一种电磁屏蔽复合纸及其制备方法与流程

文档序号:14013720阅读:223来源:国知局

本发明涉及材料加工领域,具体涉及一种电磁屏蔽复合纸及其制备方法。



背景技术:

随着第三次工业革命飞速的席卷全球,自然科学得到全面进步,电子、电气技术不断突破。电子、电气设备在服务人类生活的时候,也产生着电磁干扰(emi)。随着现代电子工业的高速发展和电子、电器产品的普遍使用,电磁干扰已成为一种新的社会公害。一方面,电磁辐射会影响人们的身体健康,并且会对周围的电子仪器设备造成严重干扰,使它们的工作程序发生紊乱,产生错误动作;另一方面,电磁辐射会泄露信息,使计算机等仪器无信息安全保障。有资料表明,在1公里距离内,计算机显示终端的电磁波可以被窃取并复原信息,造成失密。电磁能量对人体、电子设备都会产生不可估量的损害,所以对电磁波危害的防护迫在眉睫。为防止电磁辐射造成的干扰与泄露,采用电磁屏蔽材料进行屏蔽是主要防范方法之一。

碳纳米管(cnts)作为一维纳米材料,重量轻,六边形结构连接完美,独有的一维中空的管状结构使其有很大的长径比,作为吸波材料具有质量轻、电性能好、吸波频带广等优点。近些年随着碳纳米管及纳米材料研究的深入其广阔的应用前景也不断地展现出来。碳纳米管可以作为效果良好的吸波和电磁屏蔽材料,而碳纳米管的优秀机械性能使其成为良好的复合材料添加物。

电磁屏蔽复合纸是一种对电磁波起到屏蔽作用的功能性纸,在国外对其研究工作比国内进行的早,也较为深入,特别是以碳纤维制备电磁屏蔽复合纸的开发上,很早就实现了批量生产,在工业生产、生活等领域均有应用。我国市场内的电磁屏蔽纸大多进口欧洲和日本,价格昂贵,在精密仪器、计算机等高灵敏度的设备中运用较多,当前,国内在电磁屏蔽复合纸开发生产方面主要以碳纤维作为填料,将碳纳米管作为填料来制备电磁屏蔽复合纸工艺和产品还比较少。

中国发明专利公开号103266542a公开了一种碳纳米管电磁波屏蔽纸的制备方法,将碳纳米管加入溶剂中,再加入树脂、表面活性剂制成碳纳米管墨水,以碳纳米管墨水为原料,根据屏蔽性能的需要设计出打印的网格线图案,采用喷墨打印方式打印出碳纳米管电磁波屏蔽纸。该发明中采用喷墨打印法造纸,对配制墨水和设备条件要求较高,制备效率有限,制造成本偏高。

中国发明专利公开号102877367b公开了一种碳纳米管/短纤维复合纳米碳纸及其连续制备方法,将碳纳米管分散于溶剂中形成分散液,随后将短纤维混合分散形成浆料,通过真空辅助流延成膜制备得初始薄膜,随后经后续处理将其中的聚合物去除获得目标产物。该发明虽然能实现连续化和高效率制备,将碳纳米管/短纤维复合制备的纸张具有一定柔性,但是纸张的导电性、力学性能不足。

由此可知,在控制生产成本前提下开发出一种高效制备兼具柔性、导电性、力学性的电磁屏蔽复合纸的制备技术已经成为推动碳纳米管填充电磁屏蔽复合纸市场化核心竞争力。



技术实现要素:

针对现有技术中电磁屏蔽复合纸制备设备条件要求较高,制备效率有限,制造成本偏高,纸张的导电性、力学性能不足的技术缺陷,本发明提出一种高效制备兼具柔性、导电性、力学性的电磁屏蔽复合纸的制备方法,无需特殊设备,生产成本得到控制,制备的复合纸兼具柔性、导电性、力学性能好,并且形状、电阻可控,具有良好的电磁屏蔽效能。

为解决上述问题,本发明采用以下技术方案:

一种电磁屏蔽复合纸,由如下原料按重量份制备而成:

碳纳米管40-50份

造纸纤维原料30-40份

石墨烯粉10-20份

高纯镍粉5-15份

过程控制剂1-2.5份

其中,所述碳纳米管为单壁碳纳米管、双壁碳纳米管、多壁碳纳米管和表面活化的碳纳米管中的一种或几种的混合,所述碳纳米管的长度为10-100纳米;所述高纯镍粉为纯度大于99%的纳米镍粉,镍粉的粒径为10-50纳米;所述石墨烯粉为单层石墨烯、双层石墨烯、多层石墨烯、氧化石墨烯和氮掺杂石墨烯中的一种或几种的混合;所述过程控制剂为去离子水、无水乙醇、硬脂酸钠和油酸中的一种;所述造纸纤维原料为植物纤维、矿物纤维、分散剂、粘合剂的混合物。

优选的,所述植物纤维、矿物纤维、分散剂、粘合剂按质量比例为1:1:0.5:0.1;

所述植物纤维为松木纤维、慈竹纤维、桉木纤维、麦草纤维、苇纤维、蔗渣纤维中的一种或几种的混合;

所述矿物纤维为石棉纤维和玻璃纤维中的一种或两种的混合;

所述分散剂为聚丙烯酰胺溶液、聚氧化乙烯、甘油、聚乙烯醇、聚乙烯吡咯烷酮、纤维素、十二烷基硫酸钠、十二烷基苯磺酸钠、十六烷基三甲基溴化铵中的一种或几种的混合;

所述粘合剂为聚乙烯醇、改性淀粉、水溶性酚醛树脂、阿拉伯胶、二硫赤藓糖醇中的一种或几种的混合。

优选的,采用高纯镍粉蒸发涂覆碳纳米管表面,得到镍包覆的碳纳米管,再将石墨烯粉、镍包覆的碳纳米管、过程控制剂混合球磨,得到复合粉体,将其与造纸纤维复合后通过真空抽滤,得到电屏蔽复合纸,具体制备方法为:

(1)在10-5~10-2pa真空环境下,将5-15重量份高纯镍粉加热到1540-1820℃,维持真空环境的温度在460-600℃,投入40-50重量份碳纳米管,成为金属镍的晶核,镍原子聚集在碳纳米管表面,得到镍包覆的碳纳米管;

(2)将所述镍包覆的碳纳米管、10-20重量份石墨烯粉和1-2.5重量份过程控制剂均匀混合,经过球磨得到导电复合粉体;

(3)将所述导电复合粉体分散于去离子水中,得到导电复合粉体悬浊液,与30-40重量份造纸纤维原料一起搅拌均匀复合,经过真空抽滤工艺,得到电屏蔽复合纸。

优选的,在步骤(1)中,所述高纯镍粉的加热速率为80-120℃/min,待碳纳米管投入后,关闭真空系统,等待1-2小时,碳纳米管与真空环境中的镍原子聚合沉降。

优选的,在步骤(2)中,先将镍包覆的碳纳米管与过程控制剂混合,经过搅拌使碳纳米管均匀分散在过程控制剂中,再将石墨烯粉加入,使石墨烯粉包裹在镍包覆的碳纳米管表面。

优选的,在步骤(3)中,所述导电复合粉体与去离子水按质量比1:3-12.5混合,搅拌均匀,得到导电复合粉体悬浊液。

优选的,所述导电复合粉体悬浊液与造纸纤维混合,按质量比混合比例为1:1-1.5。

优选的,所述抽滤工艺为采用真空抽滤机抽滤,滤料为纤维素纸,真空抽滤机的压力为3-70kpa,抽滤速度为3-15cm3/min。

优选的,抽滤过程中控制复合纸产品厚度为80-500微米,抽滤完成后自然烘干,烘干过程中保持通风良好。

现有方案中电磁屏蔽复合纸制备设备条件要求较高,制备效率有限,制造成本偏高,纸张的导电性、力学性能不足。鉴于此,本发明提出一种高效制备兼具柔性、导电性、力学性的电磁屏蔽复合纸的制备方法,本发明在真空环境下,将高纯镍粉加热,维持真空环境的温度下,投入碳纳米管,碳纳米管悬浮在真空环境下,成为镍的晶核,镍原子不断在碳纳米管上聚集,得到镍包覆的碳纳米管,再将石墨烯粉、镍包覆的碳纳米管、过程控制剂混合球磨,得到复合粉体,最后将其与纸纤维复合后通过真空抽滤法制成一种复合纸。本发明制备的复合纸兼具柔性、导电性、力学性能好,并且形状、电阻可控,复合纸中纸纤维和碳纳米管能完美的结合成导电性良好的三维网络,具有良好的电磁屏蔽效能。

本发明一种拉伸剥离制备石墨烯的密炼机及制备石墨烯的方法,与现有技术相比,其突出的特点和优异的效果在于:

1、本发明提出一种高效制备兼具柔性、导电性、力学性的电磁屏蔽复合纸的制备方法,将碳纳米管外镀镍,得到镍包覆的碳纳米管,再将石墨烯粉、镍包覆的碳纳米管、过程控制剂混合球磨,得到复合粉体,最后将其与纸纤维复合后通过真空抽滤法制成一种复合纸。复合纸中纸纤维和碳纳米管能完美的结合成导电性良好的三维网络,制备的复合纸兼具柔性、导电性、力学性能好,并且形状、电阻可控,具有良好的电磁屏蔽效能。

2、本方案提出一种高效制备兼具柔性、导电性、力学性的电磁屏蔽复合纸的制备方法,无需特殊的抄造设备,生产成本得以控制,具备规模化生产条件。

3、本发明将碳纳米管作为填料来制备电磁屏蔽复合纸工艺和产品丰富了电磁屏蔽复合纸产品,进一步推动碳纳米管填充电磁屏蔽复合纸市场化发展。

具体实施方式

以下通过具体实施方式对本发明作进一步的详细说明,但不应将此理解为本发明的范围仅限于以下的实例。在不脱离本发明上述方法思想的情况下,根据本领域普通技术知识和惯用手段做出的各种替换或变更,均应包含在本发明的范围内。

实施例1

(1)在10-5pa真空环境下,将5重量份纯度大于99%,粒径为20纳米的高纯镍粉加热到1540℃,高纯镍粉的加热速率为120℃/min,维持真空环境的温度为600℃,投入50重量份长度为10纳米的单壁碳纳米管,待碳纳米管投入后,关闭真空系统,等待2小时,碳纳米管成为金属镍的晶核,镍原子聚集在碳纳米管表面,碳纳米管与真空环境中的镍原子聚合沉降,得到镍包覆的碳纳米管;

(2)先将镍包覆的碳纳米管与2.5重量份去离子水混合,经过搅拌使碳纳米管均匀分散在过程控制剂中,再将20重量份单层石墨粉加入,使石墨烯粉包裹在镍包覆的碳纳米管表面,经过球磨得到导电复合粉体;

(3)所述导电复合粉体与去离子水按质量比1:12.5混合,将所述导电复合粉体分散于去离子水中,搅拌均匀,得到导电复合粉体悬浊液,将其按质量比混合比例为1:1与40重量份造纸纤维原料一起搅拌均匀,得到的导电复合粉体悬浊液与与造纸纤维混合,本实施例中植物纤维、矿物纤维、分散剂、粘合剂按质量比例为1:1:0.5:0.1,植物纤维为松木纤维、慈竹纤维的混合物,矿物纤维为石棉纤维和玻璃纤维中的混合,分散剂为聚丙烯酰胺溶液,粘合剂为聚乙烯醇。采用真空抽滤机抽滤,滤料为纤维素纸,真空抽滤机的压力为3kpa,抽滤速度为3cm3/min,抽滤过程中控制复合纸产品厚度为500微米,抽滤完成后自然烘干,烘干过程中保持通风良好,得到电屏蔽复合纸。

对实施例中制备获得的电屏蔽复合纸进行性能测试后,获得数据如表1所示。

实施例2

(1)在10-4pa真空环境下,将15重量份纯度大于99%,粒径为50纳米的高纯镍粉加热到1820℃,高纯镍粉的加热速率为80℃/min,维持真空环境的温度在460℃,投入50重量份长度为100纳米的双壁碳纳米管、多壁碳纳米管混合物,待碳纳米管投入后,关闭真空系统,等待1小时,碳纳米管成为金属镍的晶核,镍原子聚集在碳纳米管表面,碳纳米管与真空环境中的镍原子聚合沉降,得到镍包覆的碳纳米管;

(2)先将镍包覆的碳纳米管与1重量份无水乙醇混合,经过搅拌使碳纳米管均匀分散在过程控制剂中,再将10重量份氧化石墨烯粉加入,使石墨烯粉包裹在镍包覆的碳纳米管表面,经过球磨得到导电复合粉体;

(3)所述导电复合粉体与去离子水按质量比1:3混合,将所述导电复合粉体分散于去离子水中,搅拌均匀,得到导电复合粉体悬浊液,将其按质量比混合比例为1:1.5与30重量份造纸纤维原料一起搅拌均匀,得到的导电复合粉体悬浊液与与造纸纤维混合,本实施例中植物纤维、矿物纤维、分散剂、粘合剂按质量比例为1:1:0.5:0.1,植物纤维为麦草纤维、苇纤维、蔗渣纤维的混合,矿物纤维为石棉纤维,分散剂为聚氧化乙烯,粘合剂为水溶性酚醛树脂、阿拉伯胶的混合。采用真空抽滤机抽滤,滤料为纤维素纸,真空抽滤机的压力为10kpa,抽滤速度为5cm3/min,抽滤过程中控制复合纸产品厚度为80微米,抽滤完成后自然烘干,烘干过程中保持通风良好,得到电屏蔽复合纸。

对实施例中制备获得的电屏蔽复合纸进行性能测试后,获得数据如表1所示。

实施例3

(1)在10-2pa真空环境下,将10重量份纯度大于99%,粒径为45纳米的高纯镍粉加热到1600℃,高纯镍粉的加热速率为100℃/min,维持真空环境的温度在500℃,投入50重量份长度为20纳米的表面活化的碳纳米管,待碳纳米管投入后,关闭真空系统,等待1.2小时,碳纳米管成为金属镍的晶核,镍原子聚集在碳纳米管表面,碳纳米管与真空环境中的镍原子聚合沉降,得到镍包覆的碳纳米管;

(2)先将镍包覆的碳纳米管与1.5重量份硬脂酸钠混合,经过搅拌使碳纳米管均匀分散在过程控制剂中,再将15重量份多层石墨烯加入,使石墨烯粉包裹在镍包覆的碳纳米管表面,经过球磨得到导电复合粉体;

(3)所述导电复合粉体与去离子水按质量比1:9.5混合,将所述导电复合粉体分散于去离子水中,搅拌均匀,得到导电复合粉体悬浊液,将其按质量比混合比例为1:1.5与35重量份造纸纤维原料一起搅拌均匀,得到的导电复合粉体悬浊液与与造纸纤维混合,本实施例中植物纤维、矿物纤维、分散剂、粘合剂按质量比例为1:1:0.5:0.1,植物纤维为松木纤维、桉木纤维、麦草纤维、蔗渣纤维的混合;矿物纤维为石棉纤维和玻璃纤维的混合;分散剂为十二烷基硫酸钠、十二烷基苯磺酸钠的混合;粘合剂为聚乙烯醇、二硫赤藓糖醇的混合。采用真空抽滤机抽滤,滤料为纤维素纸,真空抽滤机的压力为60kpa,抽滤速度为5cm3/min,抽滤过程中控制复合纸产品厚度为150微米,抽滤完成后自然烘干,烘干过程中保持通风良好,得到电屏蔽复合纸。

对实施例中制备获得的电屏蔽复合纸进行性能测试后,获得数据如表1所示。

实施例4

(1)在10-2pa真空环境下,将15重量份纯度大于99%,粒径为35纳米的高纯镍粉加热到1640℃,高纯镍粉的加热速率为100℃/min,维持真空环境的温度在560℃,投入50重量份长度为55纳米的单壁碳纳米管、双壁碳纳米管、多壁碳纳米管混合物,待碳纳米管投入后,关闭真空系统,等待1.8小时,碳纳米管成为金属镍的晶核,镍原子聚集在碳纳米管表面,碳纳米管与真空环境中的镍原子聚合沉降,得到镍包覆的碳纳米管;

(2)先将镍包覆的碳纳米管与2重量份去离子水混合,经过搅拌使碳纳米管均匀分散在过程控制剂中,再将18重量份氧化石墨烯和氮掺杂石墨烯粉加入,使石墨烯粉包裹在镍包覆的碳纳米管表面,经过球磨得到导电复合粉体;

(3)所述导电复合粉体与去离子水按质量比1:10混合,将所述导电复合粉体分散于去离子水中,搅拌均匀,得到导电复合粉体悬浊液,将其按质量比混合比例为1:1.2与36重量份造纸纤维原料一起搅拌均匀,得到的导电复合粉体悬浊液与与造纸纤维混合,本实施例中植物纤维、矿物纤维、分散剂、粘合剂按质量比例为1:1:0.5:0.1,植物纤维为蔗渣,矿物纤维为石棉纤维,分散剂为十二烷基苯磺酸钠、十六烷基三甲基溴化铵的混合;粘合剂为改性淀粉、阿拉伯胶、二硫赤藓糖醇的混合。采用真空抽滤机抽滤,滤料为纤维素纸,真空抽滤机的压力为61kpa,抽滤速度为5cm3/min,抽滤过程中控制复合纸产品厚度为350微米,抽滤完成后自然烘干,烘干过程中保持通风良好,得到电屏蔽复合纸。

对实施例中制备获得的电屏蔽复合纸进行性能测试后,获得数据如表1所示。

实施例5

(1)在10-2pa真空环境下,将13重量份纯度大于99%,粒径为45纳米的高纯镍粉加热到1750℃,高纯镍粉的加热速率为85℃/min,维持真空环境的温度在500℃,投入45重量份长度为30纳米的多壁碳纳米管和表面活化的碳纳米管混合物,待碳纳米管投入后,关闭真空系统,等待1小时,碳纳米管成为金属镍的晶核,镍原子聚集在碳纳米管表面,碳纳米管与真空环境中的镍原子聚合沉降,得到镍包覆的碳纳米管;

(2)先将镍包覆的碳纳米管与2.5重量份去离子水混合,经过搅拌使碳纳米管均匀分散在过程控制剂中,再将10-20重量份单层石墨烯加入,使石墨烯粉包裹在镍包覆的碳纳米管表面,经过球磨得到导电复合粉体;

(3)所述导电复合粉体与去离子水按质量比1:9.5混合,将所述导电复合粉体分散于去离子水中,搅拌均匀,得到导电复合粉体悬浊液,将其按质量比混合比例为1:1与36重量份造纸纤维原料一起搅拌均匀,得到的导电复合粉体悬浊液与与造纸纤维混合,本实施例中植物纤维、矿物纤维、分散剂、粘合剂按质量比例为1:1:0.5:0.1,植物纤维为松木纤维、慈竹纤维、桉木纤维、麦草纤维、苇纤维、蔗渣纤维的混合,矿物纤维为石棉纤维和玻璃纤维的混合;分散剂为聚丙烯酰胺溶液、聚氧化乙烯、甘油的混合,粘合剂水溶性酚醛树脂、阿拉伯胶、二硫赤藓糖醇的混合。采用真空抽滤机抽滤,滤料为纤维素纸,真空抽滤机的压力为3-70kpa,抽滤速度为5cm3/min,抽滤过程中控制复合纸产品厚度为350微米,抽滤完成后自然烘干,烘干过程中保持通风良好,得到电屏蔽复合纸。

对实施例中制备获得的电屏蔽复合纸进行性能测试后,获得数据如表1所示。

实施例6

(1)在10-3pa真空环境下,将12重量份纯度大于99%,粒径为35纳米的高纯镍粉加热到1540-1820℃,高纯镍粉的加热速率为110℃/min,维持真空环境的温度在560℃,投入48重量份长度为75纳米的双碳纳米管,待碳纳米管投入后,关闭真空系统,等待1.6小时,碳纳米管成为金属镍的晶核,镍原子聚集在碳纳米管表面,碳纳米管与真空环境中的镍原子聚合沉降,得到镍包覆的碳纳米管;

(2)先将镍包覆的碳纳米管与2.5重量份去离子水混合,经过搅拌使碳纳米管均匀分散在过程控制剂中,再将18重量份单层石墨烯、双层石墨烯、多层石墨烯、氧化石墨烯加入,使石墨烯粉包裹在镍包覆的碳纳米管表面,经过球磨得到导电复合粉体;

(3)所述导电复合粉体与去离子水按质量比1:9.5混合,将所述导电复合粉体分散于去离子水中,搅拌均匀,得到导电复合粉体悬浊液,将其按质量比混合比例为1:1.2与38重量份造纸纤维原料一起搅拌均匀,得到的导电复合粉体悬浊液与与造纸纤维混合,本实施例中植物纤维、矿物纤维、分散剂、粘合剂按质量比例为1:1:0.5:0.1,植物纤维为桉木纤维、麦草纤维、苇纤维、蔗渣纤维的混合;矿物纤维为玻璃纤维;分散剂为纤维素、十二烷基硫酸钠、十二烷基苯磺酸钠的混合;粘合剂为阿拉伯胶、二硫赤藓糖醇中的混合。采用真空抽滤机抽滤,滤料为纤维素纸,真空抽滤机的压力为45kpa,抽滤速度为8cm3/min,抽滤过程中控制复合纸产品厚度为150微米,抽滤完成后自然烘干,烘干过程中保持通风良好,得到电屏蔽复合纸。

对比例1

(1)将12重量份纯度大于99%,粒径为35纳米的高纯镍粉与48重量份长度为75纳米的双碳纳米管混合均匀;

(2)先将镍、碳纳米管与2.5重量份去离子水混合,经过搅拌使碳纳米管均匀分散在过程控制剂中,再将18重量份单层石墨烯、双层石墨烯、多层石墨烯、氧化石墨烯加入,使石墨烯粉包裹在镍、碳纳米管表面,经过球磨得到导电复合粉体;

(3)所述导电复合粉体与去离子水按质量比1:9.5混合,将所述导电复合粉体分散于去离子水中,搅拌均匀,得到导电复合粉体悬浊液,将其按质量比混合比例为1:1.2与38重量份造纸纤维原料一起搅拌均匀,得到的导电复合粉体悬浊液与与造纸纤维混合,本实施例中植物纤维、矿物纤维、分散剂、粘合剂按质量比例为1:1:0.5:0.1,植物纤维为桉木纤维、麦草纤维、苇纤维、蔗渣纤维的混合;矿物纤维为玻璃纤维;分散剂为纤维素、十二烷基硫酸钠、十二烷基苯磺酸钠的混合;粘合剂为阿拉伯胶、二硫赤藓糖醇中的混合。采用真空抽滤机抽滤,滤料为纤维素纸,真空抽滤机的压力为45kpa,抽滤速度为8cm3/min,抽滤过程中控制复合纸产品厚度为150微米,抽滤完成后自然烘干,烘干过程中保持通风良好,得到电屏蔽复合纸。

对实施例1-6、对比例1中制备获得的电屏蔽复合纸进行性能测试后,获得数据如表1所示。

表1

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1