半导体器件及其驱动方法

文档序号:2603063阅读:141来源:国知局
专利名称:半导体器件及其驱动方法
技术领域
本发明涉及一种半导体器件,其具有利用晶体管控制对负载的供电的功能,尤其是涉及一种半导体器件,其包括由电流驱动发光元件构成的象素,该发光元件的亮度随着电流而改变,和用于驱动该象素的信号驱动电路,还涉及一种该半导体器件的驱动方法。
背景技术
近年来,其象素由如发光二极管(LED)的发光元件构成的显示设备,即自发光显示设备已经应用在点光源中。在上述用于自发光显示设备的发光元件中,有机发光二极管(OLED),有机EL元件以及电致发光(EL元件)已经引起关注并广泛用于有机EL显示器。
由于这种发光元件靠自身发光,所以与液晶显示器相比它具有更高的象素可见度而且不需要背光。此外,它表现出高的响应速度并且能够根据流入发光元件的电流值来控制该发光元件的亮度。
无源矩阵驱动和有源矩阵驱动作为使用自发光元件的显示设备的驱动方法是已知的。虽然无源矩阵驱动的结构简单,但是存在这样的问题,如难以实现大尺寸和高亮度的显示器。因此,积极地发展有源矩阵驱动,其中通过设置在象素电路中的薄膜晶体管(TFT)控制发光元件中流过的电流。
有源矩阵显示设备存在的问题就是,因驱动TFT的电流特性的变化而引起流过发光元件中的电流发生变化,并由此引起构成显示屏的每个发光元件的亮度发生变化。就是说,有源矩阵显示设备具有用于驱动象素电路中的其中流入电流的发光元件的驱动TFT,并且因驱动TFT的特性变化而引起流过发光元件的电流发生变化,因此亮度发生变化。
考虑到上述问题,提出不同的电路,以使得即使当象素电路中的驱动TFT的特性发生变化时发光元件中流过的电流也不发生变化,并因此抑制亮度发生变化(例如参见专利文献1到4)。

日本专利未审公开No.2002-517806[专利文献2]国际公布No.01/06484单行本(pamphlet)[专利文献3]日本专利未审公开No.2002-514320[专利文献4]国际公布No.02/39420单行本专利文献1到4中公开了有源矩阵显示设备的结构,尤其是在专利文献1到3中公开了电路结构,其中象素电路中驱动TFT的特性变化没有引起流过发光元件的电流发生变化。这种结构称为电流写入型象素或电流输入型象素。专利文献4所公开的是电路结构,其用于抑制因源驱动器电路中TFT的变化而引起的信号电流的变化。
图6中示出了专利文献1中所公开的常规有源矩阵显示设备的结构。图6中的象素包括源信号线601,第一到第三栅信号线602到604,供电线605,TFT606到609,存储电容器610,EL元件611以及用于输入视频信号612的电流源。
TFT606的栅电极连接到第一栅信号线602,其第一电极连接到源信号线601,其第二电极连接到TFT607,608和609的第一电极。TFT607的栅电极连接到第二栅信号线603,其第二电极连接到TFT608的栅电极。TFT608的第二电极连接到供电线605。TFT609的栅电极连接到第三栅信号线604,其第二电极连接到EL元件611的阳极。存储电容器610连接在TFT608的栅电极和供电线605之间以存储TFT608的栅极和源极之间的电压。供电线605和EL元件611的阴极分别输入预定的电压以使二者之间具有一电位差。
将利用图7A到7E来解释通过信号电流写入光发射的操作。表示各部件的附图标记与图6中示出的一致。图7A到7C示意性示出了电流的流向。图7D示出信号电流写入时各通路中所流动的电流之间的关系。图7E示出存储电容器610中存储的电压,即信号电流写入时TFT608的栅极和源极之间的电压。
首先,向第一栅信号线602和第二栅信号线603中输入脉冲并且TFT606和607导通。流过源信号线601的电流,即信号电流在此表示为Idata。
如图7A所示,由于信号电流Idata流过源信号线601,所以该电流分别流过象素中的电流通路I1和I2。图7D示出电流之间的关系。不用说,该关系表示为Idata=I1+I2。
当TFT606导通的瞬间电荷还没有存储在存储电容器610中,因此TFT608截止。因此,I2=0并且Idata=I1。就是说,该期间因存储电容器610中的电荷累积使得只有一种电流流动。
接着存储电容器610中电荷逐渐累积,并且存储电容器610的两电极之间开始产生电位差(见图7E)。当两极之间的电位差达到Vth时(图7E中点A)TFT608导通,并产生I2。由于如上所述Idata=I1+I2,所以I1逐渐减小。但是,依然有电流流过而且存储电容器610中电荷进一步累积。
存储电容器610中电荷继续累积直到存储电容器610的两电极之间的电位差,即TFT608的栅极和源极之间的电压达到期望电压,该期望电压是这样一种电压(VGS),此电压下TFT608中能够流过电流Idata。当电荷累积完成时(图7E中的B点),电流I1停止流动并且此时对应VGS的电流开始流动入TFT608中,因此满足Idata=I2(见图7B)。以这种方式,得到稳态。信号写入操作因此完成。当对第一栅信号线602和第二栅信号线603的选择完成时,TFT606和607截止。
在接下来的光发射操作中,向第三栅信号线604中输入脉冲并且TFT609导通。由于之前写入的VGS存储在存储电容器610中,所以TFT608导通并且电流Idata从供电线605流出。因此,EL元件611发光。在TFT608能够工作在饱和区的情况下,即使TFT608的源极和漏极之间的电压发生变化,Idata也能够在这一点没有变化地继续流过。
如上所述用于输出设定电流的操作在这里指输出操作。上述的电流写入型象素的优点就是,能够将期望电流精确提供给EL元件,并且即使当TFT608具有特性变化等时,由于电流Idata流动所需要的栅极和源极之间的电压能够存储在存储电容器610中,因此能够抑制因TFT的特性变化引起的亮度变化。
上述实施例涉及一种用于校正因象素电路中驱动TFT中的变化而引起的电流变化的技术;但是,相同的问题出现在源驱动器电路中。专利文献4中公开了一种电路结构,其用于防止因源驱动器电路中TFT的制造偏差所引起的信号电流的变化。
常规电流驱动电路和采用该电路的显示器件以这种方式构成,使得信号电流和驱动TFT的电流之间的关系或信号电流和在光发射期间光发射元件中流过的电流之间的关系能够相等或保持彼此成比例。
在用于驱动发光元件的驱动TFT的驱动电流很小或发光元件显示暗色调(dark gradation)的情况下,信号电流相应减小。由于用于将信号电流提供到驱动TFT和发光元件中的布线的寄生电容非常大,所以当信号电流小时,该布线中的寄生电容的充电时间常数将变大,这使得信号写入速度降低。就是说,将电流提供到晶体管从而在晶体管的栅极端产生电压的速度变慢,该晶体管需要该电压以使电流流动。
基于前述问题,已经研究了一种用于提高信号写入速度的技术(例如参见专利文献5和6)。
日本专利已审公开No.2003-50564[专利文献6]日本专利已审公开No.2003-76327专利文献5公开了一种显示器件,其具有电流控制装置,由数据线驱动装置提供的数据线电流通过该装置被分成用于将亮度信息写入到每个象素电路的数据电流和用于驱动的旁路电流。例如,如图33所示,其中没有写入亮度数据的象素电路用作数据电流控制电路(旁路电流)。
图34和35示出驱动时序。同时选择连续的x个象素电路(图33中x=2)。当同时选择两个象素电路时,用于驱动数据线的部分数据线电流被写入到一个象素电路作为亮度数据电流。另一的象素电路的一部分中没有写入亮度数据电流,但是,它被用作数据电流控制电路(旁路电流),剩余的数据线电流流入其中。
特别地,图35中,同一列的连续的x个象素电路(图33中x=2)被划分为一个单元。当数据电流被写入到该单元中的一个象素电路时,没有数据电流被写入到该单元中的另一象素电路并且该象素电路用作旁路电流。与此同时,在有数据电流写入的象素电路中,选择第一扫描线WS和第二扫描线ES。图33中,例如假设象素电路11-k-1为用于写入数据电流的象素电路,那么WSk-1和Esk-1都被选择。
另一方面,在没有数据电流写入并被用作旁路电流的象素电路中,只选择第一扫描线WS。图33中选择WSk而不选择第二扫描线ESk。因此,该象素电路充当数据电流控制电路,其中TFT24和25用作旁路电流。就是说,在图33所示的象素电路中,由于第二扫描线ESk没有被选择且TFT26截止,所以阻止了与被存储在电容器23中的亮度数据相应的电荷通过TFT26被放电并保持被存储。与此同时,该电路中的一部分,即只有TFT24和25充当数据电流控制电路(旁路电流)。
如上所述,在利用电流写入型象素电路的有源矩阵有机EL显示设备中,同时选择相同列的连续的两个象素电路,并且数据线电流Iw0的一部分被提供到象素电路以被写入亮度数据,而剩余的电流被提供到另一象素电路的一部分用作旁路电流。这样,可以将数据线电流Iw0设定得比流过TFT24和25的数据电流Iw1大,同时抑制象素电路中TFT24和25的尺寸。因此,可能大大减少数据写入时间,因此有利于实现具有大尺寸和高清晰度的有机EL显示器件。
专利文献6公开了图36所示的电路。就是说,驱动晶体管7与辅助晶体管12并联连接,其中辅助晶体管12的电流驱动能力是驱动晶体管7的n倍,这样使得漏电流也流到该辅助晶体管12并且流过信号线3的信号电流在部分选择期间(加速期间)变成(n+1)倍。因此,能够以很快的速度进行存储电容器和寄生电容器的充电和放电,而且驱动晶体管的栅极电位在选择期间没有减弱(failing)地达到预定电位,因此即使在小的信号电流(输入信号)的情况下也能用适当的驱动电流来驱动电流驱动元件。因此,当电流驱动元件为有机EL元件时,该有机EL元件能够被预定的驱动电流驱动并因此防止显示图象质量的恶化。

发明内容
如上所述,虽然已经研究了提高信号写入速度的技术,但仍然存在几个问题。
例如,专利文献5中,虽然在写数据电流的同时选择相同列的连续的两个象素电路(x=2),但是象素电路的数量并不限于两个也可以同时选择更多象素电路。当选择更多象素电路并且多个象素电路用作数据电流脉冲时,能够实现象素电路中更小尺寸的晶体管,即较大的数据线电流Iw0。
但是,考虑到折衷因素使得构成电流镜电路的晶体管之间的间距变的更远了,因此降低了校正晶体管特性中偏差的效果。
因此,能够同时被选择的象素电路的数量受到限制并且数据线电流的大小也受到限制。因此,降低了信号写入速度。此外,当同时选择多个象素电路时,电流平均分成流过每个象素电路的电流。它阻碍精确的电流被输入到其中输入数据电流的象素电路中。因此降低了校正晶体管特性中偏差的效果。
专利文献6中,驱动晶体管7与辅助晶体管12并联连接,其中辅助晶体管12的电流驱动能力是驱动晶体管7的n倍,这样使得漏电流也流到该辅助晶体管12并且流过信号线3的信号电流在选择期间的一部分(加速度期间)变成(n+1)倍。
但是,如果n的数量增加的太多,那么辅助晶体管12所占的面积将变的极大并因此降低开口比(opening ratio)。此外,n的数量受布图面积的限制。因此部分选择期间的一部分(加速度期间)流过信号线3的信号电流的放大率降低。结果是使得信号写入速度降低。
为解决上述问题,本发明的目的在于提供一种技术,其即使在信号电流小的情况下也能充分提高信号写入速度,而不受布图面积限制,不降低开口比,并且不降低晶体管特性中校正偏差的效果。
根据本发明,在设定期间之前设置一预充电期间以快速完成设定操作。在预充电操作中,电流不仅流到将要输入信号的晶体管还流到其它晶体管。该电流的大小根据将被提供该电流的晶体管的数量的增加而增加。因此,能够流过很大的电流,因此能够快速获得稳态。注意此时的状态几乎相当于设定操作完成(当获得稳态时)的状态。接着,进行设定操作。由于在进行设定操作之前获得了几乎相当于设定操作完成的状态所以能够快速完成该设定操作。
注意,设定操作是这样一种操作,其提供电流到将被输入信号的晶体管,因此在晶体管的栅极端产生电压,该晶体管需要该电压使电流流动。
此外,用于使电流不仅流到将输入信号的晶体管而且流到其它晶体管以快速完成设定操作的操作称为预充电操作,并且将具有这样功能的电路称为预充电装置。
本发明的一个特点是半导体器件,其包括信号线;可通过开关连接到该信号线的电流源电路;分别包括开关和电流源电路的多个单元电路;以及供电装置,其在预充电期间提供第一电流到选自该多个单元电路的M个单元电路的电流源电路,并在设定期间将第二电流提供到选自该多个单元电路的N个单元电路的电流源电路。
电流源电路包括至少一个晶体管,并且多数情况下还包括电容器。
当采用小电流对单元电路(构成电流源电路的晶体管)进行设定操作时,要花费很长时间到达稳态并完成电流写入操作。为解决这个问题,在设定操作之前进行预充电操作。通过该预充电操作,能够在该设定操作之前得到几乎相当于稳态的状态。就是说,预充电操作使得在构成电流源电路的晶体管栅极端快速充电到一个电位成为可能。通过该预充电操作,构成电流源电路的晶体管栅极端的电位几乎等于设定操作时的电位。因此,通过在预充电操作之后进行设定操作能够更快速地完成该设定操作。
本发明的另一特征是半导体器件,其包括信号线;可通过开关连接到该信号线的电流源电路;分别包括开关和电流源电路的多个单元电路;以及供电装置,其在预充电期间将第一电流提供到选自该多个单元电路的M个单元电路的电流源电路,并在设定期间将第二电流提供到选自该多个单元电路中的除去该M个单元电路之外的N个单元电路的电流源电路。
换句话说,通常,考虑到特性偏差期望对这些电路进行预充电操作,该电路包括要对其进行设定操作的单元电路,然而,本发明不限于此。对其进行预充电操作的单元电路可以不同于对其进行设定操作的单元电路。
根据上述结构,本发明提供其中N=1的半导体器件。
虽然通常对一个单元电路进行设定操作,但本发明不限于此并且在设定操作中可以向多个单元电路提供电流。
此外,根据上述结构,本发明提供其中第一电流与第二电流的大小比为M∶N的半导体器件。
本发明的晶体管可以采用任何类型的晶体管。例如,可以是利用无定形的,多晶的或单晶的半导体膜的薄膜晶体管(TFT)。也可以采用形成在单晶衬底,SOI衬底,或玻璃衬底上的晶体管。或者,可以采用由有机材料,碳纳米管(carbonnanotube)等形成的晶体管。此外,晶体管可以是MOS晶体管或双极性晶体管。
注意本说明书中,连接是指电连接。因此,可以在所示元件之间插入其它元件或开关。
根据本发明,预充电操作在设定操作之前进行。因此,即使采用小的电流也能快速进行设定操作,并能够在输出操作中输出精确的电流。


图1是本发明半导体器件的结构框图。
图2是示出了本发明的单元电路的结构实例的框图。
图3是示出了本发明半导体器件的一种操作的框图。
图4是示出了本发明半导体器件的一种操作的框图。
图5是示出了本发明半导体器件的一种操作的框图。
图6是示出了常规象素的结构实例的框图。
图7A到7E的框图示出常规象素的操作。
图8是示出了本发明的单元电路的结构实例的框图。
图9是本发明半导体器件的结构框图。
图10是本发明半导体器件的结构框图。
图11是示出了本发明的单元电路的结构实例的框图。
图12是示出了本发明的单元电路的结构实例的框图。
图13是示出了本发明半导体器件的操作的框图。
图14是示出了本发明半导体器件的操作的框图。
图15是示出了本发明半导体器件的操作的框图。
图16是示出了本发明半导体器件的操作的框图。
图17是用于解释本发明半导体器件的操作框图。
图18是示出了本发明半导体器件的操作的框图。
图19是示出了本发明半导体器件的操作的框图。
图20是示出了本发明半导体器件的操作的框图。
图21是示出了本发明半导体器件的操作的框图。
图22是示出了本发明半导体器件的操作的框图。
图23是示出了本发明的单元电路的结构实例的框图。
图24的框图示出本发明的单元电路的结构实例。
图25是示出了本发明的单元电路的结构实例的框图。
图26是示出了本发明的单元电路的结构实例的框图。
图27是示出了本发明的单元电路的结构实例的框图。
图28是示出了本发明的单元电路的结构实例的框图。
图29是示出了本发明的显示器件的结构的框图。
图30是示出了本发明的显示器件的结构的框图。
图31是示出了本发明的栅极驱动器电路的结构的框图。
图32A到32H是可以应用本发明的电子装置的视图。
图33是示出了常规象素的结构的框图。
图34是常规象素的时间图。
图35是常规象素的时间图。
图36是示出了常规象素的结构的框图。
图37是示出了本发明的半导体器件的结构的框图。
图38是示出了本发明的半导体器件的结构的框图。
具体实施例方式根据本发明,象素由能够根据流入发光元件的电流值来控制光发射的亮度的元件而形成。典型地,可以采用EL元件。虽然EL元件的各种结构是已知的,但是可以采用任何结构只要其能够根据电流值控制光发射的亮度。就是说,可以采用这样的EL元件,其包括任意组合的发光层,电荷输运层和电荷注入层,该EL元件使用低分子量有机材料,中分子量有机材料(不具有升华特性且其中分子的数量为20或更少或分子链的长度为10ìm或更少的有机发光材料),或高分子量有机材料形成。此外,可以将无机材料混合或分散到这些有机材料中。
本发明还可用于各种模拟电路,每个电路除分别包含有发光元件如EL元件的象素之外还包括电流源。因此,在本实施方式中描述本发明的原理。
基于本发明的基本原理的结构在图1中示出。主电流源101通过开关102连接到信号线108,辅助电流源103通过开关104与主电流源101并联连接。供电装置以这种方式构成。不用说供电装置的结构不限于图1中所示出的那个,任何结构都可以采用只要其能够根据操作时序提供预定电流到后面的单元电路。例如,可以省去开关而采用其输出按需要变化的电流源。电流源的数量不限于两个,或者可采用更多个电流电路或者一个电流电路。
多个单元电路105a到105e连接到信号线108。图1中,连接有五个单元电路。每个单元电路包括至少一个开关电路和一个电流源电路,因此单元电路105a例如,包括开关电路106a和电流源电路107a。同样应用于剩余的单元电路105b到105e。电流源电路包括至少一个晶体管,并且在多数情况下还包括电容器。开关电路包括至少一个开关。
单元电路可以采用各种结构。根据本实施方式,在图2中示出了利用与图6类似的电路的单元电路。单元电路105中的开关电路106对应于图6中的TFT606。单元电路105中的电流源电路107包括电流源晶体管208,电容器210以及开关207和209。负载201连接到开关209。电流源电路107中的晶体管208对应于图6中的TFT 608,电容器210对应于存储电容器610,开关207和209分别对应于TFT607和609。负载201对应于图6中的EL元件611。
现在解释图1中所示的电路的操作。首先,如图3所示进行预充电操作。在预充电操作中电流不仅提供到将有信号输入的单元电路而且提供到其它单元电路。总电流的大小随将被提供电流的单元电路的增加的数量而增加。
就是说,开关104接通而开关102关断使得电流从辅助电流源103流出。接着,多个单元电路中的每个开关电路接通并且电流开始流向这些开关电路。图3中,开关电路106a到106e接通,因此电流流入这五个单元电路。因此,来自辅助电流源103的电流是主电流源101的五倍。这样,由于能够将大的电流提供到电路,所以很快得到稳态。在预充电操作中,获得稳态时的信号线108的电位表示为Vp。
注意在预充电操作期间,优选每个电流源电路中的电流源晶体管的栅极端和漏极端彼此相连。图2中,例如,优选开关207接通。此外,优选图2中开关209关断以防止电流流入负载201中。然而本发明并不限于这些。
接着,如图4所示,进行设定操作。这里假设只有单元电路105a将被输入信号。就是说,电流只提供到单元电路105a而不提供到单元电路105b到105e。因此,开关电路106a接通而开关电路106b到106e关断。开关104关断且开关102接通从而电流从主电流源101流出。然而,由于从主电流源101流出的电流很小所以常规地得到稳态需要花费很长时间。而在图4的情况下,由于在设定操作之前进行了预充电操作,所以信号线108的电位等于Vp。该电位Vp几乎等于设定操作完成时信号线108的电位。因此,能够快速完成设定操作并很快达到稳态。
如上所述,在预充电操作中(预充电期间)提供大电流。例如,当所提供的是A倍的电流时,其提供到单元电路的A支(piece)。借助该大电流,能够快速得到稳态。换句话说,能够降低因寄生负载(线路阻抗,跨接电容等)引起的对流动电流线路的影响并因此快速得到稳态。在接下来的设定期间,提供一倍的电流到一个单元电路进行设定操作。然而,流动电流线路的电位几乎等于设定操作完成时的电位。这是因为预充电操作中的电流的放大率(A倍)对应于被提供电流的单元电路的数量(A)。如上所述,预充电操作能够使设定操作快速完成。
因此,例如当负载201为EL元件时,即使用于EL元件光发射的写入信号为低等级(gradation)的情况下,就是说,即使在设定操作中提供小的电流,信号也能够快速写入。
此外,在预充电操作完成时信号线的电位几乎等于设定操作完成时的电位。当它们彼此完全相等时,就意味着设定操作在预充电操作完成时同时完成。换句话说,当它们彼此不完全相等时,电位差受控于设定操作。因此,能够抑制从设定操作开始到其结束时信号线中电位的变化为小,因此可以很快得到稳态。
预充电操作完成时信号线的电位是否等于设定操作完成时信号线的电位,取决于电流源电路107a到107e中每个电流源晶体管的电流特性的偏差。当电流特性没有变化时,预充电操作中电流源晶体管的栅极和源极之间的电压等于设定操作中二者之间的电压。然而,当电流特性变化时,充电操作中电流源晶体管的栅极和源极之间的电压与设定操作中二者之间的电压不同。因此,在预充电操作完成时和设定操作完成时,信号线108中的电位不相同。因此期望电流源电路107a到107e中每个电流源晶体管具有相同的电流特性。这使得能够在设定操作中快速得到稳态。电流源晶体管中电流特性的一致性能够通过在结晶化中用相同的激光发射照射每个晶体管的半导体层而得到。
注意虽然图1中采用了五个单元电路,但单元电路的数量并不限于此。
此外,虽然在预充电操作中电流输入到图3的五个单元电路中,但本发明并不限于此。例如如图5所示电流可以输入到四个单元电路。这种情况下,优选辅助电流源103的电流是主电流源101的四倍。此外,虽然在图5中开关电路106b到106e接通而开关电路106a关断,但本发明并不限于此。由于假设只有单元电路105a被输入信号,所以考虑到晶体管的电流特性的偏差,优选在预充电操作中电流输入到单元电路105a。然而,如图5所示,预充电操作可以在开关电路106a关断的情况下进行,这样电流就不输入到单元电路105a中。
虽然在设定操作中电流输入到图4中的一个单元电路,但本发明并不限于此。例如电流可以被输入到多个单元电路。这样主电流源101的电流大小就需要根据单元电路的数量而增加。
此外,虽然图1中信号线108分别通过开关电路106a到106e连接到电流源电路107a到107e中的每一个,但本发明并不限于此。可以采用任何结构只要其能够控制从信号线108输入到单元电路105a到105e中的每一个的电流的选择。虽然图1中电流通过信号线108输入到每个单元电路,但是例如,可替换的例如电压信号可以通过其它线路输入到单元电路。
虽然图3中在预充电操作中开关102关断而开关104接通,但本发明并不限于此。如果电流大小受控,可以通过接通开关102同时从主电流源101和辅助电流源103提供电流。
图1中,为描述容易,信号线108通过开关102连接到主电流源101并通过开关104连接到辅助电流源103,但本发明并不限于此。可以采用任何结构只要其在预充电操作和设定操作中能够控制提供到信号线108的电流大小。因此开关102和104可以设置在任何位置只要它们能够控制从主电流源101和辅助电流源103提供的电流大小。当每个主电流源101和辅助电流源103具有开关电流输出的功能时,可以省去开关102和104。此外,如果在预充电操作和设定操作之间主电流源101和辅助电流源103具有转换电流大小的功能,那么它们可以集成为一个电流源。
此外,虽然图1到4中电流从单元电路流到主电流源101或辅助电流源103,但本发明并不限于此。电流可以从主电流源101和辅助电流源103流到单元电路。然而,在这种情况下,必须考虑每个单元电路中的电流源电路。例如当采用图2所示的电流源电路的结构时,需要将电流源晶体管208的极性从P-沟道型变换为N-沟道型。这是因为晶体管的源极端和漏极端要对应于电流的流向转换。在电流从主电流源101或辅助电流源103流到单元电路,且电流源晶体管的极性为P-沟道型的情况下,必须采用图8所示的结构。图8中,电容器810连接在电流源晶体管808的栅极和源极之间。由于晶体管中流过的电流大小取决于晶体管的栅极和源极之间的电压,所以需要存储晶体管的栅极和源极之间的电压。因此,电容器810需要连接在电流源晶体管808的栅极和源极之间。此外,开关807连接在电流源晶体管808的栅极和漏极之间。这样,由于晶体管的栅极端和源极端取决于电流的流向,即电位电平,所以需要相应地决定电路的结构。
图2或图8中的负载201可以是任意元件或电路,如电阻、晶体管、EL元件、非EL元件的发光元件,包括晶体管、电容器和开关的电流源电路,或者连接到电路的线路。此外,它可以是信号线,或者连接到象素的信号线。顺便提及,象素可以包括任何显示元件如EL元件或用作FED(场发射显示器)的元件。它也可以是用于提供电流到象素的信号驱动器电路中的电流源电路。
图2中的电容器210或图8中的电容器810可以用电流源晶体管208的栅极电容器等替换,这种情况下,可以省去电容器210和810。
虽然电容器210连接到电流源晶体管208的栅极端和源极端,但本发明并不限于此。最理想的是电容器210连接在电流源晶体管208的栅极端和源极端之间。这是因为晶体管的工作取决于栅极和源极之间的电压,因此当在栅极端和源极端之间存储电压时,晶体管不易受其它影响(如因线路阻抗而引起的压降)。如果电容器210设置在电流源晶体管208的栅极端和其它线路之间,那么电流源晶体管208的栅极端电位将因线路中的压降而改变。
虽然图1中示出了五个电流源电路107a到107e,但每个电流源电路的电流容量,即所有单元电路中每个电流源晶体管的栅极宽度W和栅极长度L可以相同或不同。当单元电路中每个电流源的电流容量不同时,需要在预充电操作和设定操作中将得到稳态时信号线108的电位设置为几乎彼此相等。
图1等中所示的开关可以为任何开关如电开关或机械开关。它可以是任何元件或电路,只要其能够控制电流。它可以是晶体管,二极管或包括晶体管和二极管的逻辑电路。因此,在利用晶体管作开关的情况下,由于其只用作开关其极性(导电性)不特别限定。但是,当优选截止电流很小时,最好采用具有小截止电流的极性晶体管。例如,提供LDD区的晶体管具有小截止电流。此外,理想的是,当用作开关的晶体管源极端的电位接近于低电位侧(Vss,Vgnd,0V等)的电源电位时,采用n-沟道晶体管,当源极端的电位接近于高电位侧(Vdd等)的电源电位时,采用p-沟道晶体管。由于能够增加晶体管栅极和源极之间电压的绝对值,所以这有助于开关的有效操作。也能够通过利用n-沟道和p-沟道晶体管而采用CMOS开关。
本发明的电路结构不限于图1,2和8所示的那些。通过改变单元电路的数量,电流源的数量,开关的数量和结构,每个晶体管的极性,电流源晶体管的数量和结构,每个线路的电位,电流的流向等等可以提供各种电路结构。同样,通过将这些改变相组合,可以提供另外多种的电路结构。
图1的情况下,进行如图3或图5所示的预充电操作,接下来进行如图4所示的设定操作,但是,本发明并不限于此。
例如,如图3或图5所示的预充电操作可以进行多次。例如,在第一次预充电操作中,将五倍大小的电流输入到如图3所示的五个单元电路,在第二次预充电操作中,将三倍大小的电流输入到如图9所示的三个单元电路,最后,当设定操作时将一倍大小的电流输入到一个单元电路。
通过以这种方式执行多次预充电操作,能够有效地继续接下来的设定操作。
或者,可以结合其它的预充电操作。
例如,如图10所示,在图3所示的预充电操作之前可以进行另外的预充电操作。图10中,通过开关1002从接线端1001提供电压。在预充电操作和设定操作中将该电位设定为得到稳态时的电位。就是说,如图10所示,开关1002接通以在接线端1001处提供电位。通过施加电压,能够瞬时流过很大的电流,因此,能够快速进行预充电操作。接着,开关1002关断以进行如图3所示的预充电操作。注意采用电压源进行预充电操作的方法在同一申请人的日本专利申请No.2003-019240中公开。其中公开了各种预充电方法并且其内容可以与本申请相结合。
此外,例如其中每个单元电路(电流源电路)中流过的电流大小通过多个步骤改变的预充电操作,可以与如图3中的所示的预充电电路结合。图11和12中分别示出了其中电流源电路107中流过的电流能够变换为多个等级的结构。
在图11的情况下,第二电流源晶体管1111串联连接到电流源晶体管1108。此外,设置用于短路第二电流源晶体管1111的源极和漏极的开关1112。当开关1112关断时,由于电流源晶体管1108和第二电流源晶体管1111的栅极端相互连接,所以电流源晶体管1108和第二电流源晶体管1111中的每一个充当多栅极晶体管。该多栅极晶体管的栅极长度L比电流源晶体管1108的栅极长度大,所以多栅极晶体管中流过的电流很小。另一方面,当开关1112接通时,由于第二电流源晶体管1111的源极和漏极被短路所以它们之间没有电流流过。就是说,实际只有电流源晶体管1108工作。这样,电流源晶体管1108中流动的电流大小可以通过开关1112的接通/关断来改变。通过在图3或图4所示的操作之前和之后或者期间进行这样的操作,能够更快速地完成预充电操作。
图12中,第二电流源晶体管1211与电流源晶体管1208并联连接虽然它们在图11中彼此串联连接。这种情况下同样,当提供大电流到电流源电路107时,能够通过接通开关1212使电流流进第二电流源晶体管1211。
注意如图11和12所示的结构在同一申请人的日本专利申请No.2003-055018中公开,其中将电流源电路107中流过的电流变换为多个等级。该申请中公开了各种结构而且其内容可以与本申请相结合。
理想的是,预充电操作中使用的晶体管和设定操作中使用的晶体管尽可能具有相同的特性。例如在图1的情况下,理想的是电流源电路107a到107e中的电流源晶体管208、808、1108、1208以及第二电流源晶体管1111和1211都具有相同的电流特性。因此,在电流源晶体管和第二电流源晶体管的形成步骤中,期望给予每个晶体管尽可能具有相同的电流特性。例如,在用激光照射电流源晶体管和第二电流源晶体管的半导体激光器的情况下,优选激光的照射使电流源晶体管和第二电流源晶体管具有相同的电流特性。因此,在照射线性激光的情况下,优选沿平行于信号线108的方向照射激光并沿垂直于信号线108的方向扫描该激光。
注意在每个主电流源101和辅助电流源103由工作于饱和区的晶体管构成的情况下,每个栅电极最好彼此连接。此外,每个电流源的电流大小最好通过调节每个晶体管的栅极宽度W和栅极长度L之比来控制。
如上所述,通过改变开关的数量和结构,每个晶体管的极性,电流源晶体管的数量和结构,主电流源的类型、数量和结构,单元电路的数量和结构,单元电路中电流源电路的结构,预充电操作的次数,与其它预充电方法结合或不结合,电流的流向等等,本发明提供了各种电路结构。同样,通过结合这些改变,能够提供更多种类的电路结构。
参考图1-4所描述的实施方式1是这种情况,被输入信号的单元电路,即进行设定操作的单元电路是单元电路105a。本实施方式描述的操作是其中进行设定操作的单元是随时间连续变化的。
虽然这里所描述的操作采用的是图1所示的结构,但结构和操作并不限于这些。此外,能够将实施方式1与本实施方式结合。
为方便描述,假设在预充电操作中被输入信号的单元电路的数量为3,但是,在预充电操作中被输入信号的单元电路的数量并不限于这些。
首先,这里假设被输入信号的单元电路,即进行设定操作的单元电路是单元电路105a。在设定操作之前对单元电路105a进行预充电操作。这里为方便描述,通过使电流流到三个单元电路而进行预充电操作。所以,如图13所示,通过使电流流到单元电路105b,105c,105d而进行预充电操作。
将电流输入到单元电路105b,105c,105d作为在设定操作之前对单元电路105a的预充电操作的原因如下进行设定操作的第一单元电路是单元电路105a,第二单元电路是单元电路105b,第三单元电路是单元电路105c,第四单元电路是单元电路105d。这表示,当电流被输入到单元电路作为预充电操作之后进行设定操作时,单元电路的状态可以根据结构而改变。因此,如果预充电之后立即进行设定操作,那么可以提供电流作为预充电操作。
另一方面,在即使当输入电流到单元电路作为预充电操作之后进行设定操作时单元电路的状态也不改变的情况下,可以对该单元电路而不是单元电路105b,105c,105d进行预充电操作。
优选在设定操作和预充电操作之间信号线108的状态不改变。为此,用于设定操作的单元电路(电流源电路)和用于预充电操作的单元电路(电流源电路)期望具有相同的电流特性。所以,理想的是,利用设置在靠近单元电路105a(进行设定操作的单元电路)的单元电路来进行预充电操作。不用说预充电操作可以利用单元电路105a(进行设定操作的单元电路)来进行。
如上所述,在电流提供到单元电路作为预充电操作之后进行设定操作时单元电路的状态发生改变的情况下,优选在预充电操作之后选择用于执行设定操作的单元电路。在当进行设定操作时单元电路的状态不发生改变的情况下,优选选择靠近用于进行设定操作的单元电路布置的单元电路。但是,本发明并不限于此。
接下来,在图13所示的预充电操作之后对单元电路105a进行如图14所示的设定操作。
假设将被输入信号的单元电路,即现在进行设定操作的单元电路为单元电路105b,则在对单元电路105b进行设定操作之前进行预充电操作。预充电操作通过使电流流到单元电路105c,105d和105e而进行如图15所示。注意在设定操作刚刚进行完使电流流到单元电路105a作为预充电操作。
接下来,对单元电路105b进行如图16所示的设定操作。
如上所述,进行设定操作的单元随时间连续改变,因此预充电操作和设定操作如图17和18所示进行。
注意在对单元电路105c的设定操作之前进行预充电操作的情况下,单元电路105e之后没有单元电路。这种情况下,第一单元电路可以有电流流过作为对单元电路105d,105e和105a的预充电操作。此时的操作如图17和18所示。
相似地,随时间的推移在对单元电路105d进行设定操作的情况下,如图19所示通过使电流流到单元电路105e,105a和105b来进行预充电操作。之后,如图20所示对单元电路105d进行设定操作。如图21和22所示以类似的方式进行预充电操作和设定操作。
通过对电路进行如上所述的操作,能够顺序的对每个单元电路进行设定操作。通过在设定操作之前进行预充电操作,即使用很小的电流也能够快速进行设定操作。
在进行预充电操作的情况下,电流流到不是在预充电之后将进行设定操作的单元电路的单元电路,但是,本发明并不限于此。例如,在如图14所示对单元电路105a进行设定操作的情况下,电流可以在之前的预充电操作中流到单元电路105a,单元电路105a也执行如图21所示而不是图13所示的设定操作。
注意本实施方式所描述的对应于根据实施方式1所述的结构而进行的某一操作的具体说明,然而,本发明并不限于此。因此,可以进行除脱离本文范围的变化之外的各种变化。因此,实施方式1也可以应用于本实施方式。
实施方式3如实施方式1中的图2,8,11,12等所示,单元电路可以采用各种结构。本实施方式中,将描述单元电路的其它例子和操作。
图23示出了电路的一例。在图23所示的电路中,当开关207接通时晶体管2309的栅极和源极之间的电压变为零。因此,晶体管2309关断而电流不流到负载201。因此,在进行预充电操作时,开关106和207可以接通。注意在图23所示的电路中,当电流流到单元电路进行预充电操作时,进行设定操作时该单元电路的状态发生变化。因此,优选在预充电之后直至进行设定操作才提供电流到负载。这种情况下,开关106关断时可以接通开关207。当关断开关106时,电流不流到该单元电路。另一方面,由于开关207接通所以电流不流到负载201。在电流流到负载201的情况下,开关106和207可以关断。此外,在进行设定操作时,开关106和207可以接通。
图24示出了另一个例子。在图24所示的电路中,当开关2407接通时晶体管2409的栅极和源极之间的电压变为零。因此,晶体管2409关断且电流不从电源线2413流到负载201。因此,在进行预充电操作时,开关106和2407可以接通。然而,需要接通开关2411以使电流流到导线2412而不流到负载201。当导线2412的电位受控时电流几乎不流到负载201。但是,在电流仍然流动的情况下,可以关断开关209。在图24所示的电路中,当在电流提供到单元电路作预充电操作之后进行设定操作时单元电路的状态发生变化。因此,优选在预充电之后直到执行设定操作才使电流流到负载。因此,这种情况下,可以关断开关106并可以接通开关2407,另外可以关断开关209。通过关断开关106,电流不流到单元电路。同时,开关2407接通时电流不从电源线2413流到负载201。当电流流到负载201时,可以关断开关106,2407和2411并可以接通开关209。在执行设定操作时,可以接通开关106,2407和2411。
注意图23和24所示的结构被同一申请人的日本专利申请No.2002-274680所公开。其内容可以与本发明结合。
图25和26所示的是采用电流镜电路的例子。图25中,当电流流到单元电路作预充电操作时,在执行设定操作时该单元电路的状态发生变化。因此,需要使用开关2509来控制电流流到负载201。但是,图26中,即使当电流提供到单元电路作预充电操作时,当关断开关2601进行设定操作时该单元电路的状态也不发生变化。也就是说,电容器2510中存储的信号没有改变。因此,即使当进行预充电操作时电流也可以流到负载201。
图27示出了另一例子。图28示出了图27的电路的具体例子。图27和28所示的结构和操作方式被同一申请人的国际公布No.03/027997单行本(pamphlet)所公开。其内容可以与本发明结合。
本实施方式中已经描述了各种结构的单元电路,但是,本发明并不限于这些,可以进行除脱离本文范围的改变之外的各种改变。此外,本实施方式所描述的内容可以与实施方式1和2进行自由组合。
实施方式4本实施方式所解释的是显示器件、信号驱动电路等的结构和操作。本发明的电路可以应用于信号驱动电路和象素的部件。
如图29所示,显示器件包括象素阵列2901,栅极驱动器电路2902和信号驱动器电路2910。栅极驱动器电路2902连续输出选择信号到象素阵列2901。信号驱动器电路2910连续输出视频信号到象素阵列2901。象素阵列2901根据视频信号控制亮度以显示图像。从信号驱动器电路2910输出到象素阵列2901的视频信号在多数情况下是电流。就是说,设置在每个象素中的显示元件和用于控制该显示元件的元件的状态根据从信号驱动器电路2910输入的视频信号(电流)而改变。设置在象素中的显示元件的典型代表是EL元件或用于FED(场发射显示)的元件等等。
栅极信号驱动器电路2902和信号驱动器电路2910的数量可以不止一个。
信号驱动器电路2910能够被分成多个单元,例如,分成移位寄存器2903,第一闩锁电路(LAT1)2904,第二闩锁电路(LAT2)2905,以及数-模转换器电路2906。数-模转换器电路2906具有将电压转换成电流的功能,并且它也可以具有γ(gamma)补偿功能。就是说,数-模转换电路2906具有输出电流(视频信号)到象素的电路,即电流源电路,而且本发明可以用于该电路。
象素包括如EL元件的显示元件,并且该显示元件具有输出电流(视频信号)的电路,即电流源电路,而且本发明也可以用于该电流源电路。
下文将简要解释信号驱动器电路2910的操作。移位寄存器2903包括触发器电路(FF)等的多个线,并输入时钟信号(S-CLK),启动脉冲(SP)和反相时钟信号(S-CLKb)。根据这些信号的时序,顺序输出采样脉冲。
从移位寄存器2903输出的采样脉冲输入到第一闩锁电路(LAT1)2904。在第一闩锁电路(LAT1)2904中,视频信号从视频信号线2908输入,根据采样信号输入的时序将视频信号存储在每条线中。该视频信号在设置数-模转换器电路2906的情况下具有数字值。该阶段的视频信号一般是电压信号。
但是,在第一闩锁电路(LAT1)2904和第二闩锁电路(LAT2)2905能够存储模拟值的情况下可以省去数-模转换器电路2906。这种情况下,视频信号通常是电流。同样,当输出到象素阵列2901的数据具有二进制值,即数字值时,多数情况下可以省去数-模转换器电路2906。
当视频信号存储在第一闩锁电路(LAT1)2904的最后一条线中完成时,在水平回扫期间从闩锁控制线2909输入闩锁脉冲,并且存储在第一闩锁电路(LAT1)2904中的视频信号全部同时被传输到第二闩锁电路(LAT2)2905。接下来,存储在第二闩锁电路(LAT2)2905中的一行视频信号同时输入到数-模转换器电路2906。然后,从数-模转换电路2906输出的信号被输入到象素阵列2901。
在存储在第二闩锁电路(LAT2)2905中的视频信号被输入到数-模转换器电路2906并输入到象素阵列2901的同时,采样脉冲再次在移位寄存器2903中输出。就是说,两个操作同时进行。因此,使能行顺序驱动。以同样的方式重复该操作。
注意在数-模转换器电路2906的电流源电路进行设定操作和输出操作的情况下,需要电流源电路具有用于输出电流的电路。这种情况下,设置参考电流源电路2914。
同样,根据本发明,晶体管以及晶体管形成于其上的衬底的类型并不限于上面所描述的。因此,可以在玻璃衬底、塑料衬底、单晶体衬底或SOI衬底上形成如图29或30所示的整个电路。顺便提及,不是图29或30所示电路的所有部件都必须形成在同一衬底上,电路的一部分可以形成在不同的衬底上。例如,图29和30中,可以使用TFT将象素阵列2901和栅极驱动器电路2902一起形成在玻璃衬底上而信号驱动器电路2910(或其部分)形成在单晶体衬底上,然后采用COG(玻璃上芯片)接合将IC芯片连接到该玻璃衬底上。也可以采用TAB(卷带自动接合)、印刷衬底等代替COG焊接。
就是说,信号驱动器电路和其一部分可以不与象素阵列2901形成在同一衬底上,例如它可以与外部IC芯片一起形成。
信号驱动器电路等的结构并不限于图29所示的结构。
例如,在第一闩锁电路(LAT1)2904和第二闩锁电路(LAT2)2905能够存储模拟值的情况下,如图30所示,视频信号(模拟电流)可以从参考电流源电路2914输入到第一闩锁电路(LAT1)2904。某些情况下图30中可以不设置第二闩锁电路(LAT2)2905。这种情况下,通常在第一闩锁电路(LAT1)2904中设置更多数量的电流源电路。
例如,可以设置两个电流源电路,其中一个执行设定操作而另一个执行常规操作。这些功能也可以转换。因此设定操作和常规操作可以同时进行。
电流源电路的具体结构被国际公布No.03/038793到No.03/038797的单行本等公开。它们可应用于本发明或与本发明的结构结合。
例如,本发明可以用于图29中数-模转换器电路2906的电流源电路,数-模转换器电路2906包括多个单元电路,并且参考电流源电路2914包括主电流源101和辅助电流源103。
本发明也可以应用于图30中所示的第一闩锁电路(LAT1)2904的电流源电路。第一闩锁电路(LAT1)2904包括多个单元电路,并且参考电流源电路2914包括主电流源101和辅助电流源103。
同样,本发明可以应用于图29和30的象素阵列2901中的象素(该象素中的电流源)。象素阵列2901包括多个单元电路,并且信号驱动器电路2910包括主电流源101和辅助电流源103。
图31示出栅极驱动器电路2902的例子。单元电路中多个开关单元(图1中开关单元106a到106e)在预充电期间接通。在设定期间,这些开关单元之一接通。接着,如图31所示,接通多行象素的信号从移位寄存器3101输入。另一方面,接通一行象素的信号从移位寄存器3102输入。通过控制控制信号线3103,移位寄存器3101和3102的输出转换到各栅极线。
注意象素(单元电路)中其它开关的接通/关断也可以用同似的技术由栅极驱动器电路控制。
在将本发明应用于象素的情况下,根据象素(单元电路)的结构电流在预充电期间不提供到负载(如发光元件)。该情况下,发光元件不发光。因此,得到在一个帧周期内光发射一段时间的脉冲光发射,而不是在一个帧周期期间持续发光的持续光发射。在持续光发射的情况下,当显示的是活动图像时由于余象效应余象会保留在人眼中,而在脉冲光发射的情况下,即使显示的是活动图像也不可能保留余象。因此,当本发明用于象素时,能够抑制活动图像显示时的余象。
注意本实施方式利用了实施方式1到3,因此,实施方式1到3能够用于本实施方式。
实施方式5之前的实施方式所描述的是通过信号线提供电流的情况,但是,本发明并不限于此。不仅可以提供电流也可以提供电压。例如,本申请可以结合同一申请人的日本专利申请No.2003-123000所公开的技术。
如图37所示,根据日本专利申请No.2003-123000,不仅可以提供电流也可以提供电压。通过利用放大器电路3707组成反馈电路而提供电压。这里省略其操作的具体描述。
图38示出在图37所示的电流源电路中设置多个晶体管3808的情况。这里,运算放大器3707用作放大器电路。虽然这里为描述的简便而在电流源电路中设置了两个晶体管(或象素),但其数量并不限于此。
如图38所示,设置了单元电路105A和105B。同时,设置了用于提供电流的信号线108和用于提供电压的信号线3803。这些信号线通过开关电路(开关106A和3807A)等连接到每个单元电路中的电流源电路。通过控制每个单元电路中的开关电路(开关106A和3807A以及开关106B和3807B),进行预充电操作和设定操作。因此,能够快速写入信号。
虽然为描述的简便图38中只示出了电流源3701作电流源,但是在预充电操作和设定操作中电流的大小可以控制。电流源3701可以包括如图1所示的开关102和104,主电流源101,辅助电流源103等等。
实施方式6图13到21中,五个单元电路105a到105e连接到信号线108,预充电操作通过将电流提供到三个单元电路而进行。在实际的显示器件中,信号线连接到更多的象素,即更多的单元电路。
例如,在移动电话的显示装置中,采用具有QVGA的垂直长屏幕,因此信号线连接到320个象素(单元电路)。而在汽车导航系统的显示装置中,采用具有VGA的水平长屏幕,因此信号线连接到480个象素(单元电路)。此外,在个人计算机的显示装置中,采用具有XGA的水平长屏幕,因此信号线连接到768个象素(单元电路)。
下文描述的是当信号线连接到多个象素(单元电路)时,在预充电操作中将被提供电流的象素(单元电路)的数量。
理想的是在预充电操作中具有尽可能多的将被提供电流的象素(单元电路)。这是因为,由于在预充电操作中流过的电流变得越大,越能够快速得到稳态。但是,当电流值增加太多时,功率损耗也增加。此外,当在预充电操作中将被提供电流的象素(单元电路)的数量增加时,能使电流流到发光元件的象素的数量可能会减少。就是说,由于设定操作所存储的数据可能会被预充电操作毁坏,所以为防止错误的数据显示在某一时期电流不能被提供到发光元件。结果,占空比可能降低,导致发光元件的寿命缩短。因此,在预充电操作中将被提供电流的象素的数量可以根据这些折衷确定。
例如,当在预充电操作中电流提供到50个象素(单元电路),预充电操作中电流值可以是50倍大。在利用QVGA显示的移动电话中,信号线连接到320个象素(单元电路),因此,预充电操作中将被提供电流的象素(单元电路)的比例为50/320=16%。此时的占空比为(320-50)/320=84%,这在允许的范围内。当预充电操作中电流值可以达到50倍大小时,可以缩短达到稳态的时间。特别是,在移动电话中包括小的显示部分(象素阵列部分)和短的信号线的情况下,信号线的负载电容很小。因此,利用50倍或更大的电流值,能够充分地缩短达到稳态的时间。因此,优选预充电操作中将被提供电流的象素(单元电路)的数量为50或更多,预充电操作中将被提供电流的象素(单元电路)的比例为16%或更大,占空比为84%或更少。
但是,当占空比为5%或更少时,发光元件的寿命会缩短。因此,期望确定预充电操作中将被提供电流的象素(单元电路)的数量使得具有5%或更大的占空比,并且更优选是10%或更大。
例如,当预充电操作中电流提供给100个象素(单元电路)时,预充电操作中的电流值可以设置成100倍大小。在使用VGA显示的汽车导航系统的显示装置中,信号线连接到480个象素(单元电路),因此,预充电操作中将被提供电流的象素(单元电路)的比例为100/480=20%。此时的占空比为(480-100)/480=79%,这在允许的范围内。当预充电操作中的电流值可以设置成100倍大小时,能够缩短达到稳态的时间。尤其是,在汽车导航系统的显示装置中,由于显示部件(象素阵列部件)不是很大而且信号线不是很长,所以信号线的负载电容不是很大。因此,使用100倍或更大的电流值可以充分地缩短达到稳态地时间。因此,优选预充电操作中将被提供电流的象素(单元电路)的数量是100或更多,预充电操作中将被提供电流的象素(单元电路)的比例为20%或更高,而占空比为79%或更少。
但是,当占空比为5%或更少时,发光元件的寿命可能会缩短。因此,期望确定预充电操作中将被提供电流的象素(单元电路)的数量使得占空比为5%或更高,优选是10%或更高。
例如,当预充电操作中电流提供给200个象素(单元电路)时,预充电操作中的电流值可以设置成200倍大小。在具有XGA显示的个人计算机的显示装置中,信号线连接到768个象素(单元电路),因此,预充电操作中将被提供电流的象素(单元电路)的比例为200/768=26%。此时的占空比为(768-200)/768=73%,这在允许的范围内。当预充电操作中的电流值可以设置成200倍大小时,能够缩短达到稳态的时间。因此,优选预充电操作中将被提供电流的象素(单元电路)的数量是200或更多,优选预充电操作中提供电流的象素(单元电路)的比例为26%或更高,而占空比为73%或更少。
但是,当占空比为5%或更少时,发光元件的寿命可能会缩短。因此,期望确定预充电操作中将被提供电流的象素(单元电路)的数量使得占空比为5%或更高,优选是10%或更高。
注意,预充电操作中将被提供电流的象素的数量并不限于上面所述。例如,预充电操作中将被提供电流的象素的数量可以增加从而具有大约50%的占空比。
本发明可以应用于电子系统如摄影机、数码相机、护目镜显示器(头戴式的显示器)、导航系统、还音设备(汽车音响,音响元件等等)、膝上个人计算机、游戏设备、便携式信息终端(移动计算机,便携式电话,移动式游戏设备或数字书等等)、具有记录媒介的图象重现设备(尤其是具有显示器的设备,该显示器播放数字化多功能光盘(DVD)这样的记录媒介并显示图象)等等。这些电子设备的具体例子在图32A到32H中示出。
图32A示出了一发光设备,其包括壳体13001,支撑架13002,显示部分13003,扬声器部分13004,视频输入端13005等等。本发明可以应用于显示部分13003的电路中。进一步,根据本发明,完成图32A所示的发光设备。由于该发光设备是自发光型的,所以不需要背光,并且得到比液晶显示器更薄的显示部分。发光设备包括所有用于显示信息的显示设备,如个人计算机,TV广播接收器和广告显示板的显示设备。
图32B示出了一数码相机,其包括主体13101,显示部分13102,图象接收部分13103,操作键13104,外部连接端口13105,快门13106等等。本发明可以应用于显示部分13102的电路中。进一步,根据本发明,完成图32B所示的数码相机。
图32C示出了一膝上个人计算机,其包括主体13201,壳体13202,显示部件13203,键盘13204,外部连接端口13205,指针式鼠标13206等等。本发明可以应用于显示部分13203的电路中。进一步,根据本发明,完成图32C所示的膝上个人计算机。
图32D示出了移动式计算机,其包括主体13301,显示部件13302,开关13303,操作键13304,红外光接口13305等等。本发明可以应用于显示部分13302的电路中。进一步,根据本发明,完成图32D所示的移动式电脑。
图32E示出了一具有记录媒介的便携式图象重现设备(具体来说即DVD重现设备),其包括主体13401,壳体13402,显示部分A 13403,显示部分B13404,记录媒介(DVD等),读取部分13405,操作键13406,扬声器部分13407等等。显示部分A 13403主要显示图象数据,而显示部分B 13404主要显示文本数据。本发明可以应用于显示部分A 13403和B 13404中的电路。注意具有记录媒介的图象重现设备包括家用游戏设备等等。进一步,根据本发明,完成图32E所示的DVD重现设备。
图32F示出了一护目镜显示器(头戴式显示器),其包括主体13501,显示部分13502,臂部13503等等。本发明可以应用于显示部分13502的电路中。进一步,根据本发明,完成图32F所示的护目镜显示器。
图32G示出了一摄影机,其包括主体13601,显示部分13602,壳体13603,外部连接端口13604,遥控接收部分13605,图象接收部分13606,电池13607,音频输入部分13608,操作键13609等等。本发明可以应用于显示部分13602的电路中。进一步,根据本发明,完成图32G所示的摄影机。
图32H示出了一移动电话,其包括主体13701,壳体13702,显示部分13703,音频输入部分13704,音频输出部分13705,操作键13706,外部连接端口13707,天线13708等等。本发明可应用于显示部分13703中的电路。注意,当显示部分13703在黑色背景上显示白色字母时,移动电话耗电较少。进一步,根据本发明,完成图32H所示的移动电话。
如果以后可以利用从有机发光材料发射的光子的较高亮度,那么本发明的半导体器件可应用于前部或后部投影仪,其中包括输出图象数据的光被透镜或类似部件放大。
上述电子设备很可能用于显示通过电信通道如Internet或CATV(有线电视系统)所传输的数据,尤其是用于显示运动的图象数据。由于发光材料具有极高的灵敏度,所以发光设备适用于活动图象显示。
此外,由于发光设备在其发光部分消耗功率,所以期望发光部件所占的空间尽可能小地显示数据。因此,在主要显示文本数据的显示部分中使用发光设备的情况下,如移动电话、还音设备,期望驱动该设备以使发光部件在非发射背景上显示文本数据。
如上所述,本发明的应用范围很宽,本发明可应用于各种领域的电子设备。本实施方案中的电子设备可以采用具有如前面的实施方式1到6中所示的任何结构的半导体器件。
本申请以2003年5月9日在日本专利局提出的日本专利申请序列号no.2003-131824为基础,其内容在此用作参考。
虽然参考附图以实施方式的形式对本发明进行了全面的描述,但是应该理解,本领域技术人员可以很清楚地进行各种变换和修改。因此,除非这种变化和修改脱离下文所限定的本发明的范围,否则其应该包含在本发明中。
权利要求
1.一种半导体器件包括信号线;可通过开关与该信号线连接的电流源电路;分别包括开关和电流源电路的多个单元电路;以及供电装置,其在预充电期间将第一电流提供到选自该多个单元电路中的M个单元电路的电流源电路,并在设定期间将第二电流提供到选自该多个单元电路中的N个单元电路的电流源电路。
2.一种半导体器件,包括信号线;可通过开关与该信号线连接的电流源电路;分别包括开关和电流源电路的多个单元电路;以及供电装置,其在预充电期间将第一电流提供到选自该多个单元电路中的M个单元电路的电流源电路,并在设定期间将第二电流提供到选自该多个单元电路中的除该M个单元电路之外的N个单元电路的电流源电路。
3.根据权利要求1的半导体器件,其中N=1。
4.根据权利要求2的半导体器件,其中N=1。
5.根据权利要求1的半导体器件,其中单元电路包括连接到电流源电路的发光元件。
6.根据权利要求2的半导体器件,其中单元电路包括连接到电流源电路的发光元件。
7.根据权利要求1的半导体器件,其中第一电流与第二电流的大小比为M∶N。
8.根据权利要求2的半导体器件,其中第一电流与第二电流的大小比为M∶N。
9.一种半导体器件的驱动方法,该半导体器件包括信号线;可通过开关连接到信号线的电流源电路;以及多个单元电路,每个单元电路包括开关和电流源电路,该方法包括将第一电流提供到选自该多个单元电路中的M个单元电路的电流源电路;以及将第二电流提供到选自该多个单元电路中的除该M个单元电路之外的N个单元电路的电流源电路。
10.根据权利要求9的半导体器件的驱动方法,其中根据所选择的M个单元电路提供M倍大小的电流作为第一电流,并根据所选择的N个单元电路提供N倍大小的电流作为第二电流。
全文摘要
一种半导体器件,其中信号电流可以快速写入电流输入型的电流源电路中。由于进行预充电操作之后写入信号电流,因此能够快速进行写入。在预充电操作中,电流提供到多个电路。电流的大小根据被提供该电流的电路的数量设定,这意味着能够快速得到稳态。注意在预充电操作中被提供电流的电路可以不是将被输入信号的电路。
文档编号G09G3/32GK1705003SQ2004100639
公开日2005年12月7日 申请日期2004年5月26日 优先权日2004年5月26日
发明者木村肇 申请人:株式会社半导体能源研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1