一种量子点液晶面板及其制备方法与流程

文档序号:17075883发布日期:2019-03-08 23:44阅读:224来源:国知局
一种量子点液晶面板及其制备方法与流程

本申请涉及液晶面板技术领域,尤其涉及一种量子点液晶面板及其制备方法。



背景技术:

量子点(qd)材料拥有较宽的吸收峰,和较窄的发射峰,使其在颜色显示上可以表现更高的纯度,从而提升lcd色域,增加lcd面板的竞争力。现有qd-lcd沿用lcd的工艺路线,液晶配向是其中的的一个关键步骤,传统lcd配向液(pi)需要在220~240℃才能固化,然而由于qd对热的敏感性极高,高温破坏qd材料的稳定性,使其发光表现降低。同时由于采用pi配向,pi液需要涂布在incellpol上(wgp),存在wgp被破坏以及pi液与wgp的不沾的风险。

因此,现有技术存在缺陷,急需改进。



技术实现要素:

本申请提供一种量子点液晶面板及其制备方法,能够解决当前qd-lcd采用pi进行配向时,无法实现低温配向的现状,同时解决pi与纳米压印偏光片表面存在的pi不沾隐患。

为解决上述问题,本申请提供的技术方案如下:

本申请提供一种量子点液晶面板的制备方法,所述方法包括以下步骤:

步骤s10,提供一阵列基板和一彩膜基板,所述彩膜基板包括阵列分布的红光量子点色阻块、绿光量子点色阻块以及蓝光量子点色阻块;

步骤s20,将所述阵列基板与所述彩膜基板对向贴合,在所述阵列基板与所述彩膜基板之间注入自配向液晶材料,所述自配向液晶材料包括液晶分子与自配向材料;

步骤s30,对所述自配向液晶材料进行加热处理,温度保持在第一阈值到第二阈值之间,使得所述自配向材料移动至所述阵列基板以及所述彩膜基板表面,以分别形成第一自配向膜与第二自配向膜。

在本申请的制备方法中,所述第一阈值为所述液晶分子到达液晶清亮点所对应的温度值,所述第二阈值为150℃。

在本申请的制备方法中,所述方法还包括以下步骤:

步骤s40,采用紫外光照射以对所述液晶分子进行配向。

为解决上述问题,本申请还提供一种量子点液晶面板,包括:

彩膜基板,所述彩膜基板包括衬底基板及间隔设置于所述衬底基板上的红光量子点色阻块、绿光量子点色阻块以及蓝光量子点色阻块;

阵列基板,所述阵列基板与所述彩膜基板相对设置;

蓝光背光源,所述蓝光背光源设于所述阵列基板远离所述彩膜基板的一侧;以及

液晶层,设置于所述彩膜基板与所述阵列基板之间;

第一自配向膜,形成于所述阵列基板面向所述彩膜基板一侧的表面;

第二自配向膜,形成于所述彩膜基板面向所述阵列基板一侧的表面;

其中,所述液晶层与所述第一自配向膜以及所述第二自配向膜均由自配向液晶材料形成。

在本申请的量子点液晶面板中,所述自配向液晶材料包括液晶分子与自配向材料。

在本申请的量子点液晶面板中,所述红光量子点色阻块以及所述绿光量子点色阻块与所述衬底基板之间设置有蓝光吸收层。

在本申请的量子点液晶面板中,所述红光量子点色阻块、所述绿光量子点色阻块以及所述蓝光量子点色阻块远离所述衬底基板的一侧设置有水氧阻隔层,所述水氧阻隔层为透光性材料。

在本申请的量子点液晶面板中,所述衬底基板上还间隔设置有黑色遮光层,所述黑色遮光层位于所述红光量子点色阻块、所述绿光量子点色阻块以及所述蓝光量子点色阻块之间的间隔处。

在本申请的量子点液晶面板中,所述红光量子点色阻块、所述绿光量子点色阻块以及所述蓝光量子点色阻块之间以反射层进行间隔。

在本申请的量子点液晶面板中,所述阵列基板与所述彩膜基板之间间隔的设置有支撑柱,所述支撑柱对应所述反射层的位置设置。

本申请的有益效果为:相较于现有的液晶面板,本申请提供的量子点液晶面板及其制备方法,通过采用自配向液晶材料,减少一道pi制程,同时自配向液晶材料可在低温条件下实现液晶配向,配向温度只需要高于液晶的清亮点即可,确保qd性能不被破坏。同时如果用pi配向,pi需要涂布在纳米压印偏光片上,有机与无机材料结合必然存在pi表面不沾的问题,会存在配向不良的风险;然而应用本申请的自配向液晶材料,pi不沾的问题也可以得到解决。

附图说明

为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本申请实施例提供的量子点液晶面板的制备方法流程图;

图2为本申请实施例提供的量子点液晶面板的结构示意图。

具体实施方式

以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以相同标号表示。

本申请针对现有的液晶面板,在采用配向液进行配向时,无法实现低温配向的现状,高温会使qd性能破坏,同时存在配向液与纳米压印偏光片表面不沾的技术问题,本实施例能够解决该缺陷。

如图1所示,为本申请实施例提供的量子点液晶面板的制备方法流程图。所述方法包括以下步骤:

步骤s10,提供一阵列基板和一彩膜基板,所述彩膜基板包括阵列分布的红光量子点色阻块、绿光量子点色阻块以及蓝光量子点色阻块。

其中,所述阵列基板包括薄膜晶体管层、公共电极层等常规膜层;所述彩膜基板还包括位于所述红光量子点色阻块、所述绿光量子点色阻块以及所述蓝光量子点色阻块之间的黑色矩阵。所述红光量子点色阻块、所述绿光量子点色阻块、所述蓝光量子点色阻块的材料为量子点材料,并且分别是受蓝光背光源的激发后而显示红色、绿色、蓝色。

步骤s20,将所述阵列基板与所述彩膜基板对向贴合,在所述阵列基板与所述彩膜基板之间注入自配向液晶材料,所述自配向液晶材料包括液晶分子与自配向材料。

其中,提供一种自配向液晶材料,所述自配向液晶材料包括按一定比例配制的液晶分子与自配向材料。将所述自配向液晶材料用odf(onedropfilling,液晶滴下)或者喷墨打印(inkjet)等方法滴于所述阵列基板上,与所述彩膜基板对盒后在外围涂布密封胶,固化框胶后获得液晶盒。

在一种实施例中,采用真空贴合工艺(vas)将所述阵列基板与所述彩膜基板对位贴合。

步骤s30,对所述自配向液晶材料进行加热处理,温度保持在第一阈值到第二阈值之间,使得所述自配向材料移动至所述阵列基板以及所述彩膜基板表面,以分别形成第一自配向膜与第二自配向膜。

其中,对所述自配向液晶材料进行加热处理,加热温度需要保持在第一阈值到第二阈值之间。由于量子点材料在高温环境下(如超过150℃),其性能容易被破坏,从而影响其发光效率。因此,本申请中的加热温度需要控制在一定范围内。优选的,所述第一阈值为所述液晶分子到达液晶清亮点所对应的温度值,所述第二阈值为150℃。

所述自配向液晶材料受热后,其中的所述自配向材料会向所述阵列基板以及所述彩膜基板表面移动,分别在所述阵列基板以及所述彩膜基板表面形成第一自配向膜与第二自配向膜,同时形成位于所述第一自配向膜与所述第二自配向膜之间的液晶层。

具体来讲,所述第一自配向膜和所述第二自配向膜的材料均为所述自配向液晶材料中的所述自配向材料,所述液晶层的材料为所述自配向液晶材料中的所述液晶分子。

由于加热温度在所述第一阈值到所述第二阈值之间,因此,即可以使所述自配向液晶材料发生反应形成所述液晶层和所述第一自配向膜与第二自配向膜,同时又保证不会破坏所述量子点材料的性能。

步骤s40,采用紫外光照射以对所述液晶分子进行配向。

其中,所述阵列基板上设有第一电极,所述彩膜基板上设有第二电极。所述第一电极与所述第二电极分别为公共电极与像素电极。在所述液晶盒的两侧施加电压的同时,对所述液晶盒进行紫外线照射。具体的,通过在所述第一电极与所述第二电极之间形成电压,从而在所述液晶盒两侧施加电压。

具体的,由于所述自配向液晶材料中液晶分子与自配向材料均匀混合,因此由所述自配向材料形成的第一自配向膜与第二自配向膜的膜层厚度较为均匀。

撤去所述液晶盒两侧的电压,在所述第一自配向膜与所述第二自配向膜的作用下,所述液晶层中的液晶分子产生预倾角。

另外,所述量子点液晶面板的制作方法还包括涂布框胶以及固化框胶的步骤;所述涂布框胶的步骤发生于将所述阵列基板与彩膜基板对位贴合之前,所述涂布框胶的步骤为:在所述彩膜基板或者阵列基板上对应所述自配向液晶材料的外围涂布框胶;所述固化框胶的步骤发生于在液晶盒两侧施加电压之前,所述固化框胶的步骤包括uv固化与热固化中的至少一种。

如图2所示,本申请还提供一种采用上述方法制备的量子点液晶面板,包括彩膜基板10和阵列基板20以及位于所述阵列基板一侧的蓝光背光源30,所述彩膜基板10和所述阵列基板20之间设置有液晶层40。所述阵列基板20与所述蓝光背光源30之间设置有偏光片50。

所述彩膜基板10包括衬底基板101及间隔设置于所述衬底基板101上的红光量子点色阻块102、绿光量子点色阻块103以及蓝光量子点色阻块104。所述衬底基板101上还间隔设置有黑色遮光层105,所述黑色遮光层105位于所述红光量子点色阻块102、所述绿光量子点色阻块103以及所述蓝光量子点色阻块104之间的间隔处。对应所述黑色遮光层105的位置设置有反射层106,所述红光量子点色阻块102、所述绿光量子点色阻块103以及所述蓝光量子点色阻块104之间以所述反射层106进行间隔。在所述红光量子点色阻块102、所述绿光量子点色阻块103以及所述蓝光量子点色阻块104远离所述衬底基板101的一侧设置有水氧阻隔层108,所述水氧阻隔层108为透光性材料,可以阻隔水氧入侵。所述水氧阻隔层108上设置有oc光阻层109,所述oc光阻层109上设置有第二电极层110。

所述阵列基板20与所述彩膜基板10相对设置;所述阵列基板20包括薄膜晶体管层201、第一电极层(未标示)等。

液晶层40设置于所述彩膜基板10与所述阵列基板20之间;第一自配向膜202形成于所述阵列基板20面向所述彩膜基板10一侧的表面;第二自配向膜111形成于所述彩膜基板10面向所述阵列基板20一侧的表面;其中,所述液晶层40与所述第一自配向膜202以及所述第二自配向膜111均由上述自配向液晶材料形成。其中,所述自配向液晶材料包括液晶分子与自配向材料。

所述阵列基板20与所述彩膜基板10之间间隔的设置有支撑柱60,所述支撑柱60对应所述反射层106的位置设置。所述支撑柱60具有不同的高度,以便所述自配向材料均匀的附着于所述阵列基板20与所述彩膜基板10表面。

所述蓝光背光源30设于所述阵列基板20远离所述彩膜基板10的一侧;所述蓝光背光源30用于发出蓝光。其中,所述红光量子点色阻块102以及所述绿光量子点色阻块103与所述衬底基板101之间设置有蓝光吸收层107。本申请在所述红光量子点色阻块102和所述绿光量子点色阻块103远离所述蓝光背光源30的一侧设置所述蓝光吸收层107,通过所述蓝光吸收层107来屏蔽穿透所述红光量子点色阻块102和所述绿光量子点色阻块103的蓝光,从而提升色域。

综上所述,本申请通过采用自配向液晶材料,减少一道pi制程,同时自配向液晶材料可在低温条件下实现液晶配向,配向温度只需要高于液晶的清亮点即可,确保量子点材料性能不被破坏。同时如果用配向液配向,配向液需要涂布在纳米压印偏光片上,有机与无机材料结合必然存在配向液表面不沾的问题,会存在配向不良的风险;然而应用本申请的自配向液晶材料,使得配向液不沾的问题也可以得到解决。

综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1