FFS型液晶显示面板的配向方法与流程

文档序号:11458011阅读:4439来源:国知局
FFS型液晶显示面板的配向方法与流程

本发明涉及显示技术领域,尤其涉及一种ffs型液晶显示面板的配向方法。



背景技术:

随着显示技术的发展,液晶显示器(liquidcrystaldisplay,lcd)等平面显示装置因具有高画质、省电、机身薄及应用范围广等优点,而被广泛的应用于手机、电视、个人数字助理、数字相机、笔记本电脑、台式计算机等各种消费性电子产品,成为显示装置中的主流。

按照液晶的取向方式不同,目前主流市场上的液晶显示面板可以分为以下几种类型:垂直配向(verticalalignment,va)型、扭曲向列(twistednematic,tn)或超扭曲向列(supertwistednematic,stn)型、平面转换(in-planeswitching,ips)型、及边缘场开关(fringefieldswitching,ffs)型。

其中,ffs型液晶显示面板具有高穿透、广视角等优点,已被广泛应用于中小尺寸显示器,尤其以手机面板为主。所谓的ffs型液晶显示面板是利用边界电场使液晶盒(cell)内的液晶(lc)分子在平行于基板的平面内旋转,产生光程差,在上下偏光片的作用下,达到显示效果。因此,ffs型液晶显示面板中液晶分子要进行水平配向,现有配向技术主要包括:摩擦配向(rubbing)和光配向两种,其中,摩擦配向的具体方法为:通过一布毛滚轮在配向膜上刷磨出按一定方向排列的沟槽,使得液晶分子沿配向膜上的沟槽方向进行配向,该方法工艺简单,且配向后表现出良好的光电效果和热稳定性,但配向后的液晶分子预倾角较大,有一定程度的漏光,影响对比度。而光配向的方法为:在液晶材料中添加感光小分子化合物(reactivemonomer,rm),面板组成后,对面板施加电场,使液晶随着电场驱动方向转动成一定角度,再利用紫外(uv)光使液晶材料中rm在配向膜表面发生聚合反应,产生聚合物凸起(polymerbump),达到配向效果,光配向工艺能有效降低液晶分子的预倾角,提升对比度,但其能耗高和且易产生由于配向膜表面锚定力较差导致的残像等不良,其应用也受到很大限制。



技术实现要素:

本发明的目的在于提供一种ffs型液晶显示面板的配向方法,能够在保持配向膜强锚定力的前提下,降低液晶分子的预倾角,提升ffs型液晶显示面板的显示品质。

为实现上述目的,本发明提供了一种ffs型液晶显示面板的配向方法,包括如下步骤:

步骤s1、提供摩擦配向材料、光起始剂、以及感光小分子化合物,将所述摩擦配向材料、光起始剂、以及感光小分子化合物混合得到配向膜材料;

步骤s2、提供阵列基板和彩膜基板,在所述彩膜基板和阵列基板上分别涂布并固化配向膜材料,形成两配向膜;

所述阵列基板包括:衬底基板、设于衬底基板上的公共电极、设于公共电极上的绝缘层、设于所述绝缘层上的像素电极;所述公共电极为连续覆盖衬底基板的平面电极,所述像素电极为具有狭缝的图案化电极;

步骤s3、对所述配向膜进行摩擦配向处理;

步骤s4、将所述阵列基板和彩膜基板对位成盒,在所述阵列基板与彩膜基板之间灌入液晶,并在彩膜基板远离所述阵列基板的一侧形成触控电极,所述触控电极为连续覆盖彩膜基板的平面电极;

步骤s5、在所述触控电极与公共电极之间施加电压,使得阵列基板与彩膜基板之间的液晶旋转到与阵列基板平行的位置,同时对所述配向膜进行uv光照,使得配向中的感光小分子化合物聚合;

步骤s6、感光小分子化合物聚合完全后,撤去在所述触控电极与公共电极之间的电压,并停止对配向膜进行uv光照,所述配向膜的表面形成多个聚合物凸起,所述多个聚合物凸起使得所述液晶保持与阵列基板平行。

所述配向膜材料中光起始剂的重量百分比为0.1wt%~1wt%。

所述配向膜材料中感光小分子化合物的重量百分比为0.1wt%~2wt%。

所述感光小分子化合物为聚芳酯类小分子。

所述感光小分子化合物的化学式为:

所述摩擦配向材料为聚酰亚胺。

所述步骤s2中通过烘烤制程固化所述配向膜材料,所述烘烤制程的温度为120℃~200℃,时间为15~60分钟。

所述步骤s5中施加在触控电极与公共电极之间的电压大小为5v~15v。

所述步骤s5中对所述配向膜进行uv光照的uv光的波长为365nm,能量为30mj~100mj。

所述触控电极的材料为ito。

本发明的有益效果:本发明提供一种ffs型液晶显示面板的配向方法,该方法在摩擦配向材料中加入感光小分子化合物,在配向膜形成后先进行摩擦配向,随后使得ffs型液晶显示面板成盒,之后再施加电压使得液晶分子旋转到与基板平行的位置,并通过uv光照使得感光小分子化合物聚合,形成聚合物凸起,使得液晶分子保持与基板平行,配向后的液晶分子的预倾角为零,能够在保持配向膜强锚定力的前提下,降低液晶分子的预倾角,提升ffs型液晶显示面板的显示品质。

附图说明

为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。

附图中,

图1和图2为本发明的ffs型液晶显示面板的配向方法的步骤s2和步骤s3的示意图;

图3和图4为本发明的ffs型液晶显示面板的配向方法的步骤s4的示意图;

图5为本发明的ffs型液晶显示面板的配向方法的步骤s5的示意图;

图6为本发明的ffs型液晶显示面板的配向方法的步骤s6的示意图;

图7为本发明的ffs型液晶显示面板的配向方法的流程图。

具体实施方式

为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。

请参阅图7,本发明提供一种ffs型液晶显示面板的配向方法,包括如下步骤:

步骤s1、提供摩擦配向材料、光起始剂、以及感光小分子化合物,将所述摩擦配向材料、光起始剂、以及感光小分子化合物混合得到配向膜材料。

具体地,所述配向膜材料中光起始剂的重量百分比为0.1wt%~1wt%,所述配向膜材料中感光小分子化合物的重量百分比为0.1wt%~2wt%。

具体地,所述摩擦配向材料为普通的摩擦配向中采用的配向膜的材料,优选地,所述摩擦配向材料为聚酰亚胺(polyimide,pi),所述感光小分子化合物为聚芳酯类小分子,优选地,所述感光小分子化合物的化学式如下:

步骤s2、如图1和图2所示,提供阵列基板1和彩膜基板2,在所述彩膜基板2和阵列基板1上分别涂布并固化配向膜材料,形成两配向膜3。

具体地,所述阵列基板1包括:衬底基板11、设于衬底基板11上的公共电极12、设于公共电极12上的绝缘层13、设于所述绝缘层13上的像素电极14。所述彩膜基板3的结构不限,任意适用于ffs型液晶显示面板的彩膜基板均可以使用,此处不再详细叙述。

更具体地,所述公共电极12为连续覆盖衬底基板11的平面电极,所述像素电极14为具有狭缝的图案化电极,从而通过公共电极12和像素电极14产生边缘场电场,以驱动液晶分子在平行于基板的平面内旋转。

详细地,所述步骤s2中通过烘烤制程固化所述配向膜材料,所述烘烤制程的温度为120℃~200℃,时间为15~60分钟。所述配向膜3中分布有若干感光小分子化合物31。

步骤s3、如图1和图2所示,对所述配向膜3进行摩擦配向处理。

具体地,所述步骤s3具体为通过一布毛滚轮32在配向膜3上刷磨出按一定方向排列的沟槽。

步骤s4、请参阅图3和图4,将所述阵列基板1和彩膜基板2对位成盒,在所述阵列基板1与彩膜基板2之间灌入液晶分子4,并在彩膜基板2远离所述阵列基板1的一侧形成触控电极5,所述触控电极5为连续覆盖彩膜基板2的平面电极。

具体地,所述步骤s4中的液晶分子4在摩擦配向处理后的配向膜3的控制下,形成一角度较大的初始预倾角。所述触控电极5的材料为氧化铟锡(indiumtinoxide,ito)。

步骤s5、请参阅图5,在所述触控电极5与公共电极12之间施加电压,使得阵列基板1与彩膜基板2之间的液晶分子4旋转到与阵列基板1平行的位置,同时对所述配向膜3进行uv光照,使得配向膜3中的感光小分子化合物31聚合。

具体地,所述步骤s5中液晶分子4旋转到与阵列基板1平行的位置指的是所述液晶分子4的液晶轴与阵列基板1平行,所述液晶分子4在触控电极5与公共电极12之间的电压控制下从初始预倾角旋转到角度值为零的预倾角。

具体地,所述步骤s5中施加在触控电极5与公共电极12之间的电压大小为5v~15v。所述步骤s5中对所述配向膜3进行uv光照的uv光的波长为365nm,能量为30mj~100mj。

具体地,在本发明的优选实施例中,所述感光小分子化合物聚合反应的过程如下:

步骤s6、请参阅图6,感光小分子化合物31聚合完全后,撤去在所述触控电极5与公共电极12之间的电压,并停止对配向膜3进行uv光照,所述配向膜3的表面形成多个聚合物凸起6,所述多个聚合物凸起6使得所述液晶分子4保持与阵列基板1平行。

具体地,本发明的优选实施例中所选用的感光小分子化合物与配向膜3有良好接着力,且其主体结构二元环加侧链烷基与液晶分子4类似,两者之间有较强相互作用力,在施加电场和uv光照射的情况下,感光小分子化合物反应且与相接触的表层液晶分子4相互作用,达到使得液晶分子4固定的效果使其预倾角几乎为零,相比于单一的摩擦配向,本发明的配向方法能够产生更小的预倾角,减小漏光,提升画面的对比度,相比于单一的光配向,本发明能够产生更大锚定力,避免液晶显示面板出现残像等不良。

综上所述,本发明提供一种ffs型液晶显示面板的配向方法,该方法在摩擦配向材料中加入感光小分子化合物,在配向膜形成后先进行摩擦配向,随后使得ffs型液晶显示面板成盒,之后再施加电压使得液晶分子旋转到与基板平行的位置,并通过uv光照使得感光小分子化合物聚合,形成聚合物凸起,使得液晶分子保持与基板平行,配向后的液晶分子的预倾角为零,能够在保持配向膜强锚定力的前提下,降低液晶分子的预倾角,提升ffs型液晶显示面板的显示品质。

以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1