一种薄膜晶体管液晶显示器的制造方法

文档序号:10723585阅读:245来源:国知局
一种薄膜晶体管液晶显示器的制造方法
【专利摘要】本发明提供了一种薄膜晶体管液晶显示器,包括:上基板、下基板、像素电极和共通电极,上基板为array基板由CF彩色滤光片基板上设置一系列TFT线路的基板,下基板为array基板由薄膜晶体管TFT组成,上基板和下基板的共通电极和像素电极进行间隔配置,上基板的共通电极和像素电极分别与下基板的像素电极和共通电极相重合,使得上基板的数据线和扫描线的位置与下基板的数据线和扫描线的位置重叠,应用本发明使得原来一条扫描线和数据线对应的面积由原来只能驱动一个像素,变为上下基板都可以驱动一个像素,从而在同等分辨率的情况下,扫描线和数据线所占的面积减小,进而提高了开口率。
【专利说明】
一种薄膜晶体管液晶显示器
技术领域
[0001]本发明涉及液晶显示器,具体涉及一种薄膜晶体管液晶显示器(TFT-1XD)。
【背景技术】
[0002]1888年,奥地利植物学家芮尼茨尔(F = Reinitzer)在加热胆留醇苯酸酯的过程中发现,在把其加热至145.5°C会熔为白而浑浊的粘性液体,继续加热至178.5°C它又变为各向同性的清亮液体,并且这种现象是可逆的。芮尼茨尔把这种在固态到液态之间还存在一个中介相的现象告诉了德国卡尔斯鲁厄大学的奥托-莱曼(OttoLehmann)教授。莱曼教授使用他所设计,当时最新式的附有加热装置的偏光显微镜,对该脂类化合物进行了细致的研究。他发现胆留醇苯酸酯在内的许多有机化合物都有一个中介相,尽管在中介相其外观为液体并且具有流动性,但却显示出了晶体所特有的双折射现象。由于其具有液态和固态物质的双重性质,于是莱曼教授命名其为Fliessende Krystalle,也就是液晶(LiquideCrystal)。自然界中的物质受温度、压强的影响,大部分在常温常压下处于固态、液态和气态三种状态。固态物质具有固定的形状,构成它的原子或分子间的距离和自身的大小相当,并且规则排列形成晶体点阵。可以看作每个粒子固定在某位置附近做振动,因此其排列位置具有长程有序,固态物质的物理性质各向异性。液态物质无固定形状,其构成粒子间距离比自身稍大,粒子可以在整个自身空间中自由移动,“类晶区”的存在使其具有短程有序,液态物质的物理性质各向同性。气态物质粒子间距离比自身粒子尺寸大许多,其粒子在整个容器中做杂乱无章的运动,物理性质各向同性。液晶是处于固态与液态的一种中介相,它兼有两种物向的特性,是由其内部的微观结构所决定的。液晶的组成分子几何形状各向异性,如有些表现为长杆状、扁盘状、碗状。因此,液晶的物理性质不仅受组成单元的位置影响,还要受到各组成单元的指向的影响。对形成液晶的晶体加热时,其组成单元首先失去位置有序性,但仍然保持指向有序性,因而液晶仍然是各向异性的液体。如果继续对液晶加热,那么液晶分子会失去指向有序性,从而形成各向同性的液体。这就是芮尼茨尔在在加热胆甾醇苯酸酯时会出现类似有两个熔点的现象的原因。液晶研究在发现之后沉寂了很长时间,在此期间只有少数科学家在实验室中做一些探究性的实验,直到上世纪三十年代液晶相应的物理性质才有一定框架性的积累。首先是研究了液晶相随电场的变化,随后在1963年发现了液晶因电场的作用而产生液晶的电光效应。1968年发现了动态散射效应,这标志着液晶显示的诞生。次年,温室液晶MBBA由于具有负介电各向异性的特点,立即被应用到了动态散射型液晶显示中。在上世纪六十年代出现的MOS-TFT和CMOS集成电路、透明导电薄膜、纽扣电池等,使得液晶显示可以装配于袖珍型的电子产品和电子设备。因此,在上世纪七十随着信息社会的发展,人们对显示设备的需求得到了增长。为了满足这种需求,最近几种平板显示设备,比方说:液晶显示器件(IXD),等离子体显示器件(PDP),0LED显示器件都得到了迅猛的发展。在平板显示器件当中,液晶显示器件由于其重量低、体积小、能耗低的优点,已经基本取代了冷阴极显示设备。
[0003]1969年发现了胆甾相液晶的相变效应;1974年发现了宾主效应;同年,Gray发现的氰基联苯室温液晶(5CB等)对液晶显示的发展十分重要。5CB有相当宽的液晶相温度,性能稳定,有较大的正介电各向异性和双折射率,它刚好可以应用于1972年Schadt和Helf rich发现的扭曲向列相液晶显示,从而使扭曲向列相液晶得到迅速而广泛的应用。1980年铁电液晶显示出现;1984年出现了超扭曲液晶显示;1989年出现了反铁电液晶显示。在驱动方面,1971年美国的Lechner提出应用有源矩阵驱动液晶显示。据此,Hughes公司于1973年制造了第一台液晶电视。从1990年以后,非晶娃TFT液晶显不大量进入实用,液晶显不进入尚速发展时期。1996年开始,液晶笔记本电脑高速发展,液晶移动电话迅速普及;2000年开始液晶显示器全面取代台式显示器。液晶显示在20世纪90年代以前,还不是一个重要工业领域。到1996年液晶显示的产值还只有20亿?30亿美元,到2003年则超过了500亿美元。液晶显示在多路寻址能力、亮度、对比度、响应时间、视角、彩色坐标、色度灰度稳定性等方面,都得到了极大的提高。终于在2004年第三季度,液晶显示在电脑终端显示方面首次超过了传统显像管显示。在液晶器件理论方面,液晶的连续弹性体理论在经过世界多个研究小组近20年的努力,由英国的Frank于1958年总结出来。在俄罗斯Frederiks应用于三类重要的液晶形变后,很好的解释了液晶取向畸变与外电磁场的关系;Ericksen、Les Ii和Parodi提出了液晶动力学和粘滞理论,它成功的解释了液晶取向和流动的关系;另外,Alt和Pleshko在1974年提出了液晶矩阵的最佳驱动方式。这些都为液晶显示的设计和更高层次的发展做好了准备。根据文献,液晶最早发现于欧洲,早期的理论发展也是在欧洲。液晶显示器却诞生于欧洲,现在应用最为广泛的薄膜晶体管液晶显示器(TFT-LCD),也是首先出现在美国。尽管如此,在液晶显示器的研发于生产方面,美国现在却落后于日韩等国。亚洲是液晶显示发展的重镇,近年来处于世界领先地位。主要国家包括日本、韩国、中国和中国台湾。近30年来,日本在液晶显示上占据绝对的优势。在10年之前,它囊括了世界液晶显示产值的90%。而且现在日本在液晶显示工业整体环境方面仍居首位。韩国则从10年前开始奋起直追,通过政府的大力投资和战略规划,韩国现在在产品技术指标、产量产值、和设备先进性上跻身世界第一。我国的液晶显示工业在上世纪70年代末开始建立,主要集中于南方。90年代我们国家已经具备了超扭曲液晶显示的生产能力。几年前,TFT液晶显示的生产也在国内展开,并且我们国家已经投资开始高档次液晶显示方面的研究。近几年,日本韩国和中国台湾,以及一些欧美的液晶显示公司纷纷在中国成立合资或独资的公司或者研发中心,这进一步促进了我们液晶显示工业的生产能力的提高、技术更新和市场规模的扩大。液晶显示市场研究公司iSuppli = Stanford resouses所谈到的,过去几年中国半导体行业的快速发展过程将在平板显示行业再度显现,中国将在世界平板显示行业中扮演重要角色。世界普遍认为,中国将是下一代液晶显示的生产大国。
[0004]但是TFT_LCD(thinfilm transistor-liquid crystal display薄膜晶体管液晶显示器)本身也开始受到新的显示技术的挑战,比如0LED。这主要是TFT-LCD本身还有一些先天的缺点,随着技术的发展,这些缺点越来越受到挑战,越来越不能被消费者,及技术发展趋势所接受。
[0005]LCD相关性能指标包括分辨率、灰度和色数、亮度、对比度、相应速度和可视角度,如图4。将LCD分成M行N列个单元;每个单元包含三个亚像素为RGB,RGB对应一个像素;IXD分辨率为M列与N行的乘积,如图3;亮度的定义是指显示器在白色画面之下明亮的程度,单位200cd/m2。对比度定义就是屏幕的纯白色亮度和纯黑色亮度的比值。响应速度是指像素由亮转暗并由暗转亮所需的时间,单位是毫秒。反应速度分为两个部份:Rising(上升)和Falling(下降);而表示时以两者之和为准。可视角度就是指刚好可以看到对比度为10以上的画面的时候视线与垂直屏幕的平面的夹角。单元开口率=透光面积(A)/像素面积(B)。现在人们已经发现了至少5万多种液晶物质,其中大部分都是有机化合物,很少数为无机化合物。我们从其成分和形成液晶相的物理条件看,它们可以分为热致液晶和溶致液晶两大类。热致液晶是把某些化合物或混合物加热溶解,由于温度的变化破坏了晶格结构而形成的液晶。溶致液晶是由一种或几种组分溶解于水或其他溶剂中形成的,而且必须达到一定的浓度后才会出现液晶相。目前我们用于液晶显示的材料差不多都是热致液晶材料,而对溶致液晶材料性质的研究主要是在生物化学、生物物理、仿生学等方面。构成热致液晶的分子,它们的形状大体上呈现香烟一样的棒状或盘子一样的扁平状。棒状分子构成的热致液晶的液晶相分为三大类:近晶相(Smectic liquid crystals )、向列相(Nematic liquidcrystals)、胆留相(Chlestoric liquid crystals)。
[0006]近晶相又称之为“层状相”,它出现在较低的温度范围内,呈现脂状,因其分子组成一层一层的层状结构而得名。层内分子长轴相互平行,与层面垂直或成一定的角度。由于液晶分子存在热运动,分子间的相互作用,分子长轴取向并不是完全平行于某一方向,而是以一平均取向为中心做随机变化,该平均取向我们称之为指向矢。液晶分子的层与层之间可以相互滑动,但各层中的分子则不能相互在层间移动。因而这使液晶具有了流动性,但粘性系数比较大。这种结构保留了分子的相互作用力的取向各向异性,失去了晶体点阵的平移有序,具有二维有序的性质,分子排列整齐度接近晶体。由于这种有序性,近晶相液晶比向列相液晶和胆留相液晶的粘度都要大。一般不属于向列相和胆留相的液晶,我们都把它归类到近晶相,因此近晶相的概念比较模糊。
[0007]向列相液晶目前作显示的主要液晶类型。棒状分子。这种分子结构导致它的分子排布方式为:长轴方向一致,重心位置自由。这种排布使得其粘度小,流动性强;近晶相液晶分子也是棒状。它的分子重心呈层状,而且在每层之内分子长轴方向是一致的。不过分子长轴与层面一般都成一定角度。由于层内分子结合力强,层间分子结合力弱,所以呈现二维流动性,黏度比向列相大。这种液晶呈正性双折射性。胆留液晶不是棒状分子,其分子结构和排列也是层状织构,但是层内液晶是按向列液晶织构排列的,分子在层内呈于层面平行排列。不过,其特殊之处是层间分子之间分子轴方向稍有一个角度,从而使液晶整体织构形成螺旋结构。这种织构使得胆留相液晶具有明显的旋光性,选择光散射性,圆偏光二色性等特殊的光学性质。因此,它可用作控制液晶分子排列的添加剂,还可直接用作温度变色液晶。
[0008]TFT-LCD(薄膜晶体管有源矩阵液晶显示器)主要特性为I)低比重性2)耐药性3)热稳定性:1、在玻璃制备时预先进行热处理(退火);?、使用转变温度高的玻璃,提高玻璃基板形变温度的下限;4)平坦度翘曲度、起伏度、平滑度;5)缺陷特性表面缺陷和内部缺陷;6)硬度400?550kgf/mm2之间;7)耐高温性达到650 °C以上。
[0009]TFT-1XD主要发展趋势为:1.轻量化及薄型化;2.低功耗化;3.高开口率技术;4.高亮度(高透过率)技术;5.宽视角技术;6.高响应速度;7.大面积、高解析度;9.柔性基底;10.裸眼3d技术。
[0010]相对于OLED,TFT-1XD主要有以下的一些问题:
[0011]开口率较低,进一步降低了能源的利用率;TFT-1XD之所以能迅猛发展,和其更多的基于非晶硅平台有关(当然很小一部分产品也使用多晶硅),价格便宜,工艺简单,均一性较好。所以现在出现了55英寸,65英寸等大尺寸的产品。尺寸大了以后,线路的阻抗上升,就需要用更粗、更厚或者导电率更好的金属配线,厚度是无法无限度增加的,导电率最好的材料是金属银和铜,更好的实用的导电材料估计在很长时间内都不会有突破,那就只能增加线宽了,这进一步降低了TFT-1XD的开口率。
[0012]同时,电视产品使用的显示技术一般有两种,一种为IPS显示模式,一种为VA显示模式。
[0013]VA显示模式下,如果是通常的4Domain设计,不同视角下,会存在色差。一般针对VA产品,改善色差的方案是SDomain的设计方案(类似于4Domain,但是一个子像素里面有两个类似于4Domain的Pattern)。当然,具体设计的细节有很多差异,但原理上都是一致的:通过把4domain变成8个Domain,来获得色差的改善。
[0014]但是为了实现8Domain,都需要增加一些金属走线或者电容,这些都会降低像素的开口率。
[0015]通常的液晶显示器件,分别有栅极走线和数据线走线。两种走线正交交错,这种走线方法,栅极走线和数据走线占用大量的空间,而且这两种走线都是金属走线,不利于实现高开口率(有效的透光区域与全部面积的比例为开口率)。
[0016]如图1,通常的液晶显示器件,分别有栅极走线和数据线走线,两种走线正交交错,这种走线方法不利于显示器件开口率的提升。

【发明内容】

[0017]本发明要解决的技术问题是使液晶显示器在分辨率不受影响的情况下,提高开口率。
[0018]本发明将通常的CF基板上也做上TFT线路,为了区分,文中仍旧成为上基板(CF基板),这样,上基板和下基板都含有TFT线路,使得上、下基板栅极走线和数据走线就可以完全重叠,从而不需要额外占用新的空间,从而实现开口率的提升,而分辨率不受影响。
[0019]本发明的技术方案具体如下:
[0020]本发明提供了一种薄膜晶体管液晶显示器,包括上基板、下基板、像素电极和共通电极;上基板的共通电极与下基板的像素电极相重合且上基板的像素电极与下基板的共通电极相重合,使得上基板的数据线和扫描线的位置与下基板的像素阵列的数据线和扫描线的位置重叠;
[0021]其中,上基板(CF基板)先做阵列的数据线和扫描线,然后做RGB层,再做像素电极,像素间间隔配置共通电极和像素电极;下基板(TFT基板)做阵列的数据线和扫描线,其中数据线和扫描线与上基板的数据线和扫描线的位置重叠(两个基板贴合在一起以后重叠),再做像素电极,像素间间隔配置像素电极和共通电极。
[0022]优选的,TFT由半导体薄膜和与半导体薄膜一侧表面相接触的绝缘层组成;
[0023]优选的,数据线金属层周围设置多个层体;
[0024]优选的,多个层体包括栅极绝缘层、半导体层、欧姆接触层、钝化层以及透明导电层。
[0025]优选的,TFT具有栅电极、源电极和漏电极;
[0026]优选的,TFT使用的半导体薄膜为非晶硅、多晶硅或化合物半导体中的一种;其中,非晶硅TFT的结构采用叠层结构;
[0027]优选的,非晶硅TFT中的绝缘层由氮化硅形成的硅岛组成;
[0028]优选的,CF彩色滤光片基板有RGB三个颜色;CF基板的RGB三基色形成排列的图案,
排列的图案与TFT基板上的TFT像素的子像素--对应;其中,RGB的每个像素由三个子像素组成;
[0029]优选的,上基板的数据线包括第一数据线和第二数据线;上基板的扫描线即栅极线包括第一栅极线和第二栅极线。
[0030]优选的,上基板的RGB三基色形成排列的图案具体为:背光源发出的白光,经过上基板形成相应的R、G、B色光,不同强度的RGB色光混合在一起实现了彩色显示。
[0031]本发明的有益效果:
[0032]本发明所提供的TFT-LCD,使得原来一条扫描线和数据线对应的面积由原来只能驱动一个像素,变为上下基板都可以驱动一个像素,从而在同等分辨率的情况下,扫描线和数据线所占的面积减小,进而提高了开口率。
【附图说明】
[0033]图1为通常液晶显示器件采用栅极和数据走线正交排布的示意图,其中,I为数据线,2为栅极线,3为硅岛,4为像素电极。
[0034]图2为本发明提供的TFT-LCD栅极和数据走线排布的示意图,虚线代表上基板的走线,I为数据线,2为栅极线,3为硅岛,4为像素电极。
[0035]图3为现有技术IXD分辨率示意图。
[0036]图4为现有技术灰度和色数示意图。
[0037]图5为本发明提供的TFT-LCD结构简图;其中,I为数据线,7为绝缘层,8为共通电极,9为像素电极,5为上基板,6为下基板。
【具体实施方式】
[0038]本实施方式的一种TFT-1XD,参考图5,具体包括:上基板5、下基板6、像素电极9和共通电极8;上基板5的共通电极8与下基板6的像素电极9相重合且上基板5的像素电极9与下基板6的共通电极3相重合,使得上基板5的数据线I和扫描线(栅极线)的位置与下基板6的array的数据线I和扫描线(栅极线)的位置重叠。
[0039]其中,两个array基板贴合在一起,下面的array基板为下基板6控制一半像素,上面的array基板为上基板5控制一半像素;上基板5与下基板6间共通电极和像素电极进行间隔配置;上基板5为array基板,上基板5由彩色滤光片基板CF(color filter)上设置一系列TFT线路的基板组成;下基板6为array基板由薄膜晶体管TFT组成;TFT (Thin FilmTransistor)为薄膜晶体管指用半导体薄膜材料制成的绝缘栅场效应晶体管;像素电极9包括上基板5的像素电极9和下基板6的像素电极9;共通电极8包括上基板5的共通电极8与下基板5的共通电极8。
[0040]为了清楚地表达,在图2中,虚线的边框线描述的部分代表上基板的走线,黑色边框实线描述的部分代表下基板的走线。为了清楚表达,画的时候并没有让栅极线和数据线完全重叠,而是故意错开一点,目的是为了表达清楚。实际上是基本完全重叠的。
[0041]上基板(CF基板)先做阵列的数据线和扫描线,然后做RGB层,再做像素电极,像素间间隔配置共通电极和像素电极;下基板(TFT基板)做阵列的数据线和扫描线,其中数据线和扫描线与上基板的数据线和扫描线的位置重叠(两个基板贴合在一起以后重叠),再做像素电极,像素间间隔配置像素电极和共通电极。进一步,所述TFT通常有半导体薄膜和与半导体薄膜一侧表面相接触的绝缘层组成。
[0042]进一步,所述数据线金属层周围设置多个层体。
[0043]进一步,所述多个层体包括栅极绝缘层、半导体层、欧姆接触层、钝化层以及透明导电层。
[0044]进一步,所述TFT具有栅电极、源电极和漏电极。
[0045]进一步,所述TFT使用的半导体薄膜为非晶硅、多晶硅或化合物半导体中的一种。其中,利用非晶硅材料制成的非晶硅薄膜晶体管(a-S1-TFT)由于具有制作容易,基板玻璃成本低,能够满足有源矩阵驱动的要求,开/关电流比大,可靠性高及容易大面积化等一些列优点而受到广泛应用,成为TFT-LCD中的主流技术;非晶硅TFT的结构采用叠层结构。
[0046]进一步,所述的非晶硅TFT中的绝缘层一般用氮化硅形成的硅岛组成;氮化硅被刻蚀成独立的娃岛;低温多晶娃TFT有助于提尚有效显不面积提尚开口率。
[0047]进一步,所述CF(color fiIter)彩色滤光片基板产生RGB三个颜色;上基板CF的RGB三基色形成排列的图案,排列的图案与TFT基板上的TFT像素的子像素一一对应;其中,RGB的每个像素由三个子像素组成。
[0048]进一步,上基板的数据线包括第一数据线和第二数据线;上基板的扫描线即栅极线包括第一栅极线和第二栅极线。
[0049]进一步,所述上基板的RGB三基色形成排列的图案具体为:背光源发出的白光,经过上基板形成相应的R、G、B色光,通过TFT陈列将R、G、B色光调节加在各个子像素上的电压值,从而改变各色光的透射强度,不同强度的RGB色光混合在一起实现了彩色显示。
[°05°]进一步,所述下基板的栅极走线(Gate走线)与数据线(Data走线)完全重叠,从而不需要额外占用新的空间,从而实现开口率的提升,而分辨率不受影响。
[0051]进一步,所述CFkolor filter)彩色滤光片基板上设置一半TFT线路,下基板中设置一半TFT线路。
[0052]最后说明的是,以上实施例仅用于说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。
【主权项】
1.一种薄膜晶体管液晶显示器,其特征在于,该显示器具体包括:上基板、下基板、像素电极和共通电极;上基板的共通电极与下基板的像素电极相重合且上基板的像素电极与下基板的共通电极相重合,使得上基板的数据线和扫描线的位置与下基板的像素阵列的数据线和扫描线的位置重叠; 其中,上基板上具有TFT线路,先做阵列的数据线和扫描线,然后做RGB层,再做像素电极,像素间间隔配置共通电极和像素电极;下基板做阵列的数据线和扫描线,再做像素电极,像素间间隔配置像素电极和共通电极,当上下两个基板贴合在一起以后,所述上基板的数据线和扫描线与所述下基板的数据线和扫描线的位置重叠。2.根据权利要求1所述一种薄膜晶体管液晶显示器,其特征在于:所述TFT由半导体薄膜和与半导体薄膜一侧表面相接触的绝缘层组成。3.根据权利要求1所述一种薄膜晶体管液晶显示器,其特征在于:所述数据线金属层周围设置多个层体。4.根据权利要求1所述一种薄膜晶体管液晶显示器,其特征在于:所述多个层体包括栅极绝缘层、半导体层、欧姆接触层、钝化层以及透明导电层。5.根据权利要求2所述一种薄膜晶体管液晶显示器,其特征在于:所述TFT具有栅电极、源电极和漏电极。6.根据权利要求3所述一种薄膜晶体管液晶显示器,其特征在于:所述TFT根据其使用的半导体薄膜为非晶硅、多晶硅或化合物半导体中的一种,其中,非晶硅TFT的结构采用叠层结构。7.根据权利要求6所述一种薄膜晶体管液晶显示器,其特征在于:所述的非晶硅TFT中的绝缘层由氮化硅形成的硅岛组成。8.根据权利要求7所述一种薄膜晶体管液晶显示器,其特征在于:所述CF彩色滤光片基板有红绿蓝三个颜色;CF基板的红绿蓝三基色形成排列的图案,排列的图案与TFT基板上的TFT像素的子像素--对应;其中,红绿蓝的每个像素由三个子像素组成。9.根据权利要求8所述一种薄膜晶体管液晶显示器,其特征在于:上基板的数据线包括第一数据线和第二数据线,上基板的扫描线即栅极线包括第一栅极线和第二栅极线。10.根据权利要求9所述一种薄膜晶体管液晶显示器,其特征在于:所述上基板的红绿蓝三基色形成排列的图案具体为:背光源发出的白光,经过上基板形成相应的红、绿、蓝色光,不同强度的红绿蓝色光混合在一起实现了彩色显示。
【文档编号】G02F1/1343GK106094381SQ201610724520
【公开日】2016年11月9日
【申请日】2016年8月25日
【发明人】徐亮
【申请人】深圳市华星光电技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1