且采用一种可以碳化的材料,如低分子量的酚醛树脂或其它可碳化的聚合物或碳水化合物(淀粉或糖)。
如果采用表面氧化的纳米级纤维,则在分散在介质中之前将纳米级纤维氧化,并且通过在纳米级纤维交叉处连接而使其自粘连形成刚性结构。随后可以将该结构热解以除去氧。
根据另一种实施方案,可以将纳米级纤维与胶连剂分散在所说的悬浮液中,并且这些胶连剂将所说的纳米级纤维粘连在一起,形成所说的刚性结构。优选地,该胶连剂包括碳,更优选地该胶连剂选自这样一种材料,该材料当热解时,仅仅会留下碳。因此,随后可以将用这种胶连剂形成的结构热解,以使该胶连剂转变成碳。
优选地该胶连剂选自纤维素、碳水化合物、聚乙烯、聚苯乙烯、尼龙、聚碳酸酯、聚酯、聚酰胺和酚醛树脂。
根据本发明的进一步的实施方案,分离步骤包括将该悬浮液过滤或者由所说的悬浮液中蒸发掉介质。
根据另一种实施方案,该悬浮液是一种凝胶或浆料,它由在流体中纳米级纤维组成并且分离过程包括下列步骤(a)在一种压力容器中将该凝胶或浆料加热到超过流体临界温度的温度;(b)由压力容器中除去超临界的流体;以及(c)由该压力容器中取出该结构。
可以采用Waring混合机或捏合机,来获得纳米级纤维团料在含有胶连剂的溶剂/分散剂的混合物中的各向同性的料浆分散液,而不会破坏该团料。该纳米级纤维团料捕捉了树脂颗粒并且使它们分布。
这些混合物可以原样使用,或者将它们过滤以除去足量的溶剂,由此获得具有较高的纳米级纤维含量(约5-20%干重基)的滤饼。将该滤饼成型、挤出或造粒。所成型的形状足够稳定,从而可以进一步干燥,而不会使该形状塌陷。在除去溶剂时,将分散剂分子与胶连剂的颗粒一起浓缩并且在纳米级纤维团料中以及在该团料的外部边缘处的纳米级纤维交叉点处汇集。当将该混合物进一步干燥并且最终碳化时,在该团料中的纳米级纤维束以及团料本身在接触点处胶连在一起。由于该团料结构没有塌陷,因此形成的相当硬的、非常多孔的、低密度颗粒。
如前所说,还可以采用加或不加胶连剂的氧化的纳米级纤维形成刚性多孔结构。在氧化之后,纳米碳纤维变成自粘连。通过使该氧化的纳米级纤维高度分散(作为单个的纤维素)、过滤和干燥可以形成非常硬的致密的毡。干毡的密度为1-1.2克/立方厘米,它取决于氧含量,它足够硬,从而可以通过筛选而磨细并确定尺寸。所测得的表面积约为275平方米/克。
通过在流动气体,如氩气中在约600℃下热解颗粒,可以基本上除去在所得到的刚性结构中的全部的氧。密度降低到约0.7-0.9克/立方厘米,表面积增加到约400平方米/克。经过烧结的孔隙体积通过水吸附法测定约为0.9-0.6立方厘米/克。
氧化的纳米级纤维还可以与胶连剂一起使用。由于氧化的纳米级纤维具有连接点,从而将胶连剂和模板试剂粘连在一起,因此氧化的纳米级纤维是良好的原材料。后者可以在干燥时保持颗粒或毡的内部结构,从而保持原纳米级纤维团料的高孔隙度和低密度。通过将氧化的纳米级纤维与诸如聚乙烯亚胺纤维素(PEI纤维素)的材料一起制成料浆可以获得良好的分散液,其中碱性亚胺官能团与羧酸官能化的原纤维形成强烈的静电作用。将该混合物过滤形成毡。在惰性气氛中在超过650℃的温度下热解毡可以使PEI纤维素转变成碳,这些碳使纳米级纤维团料熔合在一起,形成硬结构。结果获得一种刚性基本上纯净的碳结构。
通过将添加剂与纳米级纤维分散液在形成该结构之前混合,还可以将固体成分导入到该结构中。干结构中的其它固体成分的含量可以高达50份固体/份纳米级纤维。
根据一种优选的实施方案,可以将纳米级纤维在高剪切混合机如Waring混合机中高速剪切而分散。该分散液可以在水、乙醇、溶剂油等等中含有大约0.01-10%纳米级纤维。该过程可以将纳米级纤维束,即紧紧捆在一起的纳米级纤维束适当打开,并且使纳米级纤维分散,从而在过滤和干燥以后形成自支承毡。高剪切混合可以持续数小时。但用这种方法制得的毡含有团料。
如果高剪切过程之后进行超声处理,则可以改善分散液。稀释到0.1%或更低有助于超声处理。因此,例如可以用Bronson SonifierProbe(450瓦功率输入)对200毫升0.1%原纤维进行声处理达5分钟或更长时间以进一步改善分散性。
为了获得最高程度的分散液,即没有或基本上没有原纤维团料的的分散液,声处理必须在相配液体中的非常低的浓度如在乙醇中的0.001%-0.01%浓度下进行,或者在水中在非常高的浓度如0.1%浓度下进行(已经向其中以大约0.5%的浓度加入一种表面活性剂,如Triton X-100)。可以通过依次加入水而后进行真空过滤将在随后形成的毡冲洗,使之没有或基本上没有表面活性剂。
可以在形成毡之前将颗粒固体如二氧化锰(对于电池来说)和三氧化二铝(对于高温垫圈来说)加入到纳米级纤维分散液中,其量为每份原纤维50份以下的固体。
可以在形成过程中将加强织物和纱布加入毡中。其例子可以是聚丙烯网和膨胀镍网。
可以将轻度氧化(即用30%H2O2)的纳米级纤维团料仍作为团料分散,而不是作为各个纳米级纤维分散。将这些结构连接在一起保持原纳米级纤维的高孔隙率和低密度。
根据另一种实施方案,可以将氧化的纳米级纤维的干粉等静压加压而制备直径为1/2英寸的圆片。与氧含量有关的圆片的密度可以通过对该圆片进行热处理而改变。通过这些方法可以形成高密度和中等孔隙率的硬颗粒。由BN和CC生产的纳米级纤维团料制得的刚性多孔结构(采用和不采用任何在先化学处理)采用酚醛树脂或其它有机聚合物作为胶粘剂而制得,其性能概述与表1中。
表1所形成的结构的物理性能概述
<p>如美国申请60/017609(CMS卷号370077-3600)(“名称为“在电化学电容器中的石墨纳米级纤维”,同时提出,并作为参考而引入本文)中所说,这些结构还可以用于电容器中。
本发明的另一个方面涉及形成由纳米级纤维组成的气溶胶或干溶胶复合材料,以形成刚性多孔结构。气溶胶是独特的具有极低密度,高孔隙率和表积的一种材料。如R.W.Pekala的文章所说,有机气溶胶和碳气溶胶对于许多应用,包括高密度能量储存、高容量吸附剂和催化剂载体来说是有吸引力的。类似的材料(称为具有相当低的密度的泡沫有机聚合物)是人们已知的并且广泛用作绝缘材料。常规的独石形有机气溶胶具有非常差的机械性能。在绝大多数情况下,气溶胶是绝缘体。因此,人们需要制备具有改进的机械和电性能的气溶胶复合材料。干溶胶类似于气溶胶,但它由于制造方法的原因而具有较致密的结构(参见图4)。
这些结构完全公开在Pekala的美国专利5476878,Nishii等人的美国专利5124100,Unger等人的美国专利5494940,Wuest等人的美国专利5416376,Tillotson等人的美国专利5409683,Droege等人的美国专利5395805,Pekala的美国专利5081163,Tillotson的美国专利5275796,Pekala的美国专利5086085以及Peala的美国专利4997804中,这些文献均作为参考而引入本文。
根据本发明,用于制备气溶胶复合材料的通常的工艺如图4中所示。一般说来,该工艺包括在一种合适的溶剂中制备纳米级纤维分散液(单一的各个纳米级纤维分散液或纳米级纤维团料分散液);制备单体溶液;将该纳米级纤维分散液与该单体溶液混合;将催化剂加入到该混合物中;使单体聚合,从而获得纳米级纤维聚合物凝胶复合材料并且将其超临界干燥,以获得纳米级纤维-有机聚合物基质复合材料。最后通过将该气溶胶复合材料碳化而制得纳米级纤维气溶胶复合材料。
还可以通过将该凝胶超临界干燥而制得纳米级纤维-聚合物气溶胶复合材料。如果将该凝胶通过常规方法(即不是超临界)干燥,则制得纳米级纤维-聚合物干溶胶。
根据本发明制得的复合气溶胶的潜在用途包括常规气溶胶的那些用途。由于导入纳米级纤维而获得的机械性能的改善使得该复合气溶胶更具吸引力及通用性。此外,该复合气溶胶导电性的增加将会导致新的作用。
本发明的一种实施方案涉及用于进行流体相催化化学反应的位于刚性载体上的催化剂,采用该载体催化剂在流体相中进行催化化学反应的工艺以及制造该载体催化剂的工艺。
本发明的位于载体上的催化剂包括由刚性纳米级碳纤维结构组成的载体和在其上载带的有效催化量的催化剂。
本发明的位于刚性载体上的催化剂具有独特的性能。它们是特殊的中孔和大孔并且它们是纯净的以及它们抗消耗、抗压及抗剪切并且因此而可以在较长使用寿命内从流体向反应介质中分离出来。本发明的载体所增加的刚性使得该结构可以用于固定床催化反应中。可以形成含有一定尺寸的刚性结构的填充物并且使流体或气体从该填充物中经过但不会明显地改变该填充物的形状和孔隙率,这是因为该刚性结构是硬的并且抗压。
此外,纳米级碳纤维结构的特别高的大孔隙(由于它们的大型形态而造成)使反应物和产物以及热量向载体催化剂内或外的流动更加容易。这种独特的孔隙是由于随机缠绕或相互缠绕的纳米级纤维而造成的,它产生了特别高的内部孔隙体积,它们主要由动态的而不是静态的大孔组成。流体相受到抑制的分离性能以及催化剂的低损耗还改进了工艺效果及成本。该纳米级纤维结构作为催化剂载体的其它优点包括高纯度、改进的催化剂负载能力以及抗酸和碱的性能。
由纳米级纤维团料形成的刚性结构是用于催化剂载体的特别优选的结构。作为催化剂载体,纳米级碳纤维团料在孔隙率、表面积、分离性、纯度、催化剂负载能力、抗酸和碱性以及抗消耗性方面提供了特别优异的化学和物理性能。这些性能使得它们适用于填充床或流态化床工艺。
纳米级碳纤维催化剂载体具有较高的内部孔隙体积,这就减轻了在各种工艺中所遇到的阻塞问题。此外,大孔隙占主要部分减轻了在扩散或传质受限反应中常常遇到的问题。高孔隙率确保催化剂的寿命明显增加,其原因在于可以将更多的催化剂负载在载体上。
本发明的刚性纳米级纤维催化剂载体具有改进的物理强度和抗消耗性。
碳结构的化学纯度对载体催化剂的选择性具有良好作用,这是因为由杂质引起的副反应可以降至最低。该碳结构基本上是纯碳,仅仅带有少量由形成纳米级纤维的工艺留下的裹入催化金属化合物。该裹入的形成纤维的金属化合物不会作为催化剂毒物或作为影响选择性的杂质而起作用。
由纳米级纤维结构产生的性能的组合是独特的。没有一种已知的催化剂载体能够将高孔隙率、高表面积和高抗消耗性结合在一起。由纳米级纤维结构产生的这些性能组合有利于任何一种催化剂系统采用碳载体。构成纳米级碳纤维结构的多种纳米级碳纤维提供了大量的结合点,在这些结合点处催化剂颗粒可以与该纳米级纤维结构中的多个纳米级纤维连接在一起。这就使得催化剂载体可以更牢固地保持位于其上的催化剂。此外,纳米级纤维结构单位重量的纳米级纤维可以获得更高的催化剂负载量并且使催化剂具有更高的存放能力。催化剂负载量通常大于0.01%重量,优选地大于0.1%重量(基于该载体催化剂的总重量)。由于纳米级纤维结构的孔隙率以及其中所说的其它因素,大于50%重量活性催化剂(基于该载体催化剂的总重量)的催化剂负载量在本发明中很容易做到,即在100%重量范围内的负载量(即该载体催化剂的总重量)。合适的活性催化剂是铂族(钌、锇、铑、铱、钯和铂或其混合物),优选地为钯和铂或其混合物。
由于其高纯度,碳原纤维团料具有高纯度石墨的性能,因此,具有高抗酸和碱腐蚀的性能。这种特性是有益的,这是因为再生催化剂的一种方法不是用酸就是碱再生。再生过程可以采用用强酸或强碱的过程。其高纯度使它们可以用于非常具有腐蚀性的环境中。
该载体催化剂可以通过将有效催化量的催化剂载带在刚性纳米级纤维结构上而制得。术语“在纳米级纤维结构上”包括在该结构上、在该结构中以及在该结构内以及在其纳米级纤维上。上述术语可以相互变化地使用。催化剂可以在形成刚性结构之前、在形成该刚性结构的同时(即加入到分散介质中)或在形成该结构以后导入纳米级纤维或团料上。
本发明的制备多相载体催化剂的方法包括吸附、早期湿法浸渍和沉积。可以通过将催化剂导入团料载体或当场形成而制备载体催化剂并且可以将催化剂在放入团料中之前活化或者当场活化。
通过将纳米级纤维在催化剂或催化剂母物的溶液中制浆而吸附催化剂达适当的时间以获得所需的载体量,所说的催化剂例如是催化过渡金属,如钯、铑或铂以及一种配位体,如膦的配位配合物。
可以采用这些方法和其它的方法来形成催化剂载体。采用纳米级纤维结构形成催化剂载体的合适方法的更详细的描述公开在Moy等人的美国申请07/320564(名称为“催化剂载体、其制备方法及其使用方法”,1994年10月11日提出,该文献作为参考而引入本文)中。在美国申请07/320564中,公开了用非刚性纳米级纤维团料形成催化剂载体的方法。这些制造和使用方法适用于采用刚性多孔纳米级纤维结构制造和使用催化剂载体的运用。使用带有载体的催化剂的方法纳米级碳纤维结构是用作至今采用碳作为载体材料的催化剂的催化剂载体的候选物。这些催化剂可以催化取代反应-亲核的、亲电子的或自由基的;加成反应-亲核的、亲电子的、自由基的或自发的;β去除反应;重组反应-亲核的、亲电子的或自由基的;氧化反应;或还原反应。上述反应描述在March,J.Advanced OrganicChemistry(第三版,1985),pp.180-182.还可以参见Grant andHackh’s Chemical Dictionary(第五版,1987)。更进一步地说,本发明的碳结构可以用作催化剂载体,该催化剂用于料浆液相贵金属加氢或脱氢催化反应、Fischer-Tropsch催化反应、合成氨催化反应、氢化脱硫或氢化脱氮催化反应、将甲醇催化氧化成甲醛的反应以及纳米级纤维和/或纳米级纤维团料形成催化剂。典型的多相催化反应以及载带在刚性多孔纳米级碳纤维结构上的催化剂列于下表2中。

采用本发明的载体催化剂在流体相中进行多相催化化学反应的过程,包括将试剂与载体催化剂在流体相中在合适的反应条件下接触。该过程可以是分批过程也可以是一种连续的过程,例如活塞式流动过程或无梯度过程,如硫化床过程。本发明的载体催化剂特别适用于这样一些催化过程,此时反应环境使得该载体催化剂受到机械应力,例如采用液相料浆反应器、喷淋床反应器或流化床反应器的那些过程。该载体催化剂的抗消耗性和高负载能力在这些环境中特别有益。
在分批过程中,反应物在载体催化剂的存在在反应容器中反应,优选地是在搅拌条件下,而后通过适当的手段将载体催化剂与反应物/产物混合物分离以供再利用,例如可以通过过滤器或离心装置。
在活塞式流体过程中,反应物经过载体催化剂的静止床,使得产物的浓度在反应物经过该催化剂床时增加。通过适当的手段可以将任何裹入该料流中的载体催化剂与反应物/产物料流分离开并且循环到该床中。
在移动床或流态化床过程中,该载体催化剂在该过程中流态化或者裹入反应物料流中。该载体催化剂与反应物/产物同时流动。在反应步骤结束时,将任何裹入的载体催化剂与未反应的反应物/产物料流分离开,例如通过过滤器、离心器或旋风分离器,并且在将它们循环到反应步骤的开始处。
在流态化床过程中。使载体催化剂的床流态化并且当反应物流过该床并且反应形成产物时保持在一定区域的范围内。在这种情况下,可以通过适当的手段将任何裹入反应物/产物中的载体催化剂分离并且送回到流化床中。
在连续过程的另一种形式中,载体催化剂与反应物的流动逆流移动。举例来说,可以将反应物作为气体导入垂直反应容器的底部并且由其顶部作为产物取出。载体催化剂在容器的顶部导入并且多级向下湍流经过向上的气流,从而由底部排出,以循环到容器的顶部。裹入离开容器的气流中的任何载体催化剂可以分离出来并且循环到该容器的顶部,从而循环进入该反应容器。
本发明的载体还可以用作均相催化反应的载体,有时该技术称为载体液相催化反应。其作为载体的应用使得可以采用多相催化技术进行均相催化过程。在载体液相催化反应中,反应物和催化剂以分子分散在支承在纳米级纤维团料结构中的液相中。
由孔隙率证明的纳米级纤维结构的高内体积使得它们可以负载液相催化剂,很象海绵,并且用作催化剂,但是以固体颗粒的形式。每一个载有催化剂的纳米级纤维结构可以看成是一个微型反应器,其中其结构内部载有连续的液相,该液相含有催化剂或位于溶液中的多滴催化剂。因此该结构可以作为固体颗粒而用于材料处理以及作为均相液体催化剂而用于反应。在这方面,纳米级碳纤维结构的用途得到了化学稳定性的支持。采用载有均相催化剂的纳米级纤维结构的优点在于很容易将催化剂从产物料流中分离、容易进行该过程,设备较小并且可以避免冷凝液相的腐蚀。
纳米级碳纤维结构可以适用于作为取代、加成、β-消除、重排、氧化和还原催化反应中的载体。更进一步地说,它们可以用于加氢甲酰化和羧基化反应中以及Wacker过程中。
在羧基化反应中,通过将羧基化反应催化剂,如氯化铑和三苯基膦在较高沸点的溶剂中,如1,3,5-三甲基苯或假枯烯中的溶液吸附到干纳米级碳纤维结构,如鸟巢纳米级碳纤维结构中,而制得载有催化剂的纳米级碳纤维结构。
通过将汽相原料与催化剂在适当的温度和压力下接触而进行羧基化反应。该原料混合物例如可以是一氧化碳,乙酸甲酯、甲基碘和溶剂。可以将原料吸附并以分子分散在催化剂溶液中并且在液相中反应。该反应可以如前所说的料浆相反应中进行,也可以在固定床反应中进行。
通过蒸发或过滤可以将反应产物,如乙酸酐和/乙酸和副产物从原纤维团料颗粒中除去。
在Wacker过程中,可以通过将催化剂,如氯化铑、氯化铜、氯化钾或氯化锂在溶剂,如水中的溶液吸附到干纳米级碳纤维结构中而制得载有催化剂的纳米级碳纤维结构。然后将载体催化剂放入料浆相或固定床催化剂中并且将汽相反应物,如乙烯、氧和氯化氢以适当的分压和温度通过该床。通过蒸发或过滤将产物,如乙醛和水与催化剂分离。
实施例下面将在实施例中进一步描述本发明。这些实施例是用来说明落在本发明范围内的某些产品和其制造方法。因此,不应将它们视为是对本发明任何限定。本发明还可以作出多种改变和改进。实施例1(对比)制备非刚性多孔原纤维毡采用原纤维的稀分散液来制备多孔毡或片。采用Waring混合机制备在水中含有0.5%原纤维的原纤维悬浮液。在进一步稀释至0.1%以后,将原纤维进一步用探针型声处理机分散。然后将该分散液真空过滤形成毡,然后将其在炉内干燥。
该毡的厚度约为0.20毫米,对应于孔隙体积分数为0.90的密度约为0.20克/立方厘米。在该毡平面中的电阻率为约0.02欧姆/厘米。在垂直于该毡的方向上的电阻率为约1.0欧姆/厘米。该毡是可变形的、可加压的并且容易拉开。实施例2(对比)制备非刚性多孔原纤维毡采用Waring混合机制备在乙醇中含有0.5%原纤维的原纤维悬浮液。在进一步稀释至0.1%以后,将原纤维进一步用探针型声处理机进行处理。然后将乙醇蒸发并且形成毡。该毡具有与实施例1中制得的毡相同的机械性能和特性。实施例3(对比)制备低密度非刚性多孔原纤维塞采用来自细分散原纤维浆料的超临界流体来制备低密度形状。将50毫升0.5%在正丙烷中的分散液加入到具有稍大容量的压力容器中,该容器配有针阀,从而以缓慢地释放压力。当将该容器加热到丙烷的临界温度(Tc=196.6℃)以后,该针阀打开,从而是缓慢以释放出超临界丙烷,达约1小时。
所获得的具有容器内部形状的原纤维实心塞的密度为0.005克/立方厘米,对应于孔隙体积分数为0.998。电阻率为各向同性,约为20欧姆/厘米。所获得的结果具有较差的机械性能,包括低强度和高压缩性。实施例4由氧化的纳米级纤维制备刚性结构由氧化的原纤维形成1/8英寸挤出物,并且热解除去氧制成样品。测得其密度和孔隙率(吸水性)分别为0.8克/立方厘米和0.75立方厘米/克。
由Quantachrome Corp.测定样品的表面积、孔隙尺寸分布和破碎强度。Quantachrome测得的表面积为429平方米/克。采用氮气吸附/解吸法来测定总的孔隙率。该值为0.83立方厘米/克(图2)。图2表示基本上不存在微孔(即小于2纳米)。1/8英寸挤出物的抗碎强度为23磅/平方英寸。实施例5由“原样”纳米级纤维制备刚性结构由“原样”纳米管CC团料(即未表面氧化的)制备样品,采用酚醛树脂/聚乙二醇/甘油将团料保持在一起。将部分干燥的料浆加压并切割成约1/4英寸颗粒,并且热解以除去PEG/甘油,以及将酚醛树脂转化成碳。所测得的密度为0.63克/立方厘米,吸水率为1.0立方厘米/克。
由Quantachrome Corp.测定样品的表面积、孔隙尺寸分布和破碎强度。来自Quantachrome的结果表明其表面积为351平方米/克。总孔隙容积(氮气吸附/解吸)为1.1立方厘米/克(图3)。孔隙尺寸分布表明不存在微孔(小于2纳米)。1/4英寸直径颗粒的抗碎强度为约70磅/平方英寸。根据SEM,该结构是不均匀的;它由十分均匀分布的团料组成,在团料之间具有相当大的间隙,而在团料中的纳米管之间具有较小的间隙。实施例6采用胶粘剂制备刚性结构在流动的氩气下、在400-800℃下,热解含有20%重量BN原纤维的聚氨酯复合材料颗粒(1/4英寸)达6小时,以除去全部挥发物。失重为70%。所得到的硬颗粒体积减少约33%、其松散密度约为1.0。将这些颗粒在研钵中研磨,但不破碎,并将其筛选至100-20目。通过在室温下吸附水至浸入湿度来测定制品的内部孔隙体积,结果为0.9立方厘米/克。假定其真实密度为2克/立方厘米,它对应于60%孔隙容积。实施例7采用胶粘剂制备刚性结构采用实施例6中的步骤,复合材料为15%重量CC原纤维在聚苯乙烯中的复合材料。失重为74%,松散密度为0.62,在室温下的吸水率为1.1立方厘米/克,对应于69%的内孔隙体积。实施例8采用胶粘剂制备刚性结构在Waring混合机中,将5.0克Hyperion Grade CC GraphiteFibrilsTM的样品用一种混合液制浆5分钟,该混合液含有10.0克聚乙二醇600、4.7克苯酚、6.5克35%含水甲醛和500毫升去离子水。由此获得一种稳定的稠悬浮液,该悬浮液在3小时以后不会沉降。将该料浆转移到带挡板的r.b.烧瓶中,并且用氨水将pH值调节到8.5以及在65℃下搅拌数小时。
将该料浆在2英寸过滤器中真空过滤成稠的糊状滤饼(2英寸×1.5英寸),其中含有约7%原纤维。将该滤饼在125℃下进一步真空干燥以使原纤维含量约为15%重量。此时可以将仍然含有残余的PEG、甘油、酚醛聚合物和水的原纤维料浆形成挤出物、料丸或切割成任何所需的形状。然后将这些形状在180℃下进一步干燥,其体积收缩10-15%,但形状没有破碎或碎裂。将所形成的小块在流动的氩气中在650℃下热解4小时。最终的密度为0.15克/立方厘米。内空隙容积为6.0立方厘米/克,对应于93%空隙容积。所形成的小块在热解后比未经过处理的原纤维团料滤饼更硬并且可以进行处理而不会破碎。潮湿的颗粒还可以无需破碎地进行处理,通过在120℃下真空干燥而除去水,但不会破碎颗粒。实施例9采用胶粘剂制备刚性结构如实施例8中所说,处理5.0克Hyperion Grade BN GraphiteFibrilsTM样品。所形成的小块的最终密度为0.30克/立方厘米,吸水率为2.8立方厘米/克,对应于86%空隙容积。实施例10采用胶粘剂制备刚性结构如实施例8中所说,处理5.0克Grade CC原纤维样品,其不同之处在于该混合物除了其它成分之外还含有5.0克甘油。所形成的小块的最终密度为0.50克/立方厘米。吸水率为2.6立方厘米/克,对应于85%孔隙体积。实施例11采用胶粘剂制备刚性结构如实施例10中所说,处理5.0克Grade BN原纤维样品,所形成的小块的最终密度为0.50克/立方厘米。吸水率为1.5立方厘米/克,对应于77%孔隙体积。实施例12利用氧化的纳米级纤维制备刚性结构在60℃下用30%H2O2氧化Grade CC原纤维样品,从而在原纤维表面上形成混合的0-官能键。羧酸浓度测定值为0.28毫当量/克。在Waring混合机中用0.2克聚乙二胺纤维素(来自Sigma Chemical)(碱含量为1.1毫当量/克)将5.0克这种材料在500毫升去离子水中的样品制浆。该稳定的分散液似乎是均匀的并且在数小时以后不会沉降。
将该分散液过滤并且干燥至约30%原纤维含量。此时将滤饼成型。将所形成的小块干燥并且在650℃下热解。其密度为0.33克/立方厘米。吸水率2.5立方厘米/克,对应于85%孔率体积。实施例13含有刚性多孔结构的填充床将1/2英寸S/S管用实施例10的1/8英寸挤出物填充到6英寸的高度。采用约10-12英寸的水压,水以约15-20毫升/分钟的速度流过该床,没有妨碍流动并且颗粒没有破碎或磨损。实施例14在固定床反应器中使用刚性多孔结构的方法将在实施例10制得的约1/8英寸挤出物形状的刚性多孔原纤维团料样品用来制备是披钯碳催化剂,以用于固定床操作过程中。将挤出物(5.0克)在去离子水中洗涤并且在6N硝酸中浸泡1小时。将在6N盐酸中含有0.5克二氯化钯的溶液加入到挤出物料浆中并且将该混合物在旋转浴中搅拌数小时。通过过滤将挤出颗粒分离并且在150℃下干燥以及用于0.5英寸S/S固定床反应器,以使硝基苯加氢形成苯胺。实施例15在S/S反应器中使用刚性多孔结构的方法采用根据实施例11制得的挤出物根据Duchet等人所说的工艺制备披钼碳催化剂(参见Duchet等人,J.Catal.80(1983),386)。将该催化剂装入1/2英寸S/S反应器中,在H2/H2中在350℃下预硫化,而后用来在氢气中在350℃和0.1MPa下加氢处理真空油料,以除去硫,而后再进行进一步的澄清。实施例16由刚性多孔结构制得的压制圆片通过在回流温度下与60%硝酸反应4小时而使Hyperion GradesBN以及CC原纤维样品表面官能化。羧酸浓度为0.8-1.2毫当量/克。在除去过量的酸之后得到通过真空过滤而使经过处理的原纤维部分干燥,而后在真空炉中在180℃和全真空下完全干燥。干燥后的原纤维团料非常硬,它们不能切割并且必须研磨形成一定的形状。采用1/2英寸模具在Carver压机中在10000psi压力下将样品压制成1/8英寸厚度圆片。未经过烧结的圆片(坯体)的密度为1.33-1.74克/立方厘米。
将该圆片在600和900℃下烧结以除去表面氧。这些圆片的密度降低到0.95-1.59克/立方厘米,圆片没有破碎。实施例17测试刚性多孔结构的机械完整性通过将在这些实施例中制得的刚性颗粒(约1/4英寸颗粒,或者是料丸、挤出物或碎圆片)经过6英尺管下降到硬金属表面上来测试它们的脆性和硬度。仔细地检查颗粒破碎或磨损。其结果示于表3中,表3中还有在这些实施例中制得的材料的性能概述。
表3所形成的结构的物理性能的概述
实施例18活化的原纤维-气溶胶复合材料采用间苯二酚-甲醛系统制备含碳原纤维的气溶胶复合材料举例。
材料间苯二酚(Aldrich,回收使用)甲醛间苯二酚(37%,在水中,Aldrich)0.2M碳酸钠氧化的Hyperion CC原纤维(5.8%料浆)制备具有不同原纤维含量的三种样品(表4)。对于每一种样品,首先将间苯二酚溶解在水中。在加入甲醛以后,通过超声处理将该溶液与原纤维料浆彻底混合。
表4表示样品的起始组成
在加入碳酸钠催化剂之后,将混合物转移到玻璃管中。将密封好的玻璃管放入80℃炉中,以使单体聚合,并且随后使该聚合物交联。4天以后,将样品从炉中取出。这三种样品均形成了具有光滑表面的硬凝胶。将该凝胶用水冲洗,以除去催化剂。凝胶中的水用丙酮交换。
采用SEM来测定原纤维在聚合物基质中的分布。通过将样品3在室温下,在空气中干燥而制备用于SEM的样品。原纤维均匀地分散在聚合物基质中。实施例19
原纤维-气溶胶复合材料将4克间苯二酚溶解到5毫升水中,而后向该溶液中加入5.898克甲醛(37%溶液)。在向该溶液中加入0.5克Hyperion CC原纤维以后,将该混合物超声处理,以使原纤维高度分散在该溶液中。在向该料浆中加入0.663克碳酸钠在5毫升水中的溶液以后,将该料浆进一步声处理,以获得均匀的混合物。按照实施例18中所说的工艺进行胶凝过程。
本发明的上述描述是用来说明的而不是要进行限定。对于熟悉本领域的人员来说,在上述实施方案中可以有多种变化或改变。这些内容没有偏离本发明的精神或范围。实施例20采用Bakelite酚醛树脂(BKUA-2370,由Georgia-PacificResins,Inc.,Decatur Georgia获得)作为胶粘剂,用于由HyperionGraphite FibrilsTM,Grade CC制备刚性多孔挤出物。BKUA-2370是以46%重量固体含量分散在水/丁基纤维素中的热反应性酚醛树脂并且可以以完全稀释的状态分散在水中。
制备分散在水中的含有80.0克树脂BKUA-2370、10克甘油和80克聚乙二醇(600MW)的混合液(总体积为500毫升)。在Red Devil混合机中将它们彻底混合十分钟。用Basbury捏合机用30毫升树脂混合物液处理5克CC原纤维,以获得一种稠状均匀浆料。所获得的浆料中的原纤维含量为约13%重量。将该浆料填充到50毫升气动润滑脂枪中,小心地避免任何空气囊。该润滑脂枪配有3毫米喷嘴。
将全料浆在40psi下挤出。将挤出物(未切割)在空气中在140℃下干燥4小时,以除去大部分水并且使树脂部分固化。将温度慢慢增加到300℃达4小时,从而慢慢地除去任何残余的丁基纤维素,PEG和使树脂完全固化。最后将挤出物任意破碎并且在氩气中在650℃下烧结,以使树脂碳化,回收的重量为5.3克。挤出物直径约为203毫米。
由此制得的挤出物稍稍疏水。水滴集中在颗粒上并且仅仅慢慢地吸收到体内。但是稀酸溶液如6N硝酸会很快地吸收到颗粒中。在彻底洗涤该挤出物以除去过量的酸(流出物的pH大于4)并且在120℃下干燥以后,该挤出物可以快速地吸收纯水。
通过用水使称出的干挤出物样品饱和,摇晃挤出物颗粒以除去任何粘连的水并且再次称重而测定吸水能力(孔隙率)。重量的增加(以克计)表示吸收到颗粒中的水量(以毫升计)。然后将这些相同的饱和挤出物放入一定体积的水中。体积的增加量作为挤出物的体积,由其原干重和体积的增加计算出亮度密度。结果为0.47克/立方厘米密度、1.785立方厘米/克水孔隙率。实施例21采用另一种由Georgia-Pacific获得的Bakelite树脂,BKS-2600,在乙醇中的一种热反应性树脂溶液(54%重量)来由Grade BN原纤维制备挤出物。制备溶解在乙醇中的含有80克BKS-2600和80克PEG(600MW)的混合液(500毫升)。以与实施例20相同的方式用25毫升等分溶液处理5.0克BN原纤维。捏合后的原纤维含量为约16%。
以与前面相同的方式挤出料浆,并且在100℃下干燥2小时,以除去乙醇和任何其它的挥发物,而后在140℃下加热以使树脂固化。像实施例20中那样将温度慢慢增加到300℃,以除去挥发物并且使树脂完全固化。最后在氩气中在6502下进行烧结。最后的回收量为5.2克。
像实施例20中那样将挤出物用稀酸处理。吸水能力为1.70毫升/克,密度为0.45克/立方厘米。
权利要求
1.一种刚性多孔碳结构,其表面积大于约100平方米/克,基本上不含微孔并且抗碎强度大于约5磅。
2.权利要求1所说的结构,它包含相互缠绕、相互连接的纳米级碳纤维。
3.权利要求1所说的结构,其中不到1%的表面积是由于微孔而形成的。
4.权利要求1所说的结构,其中所说的结构的碳纯度大于95%。
5.权利要求1所说的结构,其中所说的结构的密度大于0.8克/立方厘米。
6.权利要求1所说的结构,其中所说的结构的密度大于1.0克/立方厘米。
7.权利要求1所说的结构,其中所说的结构的表面积大于约200平方米/克。
8.权利要求2所说的结构,其中所说的纳米级纤维在整个所说的结构中均匀且平均地分布。
9.权利要求8所说的结构,纳米级纤维之间的平均距离小于约0.03微米并且大于约0.005微米。
10.权利要求8所说的结构,其中所说的结构包括位于所说的纳米级纤维之间的基本上均匀的通道。
11.权利要求2所说的结构,其中所说的纳米级纤维是相互连接形成所说的结构的团料颗粒形状。
12.权利要求11所说的结构,其中位于各个所说的团料之间的平均最大距离小于约0.1微米并且大于约0.001微米。
13.权利要求11所说的结构,其中所说的结构包括位于相互连接的团料颗粒之间的团料间距和在所说的团料颗粒中位于所说的纳米级纤维之间的纳米级纤维间距。
14.权利要求11所说的结构,其中所说的团料颗粒是类似鸟巢的任意缠绕的纳米级纤维球。
15.权利要求11所说的结构,其中所说的团料颗粒是纳米级纤维束,其中心轴通常相互平行对准。
16.权利要求2所说的结构,其中所说的纳米级纤维的平均直径小于约1微米。
17.权利要求2所说的结构,其中所说的纳米级纤维是碳原纤维,它们基本上呈圆柱形,具有基本上相同的直径,它们具有与原纤维轴同心的石墨层并且基本上不含热解沉积的碳。
18.一种刚性多孔碳结构,其表面积大于约100平方米/克,抗碎强度大于约2磅/平方英寸,密度大于0.8克/立方厘米。
19.权利要求18所说的结构,其中所说的结构基本上不含微孔。
20.一种刚性多孔碳结构,其表面积大于约100平方米/克,基本上不含微孔,其抗碎强度大于约5磅/平方英寸。
21.一种制备表面积大于至少100平方米/克的刚性多孔碳结构的方法,它包括下列步骤(a)将多种纳米级纤维分散在一种介质中以形成一种悬浮液;(b)将所说的介质与所说的悬浮液分离以形成所说的结构,其中所说的纳米级纤维相互连接形成相互缠绕的纳米管的刚性结构,这些纳米管在该结构中在纳米管相互交叉处连接在一起。
22.权利要求21所说的方法,其中所说的纳米级纤维在整个所说的结构中均匀且平均地分布。
23.权利要求21所说的方法,其中所说的纳米级碳纤维是相互连接形成所说的结构的团料颗粒形状。
24.权利要求23所说的方法,其中所说的团料颗粒均匀地分散在所说的介质中,形成一种浆料,并且所说的团料颗粒用一种胶粘剂连接起来,形成所说的结构。
25.权利要求21所说的方法,其中所说的介质选自水和有机溶剂。
26.权利要求21所说的方法,其中所说的介质包括一种分散剂,该分散剂选自醇类、甘油、表面活性剂、聚乙二醇、聚乙二胺和聚丙二醇。
27.权利要求21所说的方法,其中所说的纳米级纤维是表面氧化的纳米级纤维,它们在分散在所说的介质之前已经被氧化,并且所说的表面氧化的纳米级纤维通过在纳米级纤维交叉处连接而自粘接形成所说的刚性结构。
28.权利要求21所说的结构,其中所说的结构随后热解以除去氧。
29.权利要求21所说的方法,其中所说的纳米级纤维与所说的胶粘剂一起分散在所说的悬浮液中,并且所说的胶粘剂将所说的纳米级纤维粘接在一起,形成所说的刚性结构。
30.权利要求29所说的方法,其中所说的胶粘剂包括碳。
31.权利要求29所说的方法,其中所说的胶粘剂选自纤维素、碳水化合物、聚乙烯、聚苯乙烯、尼龙、聚氨酯、聚酯、聚酰胺和酚醛树脂。
32.权利要求29所说的方法,其中所说的结构随后被热解,以使胶粘剂转化成碳。
33.权利要求29所说的方法,其中所说的分离步骤包括将所说的悬浮液过滤。
34.权利要求21所说的方法,其中所说的分离步骤包括将所说的介质从所说的悬浮液中蒸发出来。
35.权利要求21所说的方法,其中所说的悬浮液是一种凝胶或浆料,它们由在一种流体中的所说的纳米级纤维组成并且所说的分离包括下列步骤(a)在一种压力容器中加热所说的凝胶或浆料到超过所说流体临界温度的温度;(b)由所说的压力容器中取出超临界流体;以及(c)由所说的压力容器中取出所说的结构。
36.由权利要求21中所说的方法制备的刚性多孔碳结构。
37.制备表面积大于至少100平方米/克的刚性多孔碳结构的方法,它包括下列步骤(a)将多种纳米级纤维分散在一种介质中以形成一种悬浮液;(b)使用捏合机获得均匀的纳米级纤维悬浮液的稠浆料;(c)将该浆料挤出或造粒;(d)将所说的介质与所说的悬浮液分离以形成所说的结构,其中所说的纳米级纤维相互连接形成相互缠绕的纳米管的刚性结构,这些纳米管在该结构中在纳米管相互交叉处连接在一起。
全文摘要
本发明涉及刚性多孔碳结构及其制备方法。该刚性多孔结构具有高表面积,它基本上不含微孔。用于改进该碳结构刚性的方法包括使纳米级纤维在纤维交叉处形成连接或与其它纳米级纤维形成胶合。通过加入“胶粘”剂和/或通过热解该纳米级纤维,从而在相互连接点处形成熔合或连接,由此而通过将纳米级纤维的表面化学改性以促进连接以而引起该连接。
文档编号D04H1/58GK1225603SQ9719647
公开日1999年8月11日 申请日期1997年5月15日 优先权日1996年5月15日
发明者D·莫伊, C·M·牛, H·藤南特 申请人:海珀里昂催化国际有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1