具有非均匀成分的磁性薄膜盘的制作方法

文档序号:3363339阅读:133来源:国知局
专利名称:具有非均匀成分的磁性薄膜盘的制作方法
技术领域
本发明涉及磁性薄盘及其制造方法,特别涉及由于非均匀成分(composition)而具有非均匀磁性的磁性薄膜介质以及用于产生非均匀成分的方法。
背景技术
图1示出典型现有技术的磁头和磁盘系统10。在工作时,磁性换能器20在盘16上浮动时由悬架(suspension)13支持。通常称作“磁头”或“浮动块(slider)”的磁性换能器20由执行写入磁性转变(magnetictransition)(写入头23)和读取磁性转变(读取头12)的任务的各单元组成。来往读取和写入头12、23的电信号沿着连至悬架13或内嵌在其中的导电路径(导线)14传播。典型地,存在分别用于读取和写入头12、23的两个电触点板(electrical contact pad)(未示出)。电线或导线14A、14B、15A、15B连接到这些电触点板,并且在支架(arm)13中通到支架电子装置(未示出)。将磁性换能器20定位在离盘16的中心具有可变径向距离的各点上,以读取和写入圆形磁道(未示出)。盘16连至由主轴电机24驱动以旋转盘16的主轴18。盘16包括在其上沉积了多层薄膜21的衬底26。薄膜21含有铁磁材料,写入头23在该铁磁材料中记录对信息进行编码的磁性转变。
图2示出现有技术的盘16的截面。传统衬底26是经过高度抛光的带有NiP化学镀层(electroless coating)的AlMg导电盘。盘16上的薄膜21传统地包括沉积在衬底26上的铬或铬合金底层31。记录层(一层或多层-)33基于各种钴、镍和铁的合金。例如,常用合金为CoPtCr。附加元素如钽和硼经常用来在磁性上隔离颗粒。保护性外敷层(overcoat)35用来提高耐磨性和抗蚀性。仅作为示例,上述三层薄膜盘并没有穷尽所有可能性。各种种子层(未示出)、多个底层(未示出)和层压磁膜(未示出)在现有技术中均有描述。另外,采用AlMg以外的其他材料作为衬底。
当磁盘16针对将来的盘驱动器10设计时,根据总体系统要求来确定目标矫顽磁性范围。例如,矫顽磁性上限由写入头23在磁性薄膜33中引起转变的能力设置。因此,盘设计者任务的一部分是获得特定矫顽磁性范围而不是最高可能矫顽磁性。一种矫顽磁性调整方法基于磁性薄膜33的铂含量直接影响薄膜矫顽磁性这一公知事实。在限定范围内,铂含量的边际变化将以可预测量直接影响矫顽磁性。磁性薄膜33的成分以较高的准确度反映溅射目标的成分,从而溅射目标中铂含量的边际增加量反映在沉积薄膜中。
在宏观上,最好是磁性薄膜33的矫顽磁性在径向和周向上相当均匀。然而,盘驱动器中存在若干起作用的因素可能使得具有矫顽磁性的细微径向梯度是理想的。例如,以恒定旋转速度,换能器20在盘16上的浮动高度从盘16的内径(ID)到外径(OD)可能不同。浮动高度直接影响在磁性薄膜33中由写入头23产生的场强。线速度(对于恒定rpm)在OD处比在ID处高。这意味着与ID相比磁头在OD处浮动得更高。这就产生了OD处的可写性问题。
薄膜通过从其成分经过优化以提供期望磁性的合金目标溅射来生长。目标材料保持在负电压,以为带正电荷的溅射气体离子(典型地为Ar)提供加速。该结构的接地电位通常是室壁。衬底没有接地。用于制造磁盘16的现有技术溅射系统还提供将负或正偏压提供给盘衬底的能力。所用电压典型地约为-300伏。

发明内容
描述了一种影响薄膜成分变化的方法。通过沿着衬底表面产生非均匀电场来操纵溅射系统中的元素等离子体场分布(elemental plasma fielddistribution),以通过有差别地重新溅射目标元素来改变成分。非均匀电场由一个或多个与导电表面接触的电极或者通过使用RF偏压信号来施加。非均匀电场用来调节撞击薄膜表面的在等离子体中产生的离子的动能。由于溅射气体离子和中性粒子的动能和质量影响重新溅射速率,因此非均匀电场有差别地影响根据质量正在沉积的元素。通过在衬底的导电表面上的多个点施加不同电势,可以以多种模式调节衬底表面上的电场。例如,电场可以沿着盘的圆周和/或半径方向变化。在优选实施例中,将径向电压梯度施加于正在其上形成磁性薄膜的盘的导电表面,以在径向上调节磁性薄膜的铂含量。调节径向铂含量反过来又调节径向矫顽磁性。
因此,本发明提供一种薄膜溅射方法,包括以下步骤将含有第一和第二元素的目标安置在溅射室中,第一元素的原子量高于第二元素的原子量;将带有导电表面的衬底与至少第一电极电接触;产生包含第一和第二元素的正离子的等离子体;以及,通过将第一电势施加于第一电极以沿着导电表面形成非均匀电场,有差别地重新溅射第一元素,从而沉积其中第一元素的原子百分比沿着导电表面变化的薄膜。衬底最好是具有中央开孔的盘,并且第一电极在外径处接触导电表面,并且非均匀电场在盘的导电表面上沿着径向线单调变化。
在该方法中采用的第一元素最好是铂,第二元素最好是钴,并且衬底是盘。最好,第一电极围绕盘的圆周接触盘,并且最好非均匀电场根据盘上的径向位置而变化,并且铂的原子百分比沿着盘上的径向线变化。铂的原子百分比最好在盘的圆周处最低。
在其中衬底是盘的方法中,最好薄膜是磁性的并且沿着盘上的径向线具有矫顽磁性梯度,并且最好矫顽磁性在盘的圆周处最低。
该方法适当地还包括以下步骤将导电表面与第二电极电接触;以及将第二电势施加于第二电极,第二电势不同于第一电势,并且最好还包括以下步骤将导电表面与第三电极电接触;以及将第三电势施加于第三电极,第三电势不同于第一和第二电势。
该方法可选地还包括以下步骤将导电表面与以一种模式排列(arranged in a pattern)的多个电极电接触,并且将非均匀电势施加于多个电极以调节盘表面上的电场分布,从而产生第一元素的原子百分比沿着导电表面变化的模式,最好其中,多个电极以同心阵列排列。第一元素的原子百分比最好沿着圆周变化,特别是第一元素的原子百分比变化形成沿着圆周分布的伺服岛(servo island)。
在另一个实施例中,本发明提供一种制造品,包括衬底;以及含有至少第一和第二元素的衬底表面上的薄膜,其中,第一元素的原子百分比沿着表面上的线系统地变化。衬底最好是盘,第一元素是铂,第二元素是钴,薄膜是磁性的并且铂的原子百分比根据表面上的径向位置而变化。磁性薄膜最好具有根据表面上的径向位置而变化的矫顽磁性。铂的原子百分比最好在盘的圆周处最低,并且最好铂的原子百分比在盘的圆周处最高。
适当地,衬底是盘,并且第一元素的原子百分比在形成一种模式的盘上同心带(concentric band)中相同,可选地,衬底是盘,并且第一元素的原子百分比沿着圆周变化。作为另一个可选方案,衬底是盘,薄膜是磁性的,并且第一元素的原子百分比变化形成沿着圆周分布的伺服岛。
在另一个实施例中,本发明提供一种盘驱动器,包括包括读取和写入头的磁性换能器;主轴;以及安放在主轴上的磁性薄膜盘,磁性薄膜盘含有钴和铂,并且磁性薄膜具有铂的原子百分比变化的系统模式。磁性薄膜最好具有与铂的原子百分比径向梯度相对应的矫顽磁性径向梯度。最好,铂的原子百分比在盘的圆周处最低,或者可选地,铂的原子百分比在盘的圆周处最高。适当地,铂的原子百分比可以在形成一种模式的盘上同心带中相等。铂的原子百分比可以沿着圆周变化。最好,铂的原子百分比变化形成沿着圆周分布的伺服岛。
在第四实施例中,本发明提供一种薄膜溅射方法,包括以下步骤将含有第一和第二元素的目标安置在溅射室中,第一元素的原子量高于第二元素的原子量;产生包含第一和第二元素的正离子的等离子体;以及将衬底与至少第一电极电接触;通过将RF电势施加于第一电极以沿着衬底的表面形成非均匀电场,有差别地重新溅射第一元素,从而沉积第一元素的原子百分比沿着表面变化的薄膜。衬底最好是具有中央开孔的盘,并且第一电极在外径处与导电表面接触。
在该方法中采用的第一元素最好是铂,第二元素最好是钴,并且衬底是盘。最好,非均匀电场根据盘上的径向位置而变化,并且铂的原子百分比沿着盘上的径向线变化。最好,薄膜是磁性的并且沿着盘上的径向线具有矫顽磁性梯度。衬底最好是盘,非均匀电场沿着盘上的径向线变化,第一元素的原子百分比沿着径向线变化,薄膜是磁性的,并且具有与第一元素的原子百分比变化相对应的矫顽磁性变化。
在该方法的一个优选可选方案中,衬底是盘,并且第一元素的原子百分比在形成一种模式的盘上同心带中相同。在另一个优选可选方案中,衬底是盘,并且第一元素的原子百分比沿着圆周变化。最好,衬底是盘,薄膜是磁性的,并且第一元素的原子百分比变化形成沿着圆周分布的伺服岛。


图1是示出盘驱动器中磁头与相关组件之间的关系的现有技术的象征图;图2是磁性薄膜盘的一种现有技术层结构的图;图3是用于在溅射期间将偏压施加于盘衬底的机械设置的图;图4是图3所示的载体和盘沿着标记为IV的线的中线截面图;图5是本发明的沿着溅射室中的盘和载体的中线截面的电场梯度的图;图6是示出采用径向距离绘制的本发明的盘内铂含量的实验数据图;图7是示出图6的盘的矫顽磁性(Hc)对铂含量的实验数据图;图8是本发明的采用多个电极施加的沿着衬底的中线截面的非均匀电场的图。
具体实施例方式
图3是一种在溅射薄膜的时候将偏压施加于盘16的方法的图。盘16由连接到电压源43的导电载体41机械支持。电压源43的电压范围应该大约为-150到-600v。典型地,使用盘16的两侧,从而载体41需要设计成在对任一表面的影响程度不超过必要范围的情况下支持盘16。显然,存在众多方式来实现此,并且其细节超出本发明的范围。为了描述本发明的优选实施例,只需让盘16围绕外圆周或者可选地围绕内径以基本上连续的方式接触电导体。载体41可以是用于支持很多盘16的大活动架,其中这些盘可以通过溅射系统穿过一个通口(pass),或者它可以针对固定支持单个盘16来设计。
图4是图3的盘16和载体41沿着线IV的中线截面图。该截面示出载体41通过窄唇缘(lip)42支持盘16,其中,窄唇缘42环绕支持盘16的载体41中的开孔的整个圆周。该结构使得盘16的两侧基本上都被暴露以进行溅射。然而,更重要地是,由于盘16的外圆周与导电载体41连续接触,因此由于负偏压而产生的电场围绕盘16的圆周是均匀的。
图5是图4的相同中线截面,但是在本图中示出盘16和载体41位于包含等离子体43的溅射室50内,其中,等离子体43包含溅射气体离子和目标被溅射元素。在使用氩作为工作气体沉积CoCrPt磁性膜的情况下,等离子体将包含溅射气体的正离子和中性粒子以及中性和带电荷Co、Pt和Cr粒子(species)。围绕盘16产生的电场以垂直于盘的平面表面排列的箭头示出。为了简化说明以及为单元标号和标记留出空地起见,仅在盘16的一侧标上箭头,但是实际上两侧的电场应是对称的。箭头的长度表示相对于选定基线的电场强度。在绝对方面,电场变化小,但是也有效。图中示出电场在盘16的圆周处最强,并且单调降至内径处的最低值。
电场的一个效应是朝向盘16加速等离子体43中的正离子。在没有偏电场的情况下,仅朝向目标材料加速正离子。将负偏压施加于衬底导致生长薄膜表面的正离子轰击。生长薄膜表面上的主要碰撞粒子是带正电荷的Ar离子。这将导致重新溅射效应,并且由于电场在外径处较强,因此加速相应地将在外径处较大。薄膜生长期间的重新溅射效应在D.W.Hoffman,“Intrinsic Re-sputtering-Theory and Experiment(内在重新溅射-理论和实验)”,(J.Vac.Sci.Tech.A(8),3707,(1990))中有讨论。已经发现,内在重新溅射效率强烈地依赖于目标材料(Mt)与溅射气体(Mg)的质量比,并且多半显示对下面无量纲参数的线性依赖性(Mt-Mg)/(Mt+Mg)。通过实验发现,与Co(59amu)或Cr(52amu)相比,Ar离子(质量=40amu)更有效地重新溅射Pt(195amu)。Hoffman还发现重新溅射效率依赖于溅射离子的能量。这由衬底偏压提供,并且如前所述,在本实施例中它在外径(OD)处最大。因此,可以预料在电场较大处通过离子化溅射Ar+气体将更有效地重新溅射铂。该有差别重新溅射将导致铂含量在电场最大处降低。由于在上述载体离子中电场沿着盘16的半径而下降,因此可以预测铂含量沿着从外径(圆周)到内径的径向线增大。
图6给出采用半径距离绘制的被溅射盘16的铂含量的实验数据。盘16通过例如可从Ulvac公司购买的溅射系统在多盘通口中采用针对载体41所示的方法来支持。衬底26是带有Nip镀层的AlMg。底层是CrV。磁性膜和目标是CoPtCrTa。偏压大约是-300v。铂含量通过微探针(图上的正方形)和XRF(圆形)来测量。每种方法都确认了铂含量从外圆周到内径增大的清楚趋势。沿着35毫米径向线的铂含量总增量大约是从约9到11原子百分比的2个原子百分比。如果电压源移到盘的内径,则可以预料铂含量的斜坡是相反的。
图7是图6的相同盘的矫顽磁性(Hc)对铂含量的图。对于铂含量的2个原子百分比增量,该数据示出Hc从大约2550 Oe增至2800,这就确认了矫顽磁性与铂含量之间的关系。
改变盘表面上的电场分布的方法不限于线性增大或减小电场。可以使用分布在盘表面上的特殊偏压触点和几何图案来产生具有可变成分特性的不同带和/或扇区。例如,各自保持选定电势的偏压触点同心阵列可以使得与衬底接触以调节盘表面上的电场分布。在上面详述的实施例中,这将导致沿着径向线调节电场;然而,使用偏压触点阵列也将允许沿着圆周进行调节。这种方法的变体可以允许沿着圆周分布具有大矫顽磁性调节的伺服岛或扇区。还提出了用于盘驱动器中的模式化介质(pattern media)作为一种减小磁道宽度的方式。使用本发明的方法,模式化磁性介质可以通过定制(tailor)盘表面上的电场分布来生产。
图8是本发明的采用多个电极67施加的沿着衬底17的中线截面的非均匀电场的图。前面图使用单个电极,其中该电极也是载体。这两种功能无需由同一构件提供。图8中的电极67在一个表面上接触衬底17,并且在发生沉积的相反表面上产生电场。图中示出电极67是点接触元件,但是它可以具有任何形状。电极67可以连接到独立电源,以允许各个电极具有相互独立的电势,因此允许在针对具体应用定制电场变化方面具有最大灵活性。图8的实施例的电极67也可以采用衬底平面上的任何x-y图案来排列。
在本发明的任何应用中,除了表面之外,衬底无需是导电的。因此,如果将导电材料层施加于表面,则对于本发明的方法可以使用非金属材料如玻璃。导电层可以通过其他方式溅射或沉积。如果使用RF信号施加偏压,则表面无需是导电的。
在溅射技术领域内公知的是,溅射系统中的变化使得难以作出定量预测;因此,上面给出的实验数据应当用于该技术的定性理解。
通过所施加的电场根据元素质量影响薄膜成分的能力可以概念性地应用于非磁性薄膜和非盘形衬底。如果电场可以在距离或时间上变化,并且元素质量足够不同,则可以采用本发明的技术。
权利要求
1.一种薄膜溅射方法,包括以下步骤将含有第一和第二元素的目标安置在溅射室中,第一元素的原子量高于第二元素的原子量;将带有导电表面的衬底与至少第一电极电接触;产生包含第一和第二元素的正离子的等离子体;以及通过将第一电势施加于第一电极以沿着导电表面形成非均匀电场,有差别地重新溅射第一元素,从而沉积其中第一元素的原子百分比沿着导电表面变化的薄膜。
2.如权利要求1所述的方法,其中,衬底是具有中央开孔的盘,并且第一电极在外径处接触导电表面,并且非均匀电场在盘的导电表面上沿着径向线单调变化。
3.如权利要求1所述的方法,其中,第一元素是铂,第二元素是钴,并且衬底是盘。
4.如权利要求2所述的方法,其中,薄膜是磁性的并且沿着盘上的径向线具有矫顽磁性梯度。
5.如权利要求1所述的方法,还包括以下步骤将导电表面与第二电极电接触;以及将第二电势施加于第二电极,第二电势不同于第一电势。
6.一种制造品,包括衬底;以及含有至少第一和第二元素的衬底表面上的薄膜,其中,第一元素的原子百分比沿着表面上的线系统地变化。
7.如权利要求6所述的制造品,其中,衬底是盘,第一元素是铂,第二元素是钴,薄膜是磁性的并且铂的原子百分比根据表面上的径向位置而变化。
8.一种盘驱动器,包括包括读取和写入头的磁性换能器;主轴;以及安放在主轴上的磁性薄膜盘,磁性薄膜盘含有钴和铂,并且磁性薄膜具有铂的原子百分比变化的系统模式。
9.如权利要求8所述的盘驱动器,其中,磁性薄膜具有与铂的原子百分比径向梯度相对应的矫顽磁性径向梯度。
10.一种薄膜溅射方法,包括以下步骤将含有第一和第二元素的目标安置在溅射室中,第一元素的原子量高于第二元素的原子量;产生包含第一和第二元素的正离子的等离子体;以及将衬底与至少第一电极电接触;通过将RF电势施加于第一电极以沿着衬底的表面形成非均匀电场,有差别地重新溅射第一元素,从而沉积其中第一元素的原子百分比沿着表面变化的薄膜。
全文摘要
描述了一种影响薄膜成分变化的方法。通过沿着衬底表面产生非均匀电场来操纵溅射系统中的元素等离子体场分布,以通过有差别地重新溅射目标元素来改变成分。非均匀电场由一个或多个与导电表面接触的电极或者通过使用RF偏压信号来施加。非均匀电场用来调节撞击薄膜表面的在等离子体中产生的离子的动能。由于溅射气体离子和中性粒子的动能和质量影响重新溅射速率,因此非均匀电场有差别地影响根据质量正在沉积的元素。通过在衬底的导电表面上的多个点施加不同电势,可以以多种模式调节衬底表面上的电场。例如,电场可以沿着盘的圆周和/或半径方向变化。在优选实施例中,将径向电压梯度施加于正在其上形成磁性薄膜的盘的导电表面,以在径向上调节磁性薄膜的铂含量。调节径向铂含量反过来又调节径向矫顽磁性。
文档编号C23C14/34GK1555554SQ02818178
公开日2004年12月15日 申请日期2002年8月16日 优先权日2001年9月18日
发明者欧内斯托·埃斯特班·马里内罗, 欧内斯托 埃斯特班 马里内罗, 马丁 雷斯, 蒂莫西·马丁·雷斯, 伊尔夫斯 罗森, 哈尔·伊尔夫斯·罗森, 罗德里克 约克, 布莱恩·罗德里克·约克 申请人:国际商业机器公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1