金刚石涂层制品及其制造方法

文档序号:3390483阅读:200来源:国知局
专利名称:金刚石涂层制品及其制造方法
技术领域
本发明涉及一种涂层制品,更特别地涉及一种金刚石涂层制品,其由涂有金刚石涂层的硬衬底构成。
背景技术
由于金刚石的非凡机械性能,例如它的高抗压强度、硬度和耐磨性,现有的金刚石涂层制品的破坏通常都不是由于涂层本身的磨损而是由于金刚石涂层与衬底之间的界面的强度不足。
金刚石涂层可以沉积在金属衬底或陶瓷复合材料制造的衬底上。金属衬底的例子包括高速钢(HSS)衬底或不锈钢(SS)衬底。HSS和SS都是铁(Fe)与碳(C)以及其他合金元素的合金。复合材料制造的衬底的例子可以是硬质合金衬底,它具有通过钴(Co)粘合剂粘合在一起的碳化钨(WC)颗粒结构。
金刚石涂层沉积是在高温下,通常在850℃,于原子碳(C)和氢(H)的气氛中进行的。当从沉积温度冷却到环境温度时,涂层物体的尺寸通常会变化,发生缩小。
缩小的量取决于热膨胀系数(CTE)。金刚石涂层和上述衬底的CTE显著不同。例如,HSS和SS衬底的CTE为约13*10-6,硬质合金衬底的CTE为约3*10-6,与金刚石的CTE 0.3*10-6相比均很大。从沉积温度冷却时,由于涂层与衬底的CTE之间的巨大差异,衬底缩小得更多。因此,金刚石涂层会产生很高的压缩残余应力。这种CTE不匹配和所造成的残余应力的形成限制了金刚石涂层的厚度并可能导致涂层从衬底剥离。
已经证实Fe充当将相邻的金刚石层转化成石墨的催化剂。Fe的有害催化作用导致了石墨碳层的形成并降低了在金刚石-硬质合金界面上的粘合。类似地,在硬质合金中通常被用作粘合剂的Co对于沉积良好粘合的金刚石薄膜是不利的。与Fe类似,Co充当将相邻的金刚石层转化成石墨的催化剂并降低在金刚石-硬质合金界面上的粘合。由于所述催化影响,在钢或硬质合金衬底上直接沉积金刚石会导致被低质量金刚石覆盖的非粘合石墨烟灰层的形成。并且,碳原子向含Fe或含Co衬底的高扩散速率导致从界面损失碳原子,留下空位并又进一步降低界面强度。因此,钢和硬质合金都属于碳敏感材料的种类。
为提高金刚石涂层对碳敏感材料的附着力,有人提出了使用陶瓷界面层来充当扩散阻挡。这些陶瓷层被插入在衬底与金刚石涂层之间。不过,陶瓷界面层没有与金刚石形成化学键,因此不能在金刚石涂层与衬底之间提供良好的粘合。因此,金刚石涂层与碳敏感衬底之间的粘合仍然是一个问题。
为提高金刚石涂层对硬质合金的粘合,有人提出从硬质合金的表面层中蚀刻掉Co粘合剂。这防止了可能发生的Co与金刚石涂层的接触。为此,开发了包括酸蚀在内的各种技术。但是,由于松散的WC颗粒,Co粘合剂的蚀刻会降低硬质合金制品的界面表面强度。松散的WC颗粒对金刚石涂层提供一个不牢固的界面。此外,由于硬质合金制品通常以脆性方式破坏(往往由于在表面上或表面附近的小裂纹的存在),上述的Co粘合剂蚀刻会显著降低WC衬底本身的强度。
也有人提出了其中具有极少量Co粘合剂的无粘合剂硬质合金,并且还提出了在其上的金刚石涂层。不过,由于无粘合剂硬质合金的低断裂韧性,由此制造的制品的性能远不能令人满意。有人提出了利用热化学处理如硼化,即向硬质合金的表面层渗硼,来提供一个分隔钴粘合剂与金刚石涂层的扩散阻挡。但是,这会导致这些表面层的断裂韧性显著下降并使硬质合金制品变弱。
陶瓷界面层并不能消除金刚石涂层的应力并且不能防止由于CTE不匹配而产生的残余应力。因此,当冷却到环境温度时,沉积在具有陶瓷界面层的衬底上的金刚石涂层处于很高的残余应力下,如上所述这限制了涂层的厚度并可能导致涂层的剥离。
有人提出使用由形成碳化物的金属构成的金属层来分离硬质合金表面与金刚石涂层。但是,在沉积金刚石涂层沉积的条件下,形成碳化物的金属会消耗来自硬质合金表面层的碳,导致其脱碳和在WC的情形下形成脆性η-相。同时,在沉积金刚石涂层的条件下,在钢的情形下,形成碳化物的金属可能会扩散进入衬底。
同时,还有人提出了使用双层保护涂层,其中位于衬底之上并与之邻接的第一层由选自MetCO、MetCON和MetON的碳扩散阻挡构成,第二(次最里面)耐磨涂层由至少一个MetC、MetN或MetCN层构成,其中Met为Ti、Hf、V、Zr、Si、B或元素周期表中3-7副族的其它金属或其混合物。不过,第一层中含的氧可能会扩散开,导致涂层性能发生改变。所提出的界面层方案并没有消除在金刚石涂层中产生应力。并且,所提出的双层结构的沉积非常复杂和显贵。
因此,所需要的是一种能防止碳从金刚石涂层扩散的金刚石涂层制品。另外需要的是一种具有能阻挡碳的扩散但不具有现有技术的上述缺陷的界面层的金刚石涂层复合结构。
发明概述由此,本发明的一个目的在于提供克服了现有技术缺陷的一种制品。在本发明的一个实施方案中,公开了一种金刚石涂层衬底。位于金刚石涂层与衬底之间的是界面复合叠层,它包括与衬底相邻并联接的至少一个陶瓷界面层和位于陶瓷界面层上的至少一个金属界面层。陶瓷界面层的厚度大于在金刚石沉积条件下来自金属层的原子或衬底原子的扩散深度。金属层的厚度大于在金刚石沉积条件下碳的扩散深度。在金刚石沉积过程中,陶瓷层在金属层与衬底之间提供一道扩散壁垒的同时,金属层向金刚石涂层提供了一个粘合层。
在本发明的另一个实施方案中,公开了一种金刚石涂层衬底。位于金刚石涂层与衬底之间的是一个包括陶瓷界面层与金属界面层的界面复合叠层。在金刚石沉积过程中,金属层的表层由于碳原子的扩散而被转化成碳化物,由此提供对金刚石涂层的良好粘合和扩散阻挡。在金属层的外层被转化成碳化物的同时,金属层的内层保持不变。在沉积金刚石涂层时的高温条件下,金属层的这一内层的抗剪切形变能力很低。因此,它可以塑性变形并消除可能在金刚石涂层中累积的残余应力。而且,金属层的这一保持层还能提高衬底的整体强度。被转化成碳化物的金属层外层充当金刚石涂层的硬衬底。
在本发明的另一个实施方案中,公开了一种金刚石涂层钢制品,它具有钢衬底和位于金刚石涂层与衬底之间的界面复合叠层。界面复合叠层中的至少一个界面层是金属层并由Cr、Ti、Zr、W、Ni或其它可形成碳化物的金属或其混合物构成。金属界面层的厚度大于在金刚石沉积条件下碳扩散的深度。在向金属层上沉积金刚石层的过程中,此金属层的表层由于碳原子的扩散而被转化成碳化物,由此提供对金刚石涂层的良好粘合和扩散阻挡。金属界面层的厚度大于碳扩散深度并且,因此,金属层只被部分地转化成金属碳化物。金属层的内层保持不变。
在本发明的另一个实施方案中,界面复合叠层包括位于上述具有陶瓷的系统之内的额外界面层,如位于衬底与金属界面层之间的过渡金属氮化物、硼化物或碳化物,以阻止金属界面层与衬底之间的相互扩散。
在本发明的另一个实施方案中,在金刚石涂层上可以提供一个像金刚石的碳如sp2-键合与sp3-键合混合的碳的外层,以填充金刚石颗粒之间的粗糙谷地。
在本发明的另一个实施方案中,可以在沉积金刚石后对上述制品进行热处理,形成具有马氏体结构的衬底。由于马氏体转变过程中的钢体积增加,这将进一步消除金刚石涂层中的残余应力。
在另一个实施方案中,提供了一种制造涂有金刚石涂层的钢制品的方法。根据此方法,钢衬底首先被涂覆若干个界面层,其中至少表面界面层是金属如Cr、Ti、Ni、W等等。在金属界面层之上沉积金刚石涂层。在沉积金刚石过程中,界面金属层的表层被转化成碳化物。任选地,在达到要求的金刚石厚度之后,通过降低氢轰击率沉积sp2-键合与sp3-键合混合的碳层,其中所述氢轰击率的降低是通过减少穿过室内的产生氢的气体流实现的。
在本发明的另一个实施方案中,公开了一种具有硬质合金衬底和位于金刚石涂层与硬质合金衬底之间的界面层的金刚石涂层硬质合金制品。至少一个界面层是金属层。此金属界面层提高硬质合金制品的强度并通过降低硬质合金衬底内的钴与金刚石涂层的相互作用而防止在沉积金刚石过程中形成石墨层。
在本发明的另一个实施方案中,公开了一种硬质合金复合材料。此硬质合金复合材料具有界面层,其中至少一个界面层选自高再结晶温度非晶态氮化物、高再结晶温度非晶态硼化物和高再结晶温度非晶态碳化物。
从下面提供的详细说明中可以看出本发明的进一步应用领域。应当理解,详细说明和具体实施例,在指出本发明的优选实施方案的同时,只用于说明目的而并非用于限制本发明的范围。
附图简述从以下详细说明和附图中,本发明将得到更充分的理解,其中

图1表示根据本发明教导的复合材料的横断面图。
图1表示根据本发明教导的复合叠层。如图所示,材料10具有由碳敏感材料如工具钢或陶瓷材料构成的基层或衬底层12。被限制在材料10的表面14附近的是高碳含量层16如金刚石涂层。位于金刚石涂层16与衬底层12之间的是中间界面阻挡叠层18,它的作用是在界面阻挡叠层18与金刚石涂层16之间产生一个碳化物富集层20。界面层起防止碳从金刚石涂层16向衬底层12扩散的作用,还起在金刚石涂层16与界面阻挡叠层18之间提供优良的粘合的作用。虽然界面阻挡叠层18被画成一个单层合层,但预见界面阻挡叠层18可以另外采取多层叠层结构的形式。
在多层结构中,至少界面阻挡叠层18的金属表层22由Cr、Ti、Zr、W、Ni或其它可形成碳化物的金属或其混合物构成。在沉积金刚石过程中,由于碳原子的扩散,界面阻挡叠层18的碳化物富集层20被转化成碳化物。界面阻挡叠层18的碳化物富集层20形成于金属层22中,它在金刚石涂层16与界面阻挡叠层18之间提供优良的粘合。金属层22的厚度大于碳化物富集层20的碳扩散厚度,因此,金属层22只是部分地被转化成碳化物。金属层22的其余部分在高温下具有低的抗塑性变形能力,因此被用来消除金刚石涂层16中的残余应力。
如果衬底层12由高速钢构成,则界面阻挡叠层18与衬底层12的至少一个界面层是陶瓷界面层24。此陶瓷界面层24用来防止钢衬底12与金属界面层22之间的材料相互扩散。还可以在钢衬底与金属界面层之间提供额外的由陶瓷如过渡金属的氮化物、硼化物或碳化物构成的界面层26,以进一步防止金属层22与衬底层12之间的材料相互扩散以及补充应力消除性能。
高速钢的特征在于高强度、硬度和耐磨性。高速钢衬底的化学组成包括1%的C、直至18%的W、直至10%的Mo和直至5%的V,并可以包含其它合金元素。对此钢的恰当热处理包括加热到高温形成高度合金奥氏体的微观结构,继之以淬火导致形成马氏体微观结构。在此马氏体转变中钢的体积增大,而密度减小。碳含量为0.2%-1.4%的奥氏体的体积度为0.12227-0.12528cm3/g,而马氏体的体积度在0.12708-0.13061cm3/g的范围的。在沉积金刚石过程中高速钢暴露于高温之下可能会改变它的结构。即,马氏体可能溶化并可能形成铁素体,硬度和耐磨性显著下降。不锈钢的典型化学组成包括0.1%的C、18%的Cr、10%的Ni和1%的Ti,并且可以包含其它合金元素。
当材料10具有由硬质合金材料制成的基层或衬底层12时,在金刚石涂层16与硬质合金衬底层12之间有类似的界面层。界面阻挡叠层18的至少一个层是金属层22。此金属层22提高硬质合金制品10的强度并通过降低硬质合金衬底内的钴与金刚石涂层的相互作用而防止在沉积金刚石过程中形成石墨层。
硬质合金衬底12是一种复合材料,由通过金属基质结合在一起的碳化物颗粒构成。预想所述碳化物是钨的碳化物即WC、钛的碳化物即TiC、钒的碳化物即VC和其它一些碳化物。应用最广泛的金属基质是钴。基质充当坚韧的″胶水″或″粘结剂″,将坚硬但脆性的碳化钨颗粒(″块(blocks)″)结合在一起。
任选地,硬质合金复合材料10具有额外的界面层26,其中至少一个界面层选自高再结晶温度非晶态氮化物、高再结晶温度非晶态硼化物和高再结晶温度非晶态碳化物。
任选地,金刚石涂层硬质合金材料10具有一个或多个界面层26和一个陶瓷界面层,其中界面层26包括一个选自Cr、Ti、Ni、Zr或W或其它金属或它们的混合物的金属层22,陶瓷界面层选自过渡金属的硼化物、氮化物和碳化物。
如同钢基衬底的情况一样,在沉积金刚石过程中金属层22的表层被转化成金属碳化物。选择金属层22的厚度大于在金刚石沉积条件下的碳扩散深度。由此,只有部分金属层22被转化成碳化物。此金属层22的其余部分仍然是金属层。金属层22保持材料的强度和在高温下的低抗塑性变形能力。金属层22在沉积金刚石之后进一步塑性变形并降低金刚石涂层16内的残余应力。此外它还能减轻硬质合金的表面缺陷对其强度的削弱效果。
充当催化剂扩散壁垒的任选的额外界面层26可以由高再结晶温度非晶态氮化物、硼化物和碳化物构成。关于这一点,高再结晶温度通常相应于高于材料在其使用中所遇到的温度的温度。中间层的厚度在2-15μm之间并优选在5-10μm之间。
或者,额外的界面层26可以采取过渡材料的硼化物、氮化物和碳化物的形式。作为非限制性例子,这些碳化物可以包括TiC、TiCN、TiAl、TiN、CrN、CrC、ZrN和ZrC。另外,额外的界面层26也可以采取铝的氧化物材料如Al2O3的形式。
特别地预想,用于减少石墨形成的中间阻挡层26可以由金属或半金属层构成。此金属或半金属层可以由例如Cr、Ti、Zr等材料构成,或者可以是硅。
在沉积了界面阻挡复合叠层18之后,在此材料之上沉积金刚石涂层16。此沉积可以采用例如物理汽相沉积来完成。金刚石涂层采用例如热丝化学气相沉积而沉积在金属层22之上。任选地,在达到要求的金刚石涂层16的厚度之后,通过降低氢轰击率沉积sp2-键合与sp3-键合混合的碳层28,其中所述氢轰击率的降低是通过减少穿过室内的产生氢的气体流实现的。在涂覆之后,可以通过将其上具有金刚石涂层的制品在真空中加热和在一股惰性气体或其它非反应气体射流中淬火以及退火对其进行热处理。金刚石涂层之上的sp2-键合与sp3-键合混合的碳起填充金刚石颗粒之间的粗糙谷地的作用。
如果衬底层12由钢制成,则在沉积金刚石之后可以对整个钢复合材料进行热处理,形成具有马氏体结构的衬底层12。由于在马氏体转变过程中钢衬底层12的体积增加,这将进一步消除金刚石涂层16中的残余应力。
下面描述制造涂有金刚石涂层的钢复合材料制品的方法。可以预见,下列方法同样适用于在其它衬底材料上沉积金刚石涂层。首先在钢衬底上涂覆若干界面层,其中至少表面界面层是金属如Cr、Ti、Ni、W等。此沉积可以利用例如物理汽相沉积完成。然后采用例如热丝化学气相沉积在金属界面层上沉积金刚石涂层。在达到要求的金刚石厚度之后,任选地通过降低氢轰击率沉积sp2-键合与sp3-键合混合的碳层,其中所述氢轰击率的降低是通过减少穿过室内的产生氢的气体流实现的。在涂覆之后,可以通过将其上具有金刚石涂层的制品在真空中加热和在一股惰性气体或其它非反应气体射流中淬火以及退火对其进行热处理。
当形成陶瓷基复合材料时,界面层18可以利用CVD、PVD和电镀工艺或其组合涂覆到陶瓷碳化物衬底12上。在这方面,优选地利用本领域公知的普通的物理汽相沉积(PVD)、喷涂或化学(即自催化)沉积技术在复合材料上汽相沉积、喷涂或化学沉积连续的膜。
PVD或溅射可用于沉积在上面被认为可以构成中间层的所有导电材料。在电镀工艺中,复合材料被制为电镀池中的阴极,其中电镀池中具有含要沉积的金属的盐的电解液。当电流在适当的电位下通过池时,期望的金属在阴极复合材料的表面上沉积出来。在化学(即自催化)工艺中,复合材料的表面被种上催化剂,然后暴露于含有要沉积的金属的离子的浴。所述催化剂引发金属离子向元素金属的还原,从而在衬底表面上形成金属膜。在PVD和溅射工艺中,要镀覆的材料从其蒸汽中凝结在衬底上。所述连续的界面膜或层可以还包含一个具有比下面的复合材料衬底更高的再结晶温度(例如>90%)的高温非晶态碳化物材料层。
对发明的说明本质上仅仅是示范性的,那些不脱离本发明主旨的变体应被认为落入本发明的范围之内。例如,尽管所公开的叠层材料被预想成是切削工具刀片(insert)形式的,但可以预见该材料也能被用于非工具应用。同样,可以预见复合材料非平面切削嵌入物。这些变体不应被认为是偏离了本发明的精神和范围。
权利要求
1.一种复合结构,包括衬底;位于衬底之上的界面阻挡叠层,其中所述界面阻挡叠层包括至少一个陶瓷层和至少一个金属层;和位于所述界面阻挡叠层之上的金刚石涂层,其中所述金属层被部分地转化成碳化物层。
2.根据权利要求1的复合结构,其中界面阻挡叠层包括选自高再结晶温度非晶态氮化物、高再结晶温度非晶态硼化物和高再结晶温度非晶态碳化物及其组合的界面层。
3.根据权利要求2的复合结构,其中界面层位于所述陶瓷层与所述衬底之间。
4.根据权利要求1的复合结构,其中界面阻挡叠层包括选自过渡金属的硼化物、氮化物和碳化物及其组合的界面层。
5.根据权利要求1的复合结构,其中界面阻挡叠层包括选自TiC、TiCN、TiAl、TiN、CrN、CrC、ZrN、ZrC、WC、SiC、Si3N4及其组合的界面层。
6.根据权利要求5的复合结构,其中界面层位于所述陶瓷层与所述衬底之间。
7.根据权利要求1的复合结构,其中界面阻挡叠层包括Al2O3界面层。
8.根据权利要求书7的复合结构,其中界面层位于所述陶瓷层与所述衬底之间。
9.根据权利要求1的复合结构,其中界面阻挡叠层包含选自Cr、Ti、Zr、W、Si及其组合的界面层。
10.根据权利要求1的复合结构,其中界面阻挡叠层的厚度为2μm-15μm。
11.根据权利要求1的复合结构,其中界面阻挡叠层的厚度为5μm-10μm。
12.根据权利要求1的复合结构,其中所述界面阻挡叠层的所述陶瓷层的厚度为2μm-5μm。
13.根据权利要求1的复合结构,其中所述界面阻挡叠层的所述金属层的厚度为2μm-7μm。
14.根据权利要求1的复合结构,其中所述金属层的所述碳化物层的厚度为1μm-3μm且面对所述金刚石涂层。
15.一种复合叠层,包括碳敏感的衬底;能阻止碳扩散的界面阻挡叠层;和位于所述界面阻挡叠层之上的碳化物富集涂层。
16.根据权利要求15的复合叠层,其中界面阻挡叠层包括位于所述陶瓷与所述衬底之间的选自高再结晶温度非晶态氮化物、高再结晶温度非晶态硼化物和高再结晶温度非晶态碳化物及其组合的界面层。
17.根据权利要求15的复合叠层,其中界面阻挡叠层包括选自过渡金属的硼化物、氮化物和碳化物及其组合的界面层。
18.根据权利要求15的复合叠层,其中界面阻挡叠层包括位于所述衬底与所述碳化物层之间的选自TiC、TiCN、TiAl、TiN、CrN、CrC、ZrN、ZrC及其组合的界面层。
19.根据权利要求15的复合叠层,其中界面阻挡叠层包括位于所述衬底与所述碳化物层之间的Al2O3界面层。
20.根据权利要求15的复合叠层,其中界面阻挡叠层包括位于所述衬底与所述碳化物层之间的选自Cr、Ti、Zr、Si、W、Ni及其组合的界面层。
21.根据权利要求15的复合叠层,其中界面阻挡叠层是在存在碳的情况下会形成碳化物的金属。
22.根据权利要求15的复合叠层,其中界面阻挡叠层的厚度为5μm-10μm。
23.根据权利要求15的复合叠层,进一步包括位于碳化物富集涂层之上的碳富集涂层。
24.根据权利要求23的复合叠层,其中碳富集涂层包括金刚石。
25.根据权利要求15的复合叠层,其中衬底包括钢。
26.根据权利要求15的复合叠层,其中衬底包括硬质合金。
27.一种切削工具,包括碳敏感的衬底;位于碳敏感衬底上的用于阻止碳扩散的陶瓷层;位于陶瓷层上的金属层;位于所述金属层上的碳化物层;和位于所述碳化物层上的金刚石层。
28.根据权利要求27的切削工具,其中碳敏感材料是钢。
29.根据权利要求28的切削工具,其中钢在沉积金刚石之后被热处理,结果形成具有马氏体结构的衬底。
30.根据权利要求27的切削工具,其中碳敏感材料是硬质合金。
31.根据权利要求书27的切削工具,包括一个位于所述衬底与所述金刚石层之间的选自过渡材料的硼化物、氮化物和碳化物及其组合的界面层。
32.根据权利要求27的切削工具,包括一个位于所述衬底与所述金刚石层之间的选自TiC、TiCN、TiAl、TiN、CrN、CrC、ZrN、ZrC及其组合的界面层。
33.根据权利要求27的切削工具刀片,包括一个位于所述衬底与所述金刚石层之间的Al2O3界面层。
34.根据权利要求27的切削工具,包括一个位于所述衬底与所述金刚石层之间的选自Cr、Ti、Zr、Si及其组合的界面层。
35.根据权利要求27的切削工具,进一步包括一个sp2-键合与sp3-键合混合的碳层。
36.一种形成复合结构的方法,其步骤包括提供碳敏感的衬底;在衬底上沉积一层陶瓷;在陶瓷上沉积一层金属;在足以将金属层的一部分转化成碳化物的条件下在金属上沉积一层含碳材料。
37.根据权利要求36的方法,其中提供碳敏感衬底是提供钢或硬质合金之一。
38.根据权利要求36的方法,进一步包括对复合结构进行热处理的步骤。
39.根据权利要求36的方法,其中沉积一层金属是沉积一层厚度为2μm-7μm的金属。
40.根据权利要求36的方法,其中沉积一个碳层是沉积一个含碳材料层,使得1μm-3μm的金属被转化成碳化物。
41.根据权利要求36的方法,其中沉积一个碳层是沉积一个金刚石层。
全文摘要
公开了一种具有钢或硬质合金衬底的金刚石涂覆的切削工具。位于金刚石涂层(10)与衬底(12)之间的内层能防止碳和其它物质种类的扩散。
文档编号C23C16/26GK1859985SQ200480028147
公开日2006年11月8日 申请日期2004年7月30日 优先权日2003年9月29日
发明者L·C·莱夫, Y·T·程, M·J·卢基特施, A·M·魏纳 申请人:通用汽车公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1