用于污染控制装置的高温衬垫的制作方法

文档序号:1659330阅读:242来源:国知局
专利名称:用于污染控制装置的高温衬垫的制作方法
技术领域
本发明涉及污染控制装置的安装材料,具体涉及适于作为污染控制装置中高温隔热层的安装材料片,更具体地是涉及含有多晶纤维和退火陶瓷纤维混合物的安装材料片。
背景技术
污染控制装置用在汽车上,控制大气污染。催化转化器和柴油机颗粒过滤器是两种目前广泛使用的污染控制装置。这两种装置一般都包括一个污染控制元件即整结构件,装在金属外壳内,有一种安装材料置于该整结构件和外壳的壁之间。该整结构件(monolithic structure)即整件(monolith)由金属或通常的陶瓷材料制成。在催化转化器中,整件承载在高温如260℃以上能促进一氧化碳和烃进行氧化时和氮的氧化物进行还原的催化剂。柴油机颗粒过滤器或颗粒捕集器是壁流式过滤器,一般是由多孔结晶陶瓷材料制成的蜂窝状整件结构。
陶瓷整件通常有极薄的壁,容易破裂。陶瓷整件的热膨胀系数比装它的金属外壳的热膨胀系数小一个数量级。为避免由于道路冲撞和振动而损害陶瓷整件,补偿整件和外壳热膨胀的差异,并防止废气在该整件和金属外壳之间流动,一般要在陶瓷整件和金属外壳之间放置安装材料。
放置安装材料即衬垫的方法也称为封装过程,包括将糊状物注射入陶瓷整件和金属外壳之间的间隙,或者将片材或衬垫材料包裹好陶瓷整件、将包裹好的陶瓷整件插入外壳中。衬垫通常用各种陶瓷纤维材料制成。陶瓷纤维用常规方法如熔体成形法制成。
溶胶凝胶法是用来提供用作安装衬垫的纤维的另一种方法。溶胶-凝胶法制成的纤维通常具有高温弹性和合乎需要的耐磨蚀性能的特点。但是,由溶胶-凝胶法制成的纤维一般密度低,需要对其进行另外的处理,以提供适合直接用于污染控制装置的衬垫。另外,实施溶胶凝胶法的经济成本与其它常规纤维制造法相比会很高。
发明概述本发明涉及用于污染控制装置的高温衬垫。该衬垫适于包裹污染控制元件,将包好的元件固定在污染控制装置内。另外,高温衬垫可用作污染控制装置双壁末端锥中的隔热层。本发明通常用于像催化转化器和柴油机颗粒过滤器那样的污染控制装置中。
本发明的高温衬垫是多晶纤维和退火陶瓷纤维的混合物。多晶纤维通常是溶胶-凝胶形成的纤维,它含有极少量(小于5重量%)的任何陶瓷颗粒物质。本发明的另一种陶瓷纤维成分是至少具有部分结晶度的退火陶瓷纤维。结合上述两种纤维,制成其密度适合直接用于污染控制装置,而无需其它处理步骤的衬垫。本发明的衬垫还具有高温和通常安装压力下优良的耐磨蚀性能和合乎需要的弹性。
此高温衬垫用于污染控制装置中。本发明的污染控制装置包括一个外壳和装在外壳内部的污染控制元件。根据本发明制成的安装衬垫包绕着置于元件外表面元件和外壳。此高温衬垫也可以用作污染控制装置的双壁末端锥中的隔热层——即该隔热层夹在双壁末端锥的内金属锥和外金属锥之间。
提供具有合乎需要的密度和堆积厚度的衬垫而在封装前无需其它处理来达到合乎需要的堆积密度,这是很有利的。而使用高温衬垫来获得在高操作温和通常安装压力下合乎需要的弹性和优良耐磨蚀性能的污染控制装置,是又一个优点。
对于本发明的用途,本申请中所用的下述术语定义如下“无粒陶瓷纤维”是指所含颗粒陶瓷材料约小于5%,一般由溶胶-凝胶法制成的多晶纤维;“退火非晶态纤维”是指退火到其温度足以提高纤维弹性的熔体成形的耐火陶瓷纤维。优选在纤维变得过度脆性易碎(由冷磨蚀试验确定)前停止退火过程。退火纤维的结晶度由X-射线衍射测定,其微晶度由透射电子显微镜测。纤维的合适性用差热分析来确定;“弹性”是指经受重复的厚度改变(即压缩和松弛循环)后仍能基本保持支承力的能力;“陶瓷基纤维”是指金属氧化物、金属碳化物、金属氮化物或它们的混合物的含量为80%或更多的纤维。


将参照下述附图进一步描述本发明,在全文中相同的数字表示相同或类似的部件,其中
图1是装在外壳内包好的污染控制元件的分解透视图;图2是本发明两层安装材料片的部分截面图;图3是含有晶体结构的熔体成形陶瓷纤维的X-射线衍射图;图4是表现非晶结构的熔体成形陶瓷纤维的X-射线衍射图。
发明详述图1所示是使用本发明安装材料的污染控制装置10。该污染控制装置10包括外壳12和污染控制元件14。污染控制元件14由高温衬垫16弹性支承。用于衬垫16的材料是多晶陶瓷纤维和退火陶瓷纤维的结合物。
本发明的安装材料特别适用于薄壁陶瓷整件和金属整件,此时需要高度弹性来将该污染控制元件即整件固定在位。令人惊奇的是,多晶陶瓷纤维和退火陶瓷纤维的结合物,其弹性很高,耐磨蚀性能高,并且收缩小,在污染控制装置的操作温度下仍然保持足够的压力保留值。
本发明由两种材料组合制成的衬垫比由纯多晶纤维或纯退火陶瓷纤维或多晶纤维和未退火陶瓷纤维制成的衬垫要优越。单由多晶纤维形成的衬垫通常具有不合需要的低密度。另外,单用多晶纤维的衬垫是蓬松的,必须大大地压缩例如至十分之一的体积,才能达到合乎需要的安装密度,用来产生将整件固定在位的足够支承力。此外,单由多晶材料制成的衬垫必须通过针编、封袋、添加粘合剂并在压力下干燥或固化来压合或者这几种方法的组合,来保持合乎需要的的压缩量,以便于进行封装。单用退火纤维的衬垫,弹性较差压力保留值也低。本发明的衬垫则可以容易地封装,无需另行压缩保持纤维在一起。另外,使用本发明组合纤维的衬垫既具有合乎需要的的弹性又具有合乎需要的的压力保留值。
本发明的安装材料通常是衬垫或片材形式提供。衬垫可以是单层或多层的组合纤维。在一个实施方式中,包含多晶纤维和退火陶瓷纤维混合物的衬垫用于安装整件。在另一实施方式中,衬垫由多晶纤维、退火陶瓷纤维和一种或多种膨胀材料形成。在还有一个实施方式中,衬垫由一层多晶纤维和退火陶瓷纤维混合物的层加上每层都包含膨胀材料的一层或多层其它层形成。图2所示的是后一个实施方式的例子,衬垫20包括有多晶纤维和退火陶瓷纤维层的第一层22和含膨胀材料的第二陶瓷纤维层24。较好的是,安装时第一纤维层22靠着整件。
适用于本发明的陶瓷基多晶纤维通常用常规溶胶-凝胶制造法制成。使用多晶纤维为本发明的衬垫提供高温的弹性和耐磨蚀性能。另外,使用溶胶-凝胶法产生的是无粒纤维。含有颗粒物质的纤维会对衬垫强度产生不良影响。用于形成安装衬垫的多晶纤维有一些市售的商品,如购自明尼苏达州圣保罗3M公司的Nextel纤维312、Nextel纤维440、Nextel纤维550,和购自日本东京三菱化学公司的Fibermax纤维。这种纤维优选含有大量氧化氧化铝。优选的是氧化铝含量为60%或更多。纤维的组成还可以含有一定量氧化硅或氧化锆。多晶纤维的长度和直径可根据具体用途而异。但是,多晶纤维的纤维长度通常要大于5厘米,而纤维直径通常约为2-12微米。
退火陶瓷纤维用于和多晶纤维结合,使成品衬垫具有合乎需要的性能。退火陶瓷纤维通常是可由各种金属氧化物熔体喷射或熔纺而成形的耐火陶瓷纤维。随后,在取决于能形成退火的非晶态纤维的组成的温度下,对熔体成形的耐火纤维进行退火即热处理。该纤维优选是含有30-60重量%氧化Al2O3和60-40重量%氧化SiO2、更优选是含等量Al2O3和SiO2的混合物。该混合物中还可以加入其它氧化物,如B2O3、Cr2O5和ZrO2。
可用于制成高温衬垫的熔体成形耐火陶瓷纤维可由若干厂家购得,包括Unifrax,Niagara Falls,纽约州的“Fiberfrax”;Thermal Ceramics Co.,Augusta,GA的“Cerafiber”和“Kaowool”;PremierRefractories Co.,Erwin,TN的“Cer-wool”;日本东京Shin-NipponSteel Chemical的“SNSC”。“Cer-Wool”陶瓷纤维的制造厂家称,该产品是由48重量%氧化硅和52重量%氧化铝的混合物熔纺成的,平均纤维直径为3-4微米。“Cerafiber”陶瓷纤维的制造厂家称,该产品是由54重量%氧化硅和46重量%氧化铝的混合物熔纺成的,平均纤维直径为2.5-3.5微米。“SNSC 1260-D1”陶瓷纤维的制造厂家称,该产品是由54重量%氧化硅和46重量%氧化铝熔体成形的,平均纤维直径约2微米。
用于衬垫的退火陶瓷纤维,其单根的直径可以根据具体的最终用途而不同。直径范围一般约为2-9微米,因为难以通过熔体成形法制成直径更粗或更细的纤维。直径更粗的纤维会制成的衬垫太脆,所以需要更多的粘合剂来提供足够的操作性能。难以制成直径小于2微米或大于8微米的熔体成形的耐火陶瓷纤维。
熔体成形的耐火陶瓷纤维必须在用于最终用途之前进行退火。当熔体成形的耐火陶瓷纤维在高温例如850℃或更高的温度下退火时,纤维会析晶即变成结晶态。析晶过程中有一转变点,达到该转变点时有些纤维中会产生X-射线衍生检测不到,但可由透射电子显微镜检测到的微晶结构。其它纤维开始产生的结晶度可由X-射线衍射检测得到。
适于实施本发明的纤维是在晶体开始形成的温度或更高温度下退火的纤维。图3所示的是用于本发明的充分退过火的纤维X-射线衍射图。图4所示是不适用于本发明的非晶态纤维X-射线衍射图。本领域中的技术人员能通过X-射线衍射仪或透射电子显微镜来确定结晶度的存在。
存在一种能对纤维进行退火的时间-温度关系。例如,纤维可在较低温度下退火较长时间,使晶体形成,也可以在较高温度下退火较短时间。熔体成形的纤维适用的退火温度可用例如购自Seiko仪器公司的设备,通过差热分析法(DTA)来确定。本领域的技术人员能利用DTA数据来确定,其特定纤维为获得合乎需要的退火程度所用的退火温度。例如,如差热分析法所示,组成约为50%氧化铝和50%氧化硅的纤维,其最佳退火温度约为1000℃。
优选对退火时间和温度进行控制,使纤维不会变脆和难以处理。另外,无需进行过度的加热和过长的时间来获得本发明的优点。析晶过程开始的温度可以根据如DTA中温度上升的速率和材料组成之类的因素而不同,但是温度一般约为850-1050℃。
较好的是,将退火陶瓷纤维和多晶纤维进行混乱组合,来制成本发明的高温衬垫。适用的衬垫可用约5-95%退火陶瓷纤维和5-95%多晶纤维来制成,其中退火陶瓷纤维和多晶纤维的总量等于100%。衬垫优选由约10-90%退火非晶态纤维和90-10%无粒陶瓷纤维制成,更优选由20-80%退火陶瓷纤维和80-20%多晶纤维制成。优选减少无粒纤维的含量,因为它们会增高制造成本,并且大量的无粒纤维会使衬垫较为蓬松。只要退火陶瓷纤维的用量不会使衬垫的弹性降低到低于10千帕或导致过度磨蚀速率,就可以多用些退火陶瓷纤维。另外,只要弹性值保持在高于10千帕,可以加入其它纤维。
本发明的衬垫还可以包含膨胀材料。合适的膨胀材料包括、但不限于未膨胀蛭石、蛭石矿、部分分层的蛭石、可膨胀石墨、水黑云母、述于美国专利3,001,571(Hatch)的水胀性合成四氧化硅氟类型云母、述于美国专利5,151,253(Merry等人)的部分脱水蛭石和述于美国专利4,521,333(Graham等人)的碱金属氧化硅酸盐颗粒。优选的膨胀材料包括未膨胀蛭石即蛭石矿和可膨胀石墨。膨胀材料的选择可根据最终用途的需要而不同。对于较高温度如约高于500℃,蛭石材料是适宜的,因为它们能在约340℃时开始膨胀,能填充催化转化器中膨胀的金属外壳和整件间的膨胀间隙。对于较低温度如低于约500℃,例如在柴油机颗粒过滤器中,经处理的石墨是优选的,因为它在约210℃就开始膨胀。经处理的蛭石也适用;它约于290℃膨胀。也可使用各种膨胀材料的混合物。
在一个层内的膨胀材料可以约占整个衬垫的5-75重量%。在该实施方式中,退火陶瓷纤维和多晶纤维的含量约为10-70%。或可采用的粘合剂含量约为2-20%。
本发明的衬垫优选使用粘合剂来制造,以便于处理,并能提供弯曲包绕整件时需要的足够完整性和弹性。粘合剂可以是无机物如粘土和氧化硅胶或有机物。有机粘合剂是优选的,因为它们能提供处理衬垫时必须的弹性,但在称为“封装过程”的用衬垫包裹住整件和将其插入污染控制装置金属外壳的过程之后会烧损掉。有机粘合剂的用量可以约为2-20重量%(干基)。
合适的有机粘合剂材料包括聚合物水乳浊液、溶剂基聚合物和含固量为100%的聚合物。聚合物水乳浊液是胶乳(latex)形式的有机粘合剂聚合物和弹性体(如橡胶胶乳、苯乙烯-丁二烯胶乳、丁二烯-丙烯腈胶乳和丙烯酸类和甲基丙烯酸类聚合物和共聚物的胶乳)。溶剂基聚合粘合剂可包括丙烯酸类、聚氨酯类或橡胶基的有机聚合物。含固量为100%的聚合物包括天然橡胶、苯乙烯-丁二烯橡胶和其它弹性体。
有机粘合剂材料优选包括丙烯酸类水乳浊液。丙烯酸类乳化液是优选的,这是因为它们的老化性能和非磨蚀性的燃烧产物。有用的丙烯酸类乳化液包括那些市售的商品,有购自费城Rohm and Haas,宾西法尼亚州的“RHOPLEX TR-934”(含固量为44.5重量%的丙烯酸类水乳浊液)和“RHOPLEX HA-8”(含固量为45.5重量%的丙烯酸类共聚物水乳浊液)、购自威尔明顿ICI Resin Us,马塞诸塞州的“NEOCRYL XA-2022”(含固量为60.5重量%的丙烯酸类树脂水分散体)、和购自Air Products and Chemicals,Inc.,Allentown,巴拿马州的AirflexTM600BP DEV(含固量为55重量%的乙烯-乙酸乙烯酯-丙烯酸三元共聚物)。
有机粘合剂材料还可以包括一种或多种增塑剂。增塑剂会使聚合物基质软化,并有助于本发明组合物制成的片材的柔性和可塑性。
还可以加入其它添加剂,来形成数量符合用途需要的衬垫。这种添加剂包括消泡剂、絮凝剂、表面活性剂等。强度改进剂可加入本发明组合物,例如纤维素纤维或双组分粘合剂纤维之类的有机纤维以及例如玻璃纤维或微玻璃纤维之类的无机纤维。
本发明的高温衬垫可用常规方法如气流成网(air laying)法或造纸法来制造。在造纸法中,陶瓷纤维与水和粘合剂混合,形成含固量少于10%的混合物即浆液。然后用絮凝剂和排放保留助剂(drainage retention aid)使浆液絮凝。接着将经絮凝的混合物置于造纸机上,形成衬垫并脱水。衬垫或片材还可用常规造纸设备对浆液即混合物进行真空浇注来形成。然后将衬垫于烘箱中或室温下干燥。此后用例如冲压或冲切法将经干燥的衬垫成形为所需的形状。或者,在衬垫形成后,可以对衬垫进行缝编、针编、喷粘、或进行真空装袋过程,使衬垫按照具体最终用途进一步处于适用状态。这些用或不用粘合剂对衬垫进行的改进处理,可通过本领域技术人员公知的常规方法来完成。
衬垫可以制成不同的厚度,以满足最终用途的需要。这些需要包括整件的类型(如薄壁、金属、标准厚度的壁)、室温时的间隙厚度、室温时的安装密度、高温时的间隙厚度、高温时衬垫施加的压力以及高温时衬垫的收缩和膨胀趋势。含有退火陶瓷纤维和多晶纤维,但不含膨胀材料的典型衬垫的厚度约为1-25毫米。
当膨胀层用在图2所示的两层衬垫结构中时,膨胀层的厚度可以约为0.5-10.0毫米,而非膨胀纤维层的厚度可以约为1-15毫米。多层衬垫可以以膨胀层和非膨胀层的各种结合形式制成。在污染控制装置中,膨胀层的方向应是与金属外壳接触的。
当衬垫是由纤维和膨胀材料在同一层内组合形成时,厚度一般可约为1-25毫米。
另外,本发明的衬垫可以包含例如述于美国专利5882608的插件、或例如述于欧洲专利639700的边缘保护材料。
本发明的成品衬垫显示合乎需要的弹性,如下面实施例部分所述的RCFT测试所测定的弹性值指出。室温和180-220千帕起始压力下的弹性值为10千帕或更高,优选15千帕或更高。下述RCFT测试所测出的压力保留值一般约大于10%,优选约大于12%。
本发明的衬垫还显示低的收缩率。在500-1000℃的温度下,通过下面的实施例部分所述的热机械分析测试记录一给定衬垫的收缩值。在上述温度范围有大的收缩率是不适用的,因为衬垫会失去支承力,并使其所包的整件移动和受损。本发明衬垫约收缩5%或更小,较好约收缩3%或更小,更好约收缩1%或更小,为的是在重复使用时仍能保持足够的压力保留值来固定整件在位。
本发明的衬垫显示合乎需要的耐磨蚀性能。衬垫的耐磨蚀性能根据述于实施例部分的冷磨蚀测试测量,通常约为0.1克/小时或更小。
成品衬垫的密度通常约为0.1-0.7克/厘米3。当压缩到安装密度为0.21-1.3克/厘米3时,即使间隙随着催化转化器的加热和冷却而重复改变,这些衬垫也能在催化转化器的整件上保持足够的支承力。
本发明的衬垫用于包裹装在污染控制装置中的污染控制元件,或用作污染控制装置末端锥的隔热衬垫。合适的污染控制元件(也称为整件),是本领域公知的,包括那些金属制或陶瓷制的元件。这些整件用于承载转化器的催化剂材料。一种有用的催化转化器元件述于例如美国专利RE 27,747(Johnson)。此外,陶瓷催化器转化元件是市售的,例如购自Corning Inc of Corning.,纽约州和购自NGK Insulator Ltd.of Nagoya,日本。例如,蜂窝状陶瓷催化剂载体以Corning Inc.的商品名“CELCOR”和NGK Insulator Ltd.的“HONEYCERAM”销售。金属催化器转化元件可购自德国的Emitec Co.。
污染控制装置既包括催化转化器,又包括柴油机颗粒捕集器。柴油机颗粒捕集器还包括用耐热材料装在外壳内的一种或多种多孔管状或蜂窝状结构(但具有一端闭合的槽)。颗粒从废气中被该多孔结构收集,以后该捕集器可通过高温烧灼过程再生,该烧灼过程中安装材料受到热压力作用。本发明的安装衬垫还可用于化学工业中使用的催化转化器中,该催化转化器装在排气烟卤中,其中也置有再保护性安装的脆性蜂窝状结构体。
因此,通过本发明实现了本发明的目的,本发明不受上述特定实施方式的限制,本发明可以包括由所附权利要求书所限定的种种改变和等效的实施方式。
测试方法真实条件夹紧装置测试(RCFT)RCFT用来测量代表通常用途中催化转化器真实条件的条件下安装材料所产生的压力。它还测量了弹性。
将两个独立受控的50.8毫米×50.8毫米压板加热到不同温度,来模拟金属外壳和整件的温度。同时,压板间的空间即间隙会增加,所增加的值由典型催化转化器的温度和热膨胀系数计算出来。压板的温度和间隙变化示于下表1。安装材料所产生的力用Sintech ID计算机控制的带伸长计(MTS SystemsCorp.,Research Triangle Park,北卡罗来纳州)的负荷框架(load frame)来测量。
测试进行3个阶段。第一阶段时,有机粘合剂燃尽;第二阶段时,压力在900℃开始持平,第三阶段时,压力已经稳定了。将第三阶段时900℃的压力除以室温时的启动压力(即第一阶段前的压力)得到压力保留值(以%表示的RCFT压力保留值)。还记录第三阶段900℃时的压力千帕值。该压力称为弹性值。

热机械分析测试(TMA)该测试测量衬垫在加热时的膨胀。测试使用θDilatronic II热分析仪,MFE-715型。在该测试中,将11毫米直径圆形的试验衬垫放在加热炉中,以15℃/分钟的速率均匀加热到1000℃。在衬垫上面安放一根7毫米石英棒,该棒承受着1350克重量。加热时,衬垫会先在高达400℃时或在有机粘合剂燃尽以前发生收缩。随着试样进一步加热,衬垫又开始收缩。测量该收缩位移,并记录其随衬垫温度的变化。用衬垫500℃(T1)和1000℃(T2)时厚度来计算收缩百分数(%收缩=[(T1-T2)/T1]×100)。
冷磨蚀测试该测试是在比催化转化器真实条件更严峻的条件下进行的加速测试。它提供了衬垫安装材料耐磨蚀性能的比较性数据。切出2.54厘米×2.54厘米的正方形试验样品、称重,用一些间隔垫将其装在两个高温Inconel 601钢板之间,获得0.400+/-0.005克/厘米3的安装密度。将此试验组件于800℃加热2小时,冷却到室温。然后将冷却后的试验组件置于空气喷嘴前方3.8毫米的位置,该空气喷嘴在衬垫边缘上以20阶段/分钟前后运动。该试验在0.2克材料消耗之后或24小时之后(视何者先发生)即停止。空气喷嘴冲击衬垫边缘的速度为305米/秒。磨蚀速率由重量的减少除以试验时间来表示,以克/小时记录之。
实施例1-3和C1-C6如表2所列的纤维用下述方法形成衬垫。在低速的韦林氏掺和机中,以大约10秒时间将纤维加入水中,形成含固量为0.4-0.6%的浆液。将浆液和含固量为45%的丙烯酸类胶乳粘合剂(购自Rhom & Haas的Rhoplex HA-8)以10%干重一起移到12升烧杯中,用一桨叶式搅拌器混合之。加入足量的50%硫酸氧化铝水溶液,将pH调节到4-6。然后加入10克0.1%絮凝剂(Nalco 7530)溶液和约0.2克消泡剂(购自Henkel的Foammaster III),并用桨叶式搅拌器混合。混合后,立即将浆液倾倒到美国专利5,250,269所述的片料成型模中,脱水,湿压,然后干燥,形成衬垫。用RCFT测试来测量衬垫的压力保留值,用TMA测试来测量收缩率。可以将实施例1-3的衬垫围绕整结构件包裹起来,将包好的整件插入金属外壳,并在外壳边缘焊接之,制成催化转化器。

*购自Thermal Ceramics的KaowoolTMHA**购自ICI的SaffilTMOBM***购自Unifrax的FiberfraxTM7000M表1中的数据显示,本发明衬垫的收缩率较小,而且有优良的RCFT测试压力保留值。
来自实施例1、2、C1和C5的衬垫以0.4克/厘米3的安装密度进行冷磨蚀测试。数据示于表3。

表3中的数据显示,本发明衬垫比单用非晶态退火纤维制成的衬垫抗冷磨蚀性能好。虽然实施例C5具有差不多的耐磨蚀性能,但它在最终使用前还需要进行不适宜的压合步骤。
实施例4-6实施例1-3的衬垫与膨胀材料衬垫如购自3M公司的InteramTMType 100衬垫结合,产生两层衬垫,其每层都有膨胀层和非膨胀层。在整件和金属外壳之间安装这两层衬垫,非膨胀材料层靠着整件,膨胀材料层靠着外壳,制成催化转化器。或者,膨胀层也可靠着整件安装。
在实施例7中,将一种膨胀材料与实施例1的陶瓷基多晶纤维和退火纤维结合。具体是在实施例1的纤维中加入未膨胀蛭石,其加入量占材料的30重量%。制成的衬垫密度为0.1-0.7克/厘米3。
本领域中的技术人员能从上述本发明的一般原理和前面的详述容易地了解,本发明可以进行各种改变。因此,本发明应该只受所附的权利要求书及其相同内容的限制。
权利要求
1.用于污染控制装置的高温衬垫,其特征在于所述的衬垫包含陶瓷基多晶纤维和退火陶瓷纤维的混合物。
2.如权利要求1所述的高温衬垫,其特征在于所述的衬垫包含有机粘合剂。
3.如权利要求1所述的高温衬垫,其特征在于所述的陶瓷基多晶纤维和所述的退火陶瓷纤维通过缝编、针编、喷粘、或真空装袋来结合在纤维材料(fiber mass)中。
4.如权利要求1所述的高温衬垫,其特征在于所述的衬垫包含膨胀材料。
5.如权利要求1所述的高温衬垫,其特征在于它还包括粘合到高温衬垫上的膨胀材料层。
6.如权利要求5所述的高温衬垫,其特征在于所述的膨胀材料层还层压到所述衬垫的表面上或与所述的衬垫共成形。
7.如权利要求1所述的高温衬垫,其特征在于所述的陶瓷基多晶纤维含量为5-95%。
8.如权利要求1所述的高温衬垫,其特征在于所述的退火陶瓷纤维含量为5-95%。
9.如权利要求1所述的高温衬垫,其特征在于所述的陶瓷基多晶纤维含有60%或更多的氧化铝。
10.如权利要求1所述的高温衬垫,其特征在于所述的高温衬垫根据真实条件夹紧装置测出的弹性值为10千帕或更大。
11.如权利要求1所述的高温衬垫,其特征在于所述的高温衬垫中的多个层粘合在一起。
12.如权利要求1所述的高温衬垫,其特征在于所述的高温衬垫表现出5%或更小的收缩率。
13.如权利要求1所述的高温衬垫,其特征在于所述的高温衬垫表现出10%或更高的压力保留值。
14.如权利要求1所述的高温衬垫,其特征在于所述的高温衬垫的密度约0.1-0.7克/厘米3。
15.如权利要求1所述的高温衬垫,其特征在于所述的高温衬垫根据冷磨蚀测试测出的磨蚀值为0.1克/小时或更小。
16.污染控制装置,其特征在于它包括(a)外壳;(b)置于所述外壳内的污染控制元件,所述的污染控制元件具有外表面;(c)包在所述污染控制元件外表面上置于所述污染控制元件和所述外壳之间的权利要求1所述的高温衬垫。
17.如权利要求16所述的污染控制装置,其特征在于所述的高温衬垫包含有机粘合剂。
18.如权利要求16所述的污染控制装置,其特征在于所述的陶瓷基多晶纤维和所述的退火陶瓷纤维通过通过缝编、针编、喷粘、或真空装袋来结合在纤维材料中。
19.如权利要求16所述的污染控制装置,其特征在于所述的衬垫包含膨胀材料。
20.如权利要求16所述的污染控制装置,其特征在于它还包括粘到所述衬垫的膨胀材料层,该衬垫靠着所述污染控制元件的外表面安装。
21.如权利要求16所述的污染控制装置,其特征在于所述的多晶纤维含量为5-95%。
22.如权利要求16所述的污染控制装置,其特征在于所述的陶瓷纤维含量为5-95%。
23.污染控制装置,其特征在于它包括(a)至少具有一个双壁末端锥的外壳;(b)装在所述外壳的双壁末端锥的内锥和外锥之间的权利要求1所述的高温衬垫。
全文摘要
污染控制装置(10)用的高温衬垫(16)。该高温衬垫常用于如催化转化器(14)和柴油机颗粒过滤器那样的污染控制装置(10)中。高温衬垫(16)包含多晶纤维和退火陶瓷纤维。多晶纤维通常是溶胶-凝胶形成的纤维,它不含陶瓷颗粒物质。本发明另外的陶瓷纤维成分是退火陶瓷纤维。所述两种纤维的结合构成了高温和通常安装压力下具有合乎需要的弹性值和优良耐磨蚀性能的高温衬垫(16)。高温衬垫适于用作污染控制装置(10)的末端锥的隔热层或包裹污染控制元件(14),并在污染控制装置(10)中固定住包好的元件。
文档编号D04H1/488GK1352726SQ99816716
公开日2002年6月5日 申请日期1999年10月8日 优先权日1999年6月8日
发明者R·L·兰格 申请人:3M创新有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1