开口式聚酰亚胺成形部件的制造方法、装置及照明器材用反射体基体部件的制作方法

文档序号:2973950阅读:150来源:国知局
专利名称:开口式聚酰亚胺成形部件的制造方法、装置及照明器材用反射体基体部件的制作方法
技术领域
本发明涉及开口式聚酰亚胺成形部件的制造方法、装置及该成形部件组成的照明器材用反射体基体部件,更详细地说,是关于聚酰亚胺薄膜组成的开口式聚酰亚胺成形部件成形时,可在不会发生表面擦伤或厚度不均匀的情况下成形的开口式聚酰亚胺成形部件的制造方法、装置及该成形部件组成的照明器材用反射体基体部件。
背景技术
聚酰亚胺薄膜具有良好的耐热性和自熄性,而且具有优良的力学特性、化学特性及电绝缘特性,因此,利用这些特性,已经广泛应用于电器制品和电子制品的部件中。作为这种电器制品用途的一个例子,有日本特开平11-273431号公报提出的技术方案,因为除了耐热性和电绝缘特性之外,还具有轻量的特性,因此被应用到汽车用前灯等照明器材用反射体基体部件当中。
然而照明器材用反射体,是由聚酰亚胺薄膜作为所谓开口式聚酰亚胺成形部件而成形出的,因而,其要求特性是,必须能正确地控制在表面进行金属反射膜的真空镀敷时的光反射特性。所以,开口式聚酰亚胺成形部件在表面不损伤的情况下成形是至关重要的。
可是,聚酰亚胺薄膜因具有上述的良好的耐热性,因此,如特开平11-273431号公报揭示的制造方法那样,采用了利用凹模与凸模组成的金属模进行挤压成形的方法,却带来了在成形部件表面发生擦伤等疵点等问题。另外,为了抑制这种擦伤的发生,代替挤压成形法,采用真空成形法,但是,即使是这样,在用以往的真空成形法成形时,也会发生厚度不均匀,在极端的情况下,还会产生孔,带来了成形部件形状很难稳定的问题。

发明内容
本发明的目的是提供一种可以降低表面擦伤或厚度不均匀的发生的开口式聚酰亚胺成形部件的制造方法及其装置。
本发明的另一目的是提供一种能减少表面擦伤或厚度不均匀的形状稳定性良好的开口式聚酰亚胺成形部件组成的照明器材用反射体基体部件。
完成上述目的的本发明的开口式聚酰亚胺成形部件的制造方法的特征在于,在具有凹状成形面的成形金属模上紧贴聚酰亚胺薄膜,使该成形金属模开口端密闭,一边对该聚酰亚胺薄膜进行非接触加热,一边仅在气体压力差的作用下使其产生弯曲变形,至少该弯曲变形末期的压力差为相对于上述聚酰亚胺薄膜使成形金属模一侧的空间减压,并使相反一侧的空间加压,以便密合在所述凹状成形面上。
这样,一边对成形材料的聚酰亚胺薄膜进行非接触加热,使其可塑化,一边仅在气体压力差的作用下使其产生弯曲变形,因此,不会发生擦伤。进一步,至少仅在上述压力差引起的弯曲变形的末期,对成形金属模一侧减压,对相反一侧加压,使聚酰亚胺薄膜紧贴在成形金属模的凹状成形面上,因此,可在不发生厚度不均匀、聚酰亚胺薄膜与凹状成形面之间不产生空气滞留的前提下进行成形。
不会发生厚度不均匀或空气滞留的成形,是在上述弯曲变形操作的至少末期,在聚酰亚胺薄膜的两面同时作用减压和/或加压实现的,只对成形金属模一侧减压,或只对相反一侧的空间加压,是不能实现的。
更具体地说,关于非接触加热,可以是在夹压金属模和/或所述成形金属模上设置加热单元,放射辐射热,和/或从夹压金属模放出加热气体来进行的。减压和加压的操作可通过在成形金属模的凹状成形面和夹压金属模的内表面上设置多孔金属或多个开孔,经该多孔金属或开孔来进行。此外,关于聚酰亚胺薄膜成形后的形状固定,是通过在成形金属模和/或夹压金属模上设置有冷却单元,借助该冷却单元的冷却作用,和/或从所述夹压金属模放出冷却气体来进行的。
实施上述制造方法的开口式聚酰亚胺成形部件的制造装置最好是,由具有凹状成形面的成形金属模和压接在该成形金属模的开口端上的夹压金属模构成成形部,将成形金属模与负压源连接在一起,将夹压金属模与加压源连接在一起。在该制造装置上还附设有薄膜供给机构,用于将聚酰亚胺薄膜供给并配置在成形部上,而且还附设有从成形部取出成形部件的成形部件取出机构。
根据本发明得到的开口式聚酰亚胺成形部件通过以金属进行真空镀敷、设置反射膜等,可作为汽车用前灯等照明器材用反射体,有效地加以利用。
附图的简要说明

图1是表示用于实施本发明的开口式聚酰亚胺成形部件的制造装置一例的概要图。
图2的(A)~(D)是表示根据本发明制造开口式聚酰亚胺成形部件的成形工序一例的工艺流程图。
图3的(A)~(H)是表示根据本发明制造开口式聚酰亚胺成形部件的成形工序另一例的工艺流程图。
图4是表示图2所示成形工序中所使用的成形部一例的概要图。
图5表示成形工序中所使用的成形部,其中(A)是夹压金属模的纵断面图,(B)是成形金属模的纵断面图。
实施发明的最佳形式在本发明中,开口式聚酰亚胺成形部件是指至少一方设有开口端的经过立体成形加工的成形部件。
开口式聚酰亚胺成形部件成形所使用的聚酰亚胺薄膜是耐热性聚酰亚胺组成的薄膜成形体。聚酰亚胺最好是芳香族四羟酸类和芳香族二胺类组成的诱导物体。
另外,聚酰亚胺薄膜,特别是在作为汽车前灯的反射板基体部件使用时,希望其耐热性具有在200℃以上、比较好的是在220℃以上、最好是在230℃以上时仍然不会发生塑性变形的特性。聚酰亚胺薄膜的厚度根据成形部件的用途而不同,但是,如果厚度是在8~200μm、比较好的是在12~180μm、最好是在25~175μm的范围,则在不会产生厚度不均匀地成形的生产效率和易于获得薄膜等方面是有好处的。
在把聚酰亚胺薄膜成形出给定形状的开口式聚酰亚胺成形部件的成形机上,最好在设有凹状成形面的成形金属模上设置组装有夹压金属模的成形部,以便覆盖该成形金属模的开口端。夹压金属模通过把聚酰亚胺薄膜夹压保持在其与成形金属模的开口端之间,相对于聚酰亚胺薄膜的两面分别形成夹压金属模侧空间与成形金属模侧空间。
夹压金属只要具有能覆盖成形金属模的开口端的功能即可,不必具有特别是对于聚酰亚胺薄膜进行赋形的凸状成形面。但是,如果凸状成形面具有小于成形金属模侧的凹状成形面的外形尺寸,而且是在成形加工过程中不会与聚酰亚胺薄膜接触的凸状成形面,则设置这样的凸状成形面也是可行的。
成形金属模与夹压金属模的配置最好是以成形金属模为上模、夹压金属模为下模、可上下移动地配置着。当然成形金属模与夹压金属模的上下配置关系也可以上下替换以成形金属模为上模、夹压金属模为下模的配置关系。另外,成形金属模与夹压金属模也可以左右对峙地配置,不过,因为加热的聚酰亚胺薄膜在重力的作用下会朝下方变形,因此,有出现开口式聚酰亚胺成形部件的形状为非对称性的后顾之忧。
在本发明中,为了密闭上述成形金属模的开口端,紧贴聚酰亚胺薄膜,最好是在成形金属模和夹压金属模之间夹持聚酰亚胺薄膜,对该状态的聚酰亚胺薄膜进行非接触加热,使其可塑化,同时,将气体压力差施加到薄膜的两面之间,使金属模等刚体面为非接触地进行弯曲变形。作为这种施加压力差的方式,可以是只相对于聚酰亚胺薄膜对夹压金属模侧的空间进行加压,也可以是只对成形金属模侧的空间进行减压,或是对夹压金属模侧的空间进行加压和对成形金属模侧的空间进行减压的同时作用的任何一种形式。但是,至少在弯曲变形末期,对夹压金属模侧的空间进行加压和对成形金属模侧的空间进行减压要同时作用,使聚酰亚胺薄膜紧贴在成形金属模的凹状成形面上。
如上文所述,刚体成形面不与聚酰亚胺薄膜接触,只靠气体的压力差产生弯曲变形,因而,在聚酰亚胺薄膜上不会发生表面损伤。另外,至少在弯曲变形操作的末期施加的压力差是对成形金属模侧的空间进行减压而另一方面对夹压金属模侧的空间进行加压的。因而,聚酰亚胺薄膜可以紧贴在成形金属模的凹状成形面上,即使是具有不易塑性变形特性的聚酰亚胺薄膜,也可以在不产生厚度不均匀、而且在聚酰亚胺薄膜与凹状成形面之间不会产生空气滞留的情况下进行成形。特别是,从弯曲变形操作开始到结束只进行减压的所谓真空成形的情况下,由于聚酰亚胺薄膜紧贴在成形金属模的凹状成形面上时,设置在该凹状成形面上的吸引孔因吸附聚酰亚胺薄膜而闭塞,因此,在聚酰亚胺薄膜与凹状成形面之间产生空气滞留,容易成为形状不稳定的成形部件。
在本发明中,特别是作为比较合适的施加气体压力差的方法有,从聚酰亚胺薄膜弯曲变形开始到变成凹状成形面的深度的40%至99%的弯曲变形是通过只对夹压金属模侧的空间进行加压实施的,其余的紧贴在凹状成形面上之前的弯曲变形是通过对夹压金属模侧的加压和对成形金属模侧的减压的加压/减压同时进行的负载实施的。
另外,为了不产生厚度不均匀等,希望进行上述减压或加压时不会发生气体局部的集中流。作为该措施有如下方法用多孔金属形成成形金属模的凹状成形面及夹压金属模的内表面;或者分散配置多个开孔,把多孔金属或开孔的背部在成形金属模时与负压源连通,在夹压金属模时与加压源连通,进行减压或加压。通过这样的多孔金属或多个开孔,加压气体(压缩气体)的排出或减压气体的吸入可平缓均匀地进行,不会产生局部集中。作为加压气体源,最好使用压缩空气或压缩的氮等惰性气体。
在本发明中,比较合适的是,夹压金属模侧的多孔金属或开孔的背部除了与加压源连通之外,也可以通过切换阀与负压源或大气连通。使该夹压金属模侧的空间与负压源连通,暂时减压,可顺利地进行成形初期的预备操作。另外,成形金属模侧的多孔金属或开孔的背部除了与负压源连通之外,也可以通过切换阀与加压源连通。通过这样的切换,在从成形金属模取出成形后的成形部件时,切换到加压源,喷出加压气体,可顺利地进行成形部件的脱模。
作为聚酰亚胺薄膜的非接触加热手段有,既可以在夹压金属模和/或成形金属模上设置加热单元,从该夹压金属模和成形金属模放射辐射热,也可以使用加热气体作为连接到夹压金属模上的加压源的加压气体(压缩气体)并放出该加热气体。加热气体可采用空气加热或加热氮等惰性气体。作为夹压金属模和/或成形金属模上所设置加热单元,可以进行镍铬电热丝等加热器的埋设、加热器的埋设与热媒的封入、热媒的循环等。这些非接触加热手段希望预先设置用于调整加热量的控制装置。
成形金属模和/或夹压金属模上,特别是成形金属模上设置冷却单元作为成形后的成形部件的形状固定手段是比较合适的。冷却单元即可以是从可与负压源一起切换地并设的加压源吹出冷却气体的结构,也可以是在金属模内循环冷媒的结构。
进行成形部件的形状固定的冷却手段,可以是独立地设置在成形金属模外侧的结构。与成形金属模独立设置的冷却手段即可以在金属模以外的场所冷却与成形金属模脱模的成形部件,也可以是成形部件依然容纳在成形金属模内的状态下从外侧吹进冷风等。
在本发明的开口式聚酰亚胺成形部件的制造装置上可设置有用于把聚酰亚胺薄膜供给成形部、同时配置在该成形部上的薄膜供给机构。聚酰亚胺薄膜的供给与配置也可以是手工作业,不一定非是薄膜供给机构。但是,作为人力节省化或自动化的手段是有益处的。薄膜供给机构设置有多个用于把持聚酰亚胺薄膜端部的把持单元,并具有通过该把持单元的移动使聚酰亚胺薄膜伸长而施加张力或调整张力的功能。
薄膜供给机构最好是至少在4个位置上能够把持以矩形状或正方形状切出来的聚酰亚胺薄膜。但是,根据开口式聚酰亚胺成形部件的开口形状,能够把持四边形以外的多边形(三角形、五边形等)或环形等也是可行的。还可以是,多个把持单元通过在多个位置把持薄膜的端部,把张力施加给薄膜,一边维持该张紧状态,一边密合配置在成形金属模的开口端。
把持单元的结构既可以是从两面夹住薄膜端部的结构,也可以是利用负压的吸引喷嘴来吸附薄膜表面的结构,或者是利用静电吸附薄膜表面的结构。多个把持单元的结构是,在相对成形部进行相对移动的同时,把持单元彼此也可以相对移动。借助于这种相对移动的结构,把张紧作用施加给聚酰亚胺薄膜,很容易进行相对成形金属模的开口端的密合配置。
除了上述以外,也可以在开口式聚酰亚胺成形部件的制造装置上设置把成形后的成形部件从成形金属模中取出的成形部件取出机构或从成形后的成形部件上除去不需要部分的除去机构。成形部件取出机构最好是利用作用负压的吸引喷嘴进行吸附而拾取的装置。另外,除去机构的除去作用通常可以使用剪断法、冲拔法等。这些附属设备由于可以用手工作业进行,因而不是必须的,但是,通过附设这些附属设备,可以实现自动化下文,参照图示的实施形式,说明本发明开口式聚酰亚胺成形部件的制造方法。
图1示出了实施本发明制造方法的装置的一个例子。
成形部1通过在下模上配置成形金属模3、在上模上可上下移动地配置夹压金属模2而构成。该成形部1两侧部的一方上设置有薄膜供给机构4,另一方设置有成形部件取出机构5。薄膜供给机构4用把持单元4a把持住成形材料的聚酰亚胺薄膜F,并把该聚酰亚胺薄膜F供给成形金属模3与夹压金属模2之间,配置在后述的成形部1上。在成形部1上结束成形的开口式聚酰亚胺成形部件G通过成形部件取出机构5从成形部1拾取,并送往不需要部分的除去机构(图中未示),在那里,除去成形部件周边的不需要部分。
图2示出了实施本发明制造方法的成形工序的一个例子。
在图2的成形工序中,作为成形部1使用图4所示的上下配置金属模的结构。该成形部1是将里面具有凹状成形面3a的成形金属模3配置为下模,把里面没有成形面的夹压金属模2配置为上模。上下两金属模2、3在内表面上都设有多孔金属41、42,其中多孔金属42在内表面上形成有凹状成形面3a。
多孔金属41的背部43通过三通切换阀45交替地切换到加压压力P1的加压源和真空压力V1的负压源或大气上,多孔金属42的背部44通过三通切换阀46交替地切换到加压压力P2的加压源或大气和真空压力V2的负压源上,而且多孔金属42的背部44通过三通切换阀46交替地切换到加压压力P2的加压源或大气上和真空压力V2的负压源上。上述加压压力P1、P2或真空压力V1、V2的任何一个设定成与上下两金属模2、3之间的合模压力等同或小于该合模压力。
在使用上述成形部1的图2的成形工序中,首先,如图2(A)所示,用薄膜供给机构4的把持单元4a把持住聚酰亚胺薄膜F,并将该聚酰亚胺薄膜F供给夹压金属模2与成形金属模3之间,同时,借助内置于两金属模2、3中的加热单元(图中未示)的辐射热开始非接触加热。
接着,如图2(B)所示,让夹压金属模2与把持单元4a下降,使聚酰亚胺薄膜F与成形金属模3的开口端接触,同时保持把聚酰亚胺薄膜F夹持在夹压金属模2与成形金属模3的开口端之间的状态。在图2(B)的状态下,通过三通切换阀45(参照图4)把大气压或真空压力V1的负载施加到夹压金属模2与聚酰亚胺薄膜F之间的空间9中,另一方面,通过三通切换阀46(参照图4)把大气压或加压压力P2的负载施加到成形金属模3与聚酰亚胺薄膜F之间的空间8中,在这种状态下,借助于来自内置于两金属模2、3中的加热单元的辐射热,进行非接触加热。
然后,如图2(C)所示,借助于三通切换阀45、46的切换,继续进行上述非接触加热,同时以加压压力P1对空间9加压,另一方面,使空间8敞开于大气压,由此,聚酰亚胺薄膜F朝向成形金属模3,只在加压压力P1的作用下发生弯曲变形,该弯曲变形持续到空间8为比较小的间隙位置。从该空间8的间隙变为比较小的间隙的时间点开始,经过1~5秒的时间差后,切换三通切换阀46,把真空压力V2作用到上述空间8中。在持续这种分接触加热的同时,一边把加压压力P1作用到上述空间9中,一边把真空压力V2同时作用到空间8中,由此,由图2(D)所示,将聚酰亚胺薄膜F紧贴在成形金属模3的凹状成形面3a上,复制该凹状成形面3a的模样(例如压花模样)。
保持该状态约1分钟的时间后,停止内置于夹压金属模2和成形金属模3中的加热单元的加热,接着,开始内置于夹压金属模2和成形金属模3中的冷却单元的冷却作用,约冷却10分钟的时间,固定该成形形状。然后,停止加压操作与减压操作及冷却操作,使夹压金属模2上升,借助于成形部件取出机构5取出开口式聚酰亚胺成形部件G。
上述空间8的减压度及空间9的加压度是将聚酰亚胺薄膜F不与两金属模接触、不会发生表面损伤或厚度不均匀地紧贴在凹状成形面3a上的重要控制条件。该减压度及加压度的控制最好通过设置在夹压金属模2上的微差压计和设置在成形金属模3上的微差压计来控制,不过,用加压源的加压度及负压源的减压度来控制也是可行的。
图3示出了实施本发明制造方法的另一成形工序。
在图3的成形工序中,成形部1使用图5(A)、(B)所示的金属模。
图5(A)示出了构成成形部1一方的夹压金属模2,其内表面上设有凸状面2a,该凸状面2a的表面上设有多个开孔21。并且,该开孔21的背部22与图4的成形部的夹压金属模同样,通过三通切换阀45,交替地切换到加压压力P1的加压源和真空压力V1的负压源或大气上。特别是从加压源也可以供给加热气体。该夹压金属模2的凸状面2a不是对聚酰亚胺薄膜F成形的面,主要是为了提高非接触加热效率而设置的结构,因而,以小于成形金属模3一侧的凹状成形面3a的外径尺寸形成。
另一方面,图5(B)示出了构成成形部1另一方的成形金属模3,该成形金属模3具有用于形成聚酰亚胺薄膜F的凹状成形面3a。其表面上设有多个开孔31,而且,这些开孔31的背部32也与图4的成形金属模同样,通过三通切换阀46,交替地切换到加压压力P2的加压源或大气和真空压力V2的负压源上。
在图3的成形工序中,首先,如图3(A)所示,用薄膜供给机构4的把持单元4a,一边把聚酰亚胺薄膜F维持在张紧状态下,一边供给夹压金属模2与成形金属模3之间,借助来自内置于夹压金属模2与成形金属模3之间中的加热单元的辐射热,对聚酰亚胺薄膜F预备加热。
接着,如图3(B)所示,一边调节把持单元4a相互之间的间隔,一边吸收聚酰亚胺薄膜F加热所引起尺寸的增加,并使其下降,与成形金属模3的开口端接触。进一步,如图3(C)所示,使把持单元4a下降,把聚酰亚胺薄膜F紧贴在成形金属模3的开口端,使凹状成形面3a包围的空间8为气密状态。
然后,如图3(D)所示,从夹压金属模2的开孔21(参照图5)放出或放射加热气体(热风)或辐射热,同时使夹压金属模2下降,对聚酰亚胺薄膜F进行非接触加热。与此同时,一边通过开孔31把负压作用到成形金属模3的空间8中,一边如图3(E)所示那样,使聚酰亚胺薄膜F弯曲变形成朝向成形金属模3一侧的凹状。
进一步,一边调整夹压金属模2的下降速度和非接触加热温度及空间8的减压速度,一边如图3(F)所示那样让聚酰亚胺薄膜F继续产生弯曲变形,直到空间8变成比较小的空间间隙为止。然后,在空间8变为比较小的间隙的时间点,如图3(G)所示那样,让夹压金属模2的法兰部紧贴在成形金属模3的开口端面上,在夹压金属模2的凸状面2a与聚酰亚胺薄膜F之间形成比较小的非接触状态的空间9。
从夹持住该聚酰亚胺薄膜F、形成空间8与空间9的时间点开始,开始空间9的加压气体的供给,进行加压,与此同时,对空间8也继续作用减压的负载,并持续非接触加热,如图3(H)所示那样,将聚酰亚胺薄膜F紧贴在成形金属模3的凹状成形面3a上,复制该凹状成形面3a的模样。以后,进行与图2的工序同样的形状固定,得到开口式聚酰亚胺成形部件G。
根据上述的本发明,能够在表面不会擦伤、能消除厚度不均匀或滞留空气的缺点、避免生成泛白部或空穴的状态下,对开口式聚酰亚胺成形部件进行成形。因此,在例如在该成形部件上用金属进行真空镀敷使其成为照明器材用反射体的情况下能够提高反射率,以效率好的反射光进行反射。另外,根据本发明的制造方法复制金属模表面模样的成形部件能真实地复制金属模表面模样,可得到外观美观的表面。
以下,根据实施例更具体地说明本发明,但是,本发明并不限于这些实施例。
在以下实施例及比较例中记载的“表面疵点”是用目视评价开口式聚酰亚胺成形部件的凹面上经过用铝进行真空镀敷后来自其表面的反射光的,另外,“厚度不均匀”以及“泛白”是对铝真空镀敷前的开口式聚酰亚胺成形部件用透过光进行目视评价的。
实施例1使用具有图示的成形部(凹状成形面的开口直径为100mm、深度为50mm)的成形机,进行与图2同样的成形工序,在夹压金属模与成形金属模的表面温度分别为240℃,空间9的加压度为0.4MPa,空间8与大气连通,仅在气体压力差的作用下,使聚酰亚胺薄膜(デュポン公司制“カプトン200KJ”,厚度为50μm)产生弯曲变形,在弯曲变形到约为凹状成形面深度的90%的时间点,把减压度为40kPa的真空压力作用在空间8上。在这样弯曲变形的末期,同时把减压/加压作用在空间8与空间9中,使聚酰亚胺薄膜紧贴在成形金属模的凹状成形面上,得到开口式聚酰亚胺成形部件。
所得到的开口式聚酰亚胺成形部件没有发现局部厚度不均匀或空气滞留的缺点,也没有看到泛白的部位。在该开口式聚酰亚胺成形部件的凹面上,以铝进行真空镀敷约0.5μm的厚度,评价表面疵点,全部看不到表面疵点,显示出漂亮的光反射性能。
比较例1使用具有开口直径为100mm、深度为50mm的凹状成形面的凹金属模和具有相同尺寸的凸状成形面的凸金属模组成的成形部,使凹金属模与凸金属模的表面温度分别为240℃,以凹金属模与凸金属模密合的方式,对与实施例1所使用的相同的聚酰亚胺薄膜进行挤压成形,由此得到开口式聚酰亚胺成形部件。
所得到开口式聚酰亚胺成形部件,凹面全体即使不进行铝的真空镀敷,也能观察到多个达到能够判别出来的程度的擦伤。另外,在开口式聚酰亚胺成形部件的前端部及颈部能观察到多个因厚度不均匀所产生的透过光的不均匀及泛白部分,特别是在颈部能观察到空穴。
比较例2在实施例1中,使夹压金属模一侧的空间9朝大气敞开,只把减压度为40kPa的减压作用在空间8中,除此之外,其它条件完全相同,进行真空压力成形,得到开口式聚酰亚胺成形部件。
得到的开口式聚酰亚胺成形部件,其凹面上看不见擦伤,但是,在开口式聚酰亚胺成形部件的前端部及颈部能观察到多处厚度不均匀。
工业上的应用可以性可用于照明器材用反射体等基体部件。
权利要求
1.一种开口式聚酰亚胺成形部件的制造方法,其特征是,在具有凹状成形面的成形金属模上紧贴聚酰亚胺薄膜,使该成形金属模开口端密闭,一边对该聚酰亚胺薄膜进行非接触加热,一边仅在气体压力差的作用下使其产生弯曲变形,至少该弯曲变形末期的压力差为相对于所述聚酰亚胺薄膜使成形金属模一侧的空间减压,并使相反一侧的空间加压,以便密合在所述凹状成形面上。
2.根据权利要求1所记载的开口式聚酰亚胺成形部件的制造方法,其特征是,在所述成形金属模的开口端以夹持住所述聚酰亚胺薄膜的方式配置夹压金属模,在该夹压金属模和/或所述成形金属模上设置加热单元,放射辐射热,和/或从所述夹压金属模放出加热气体,对所述聚酰亚胺薄膜进行非接触加热。
3.根据权利要求2所记载的开口式聚酰亚胺成形部件的制造方法,其特征是,在所述成形金属模的凹状成形面和夹压金属模的内表面上设置有多孔金属或多个开孔,通过该多孔金属或开孔,对所述成形金属模一侧的空间减压,和/或对所述夹压金属模一侧的空间加压。
4.根据权利要求2或3所记载的开口式聚酰亚胺成形部件的制造方法,其特征是,在所述成形金属模和/或夹压金属模上设置有冷却单元,借助该冷却单元的冷却作用,和/或从所述夹压金属模放出冷却气体,进行聚酰亚胺薄膜成形后的形状固定。
5.一种照明器材用反射体基体部件,其特征是,由权利要求1~3中任一制造方法得到的开口式聚酰亚胺成形部件制造。
6.一种照明器材用反射体基体部件,其特征是,由权利要求4的制造方法得到的开口式聚酰亚胺成形部件制造。
7.一种实施权利要求1~3中任一方法的开口式聚酰亚胺成形部件的制造装置,其特征是,由具有凹状成形面的成形金属模和压接在该成形金属模的开口端上的夹压金属模构成成形部,将所述成形金属模与负压源连接在一起,将所述夹压金属模与加压源连接在一起。
8.一种实施权利要求4的方法的开口式聚酰亚胺成形部件的制造装置,其特征是,由具有凹状成形面的成形金属模和压接在该成形金属模的开口端上的夹压金属模构成成形部,将所述成形金属模与负压源连接在一起,将所述夹压金属模与加压源连接在一起。
9.根据权利要求7记载的开口式聚酰亚胺成形部件的制造装置,其特征是,还附设有薄膜供给机构,以便将聚酰亚胺薄膜供给并配置在所述成形部上。
10.根据权利要求8记载的开口式聚酰亚胺成形部件的制造装置,其特征是,还附设有薄膜供给机构,以便聚酰亚胺薄膜供给并配置在所述成形部上。
11.根据权利要求7记载的开口式聚酰亚胺成形部件的制造装置,其特征是,还附设有从所述成形部取出成形部件的成形部件取出机构。
12.根据权利要求8记载的开口式聚酰亚胺成形部件的制造装置,其特征是,还附设有从所述成形部取出成形部件的成形部件取出机构。
全文摘要
在具有凹状成形面3a的成形金属模3上紧贴聚酰亚胺薄膜F,使该成形金属模3的开口端密闭,一边对该聚酰亚胺薄膜F进行非接触加热,一边仅在气体压力差的作用下使其产生弯曲变形,至少该弯曲变形末期的压力差为:相对于聚酰亚胺薄膜使成形金属模3一侧的空间8减压,并使相反一侧的空间9加压,以便密合在所述凹状成形面3a上。
文档编号F21V7/10GK1358130SQ01800055
公开日2002年7月10日 申请日期2001年1月12日 优先权日2000年1月13日
发明者广末晴彦, 柴田繁男, 町田英明 申请人:最上电机株式会社, 杜邦-东丽株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1