软磁材料,粉末磁芯和制备软磁材料的方法

文档序号:3403057阅读:202来源:国知局
专利名称:软磁材料,粉末磁芯和制备软磁材料的方法
技术领域
本发明涉及软磁材料,粉末磁芯和制备软磁材料的方法,更具体而言,本发明涉及能够减少铁损的软磁材料,粉末磁芯和制备软磁材料的方法。
背景技术
通常,电磁钢板用于具有电磁阀、发动机或电源电路作为软磁组件的电气设备。要求软磁组件具有能得到大的磁通密度和能对外场变化灵敏地作出反应的磁性。
当在交流磁场中使用这种软磁组件时,发生称为铁损的能量损耗。这种铁损表示为磁滞损耗和涡流损耗之和。磁滞损耗对应于用于改变软磁组件的磁通密度所必需的能量。磁滞损耗与工作频率成正比,主要在不大于1kHz的低频率范围内占有优势。在此使用的术语″涡流损耗″表示主要由软磁组件中流动的涡流导致的能量损耗。涡流损耗与工作频率的平方成正比,主要在至少1kHz的高频率范围内占有优势。
要求软磁组件具有减少这种铁损的磁性。为了实现它,必须增加软磁组件的导磁率μ、饱和磁通密度Bs和电阻率ρ,并且必须减少软磁组件的矫顽磁力Hc。
近年来,由于高工作频率朝设备的高输出和高效率发展,比电磁钢板具有更小涡流损耗的粉末磁芯已经引起关注。这种粉末磁芯由含有金属磁性颗粒和覆盖其表面的玻璃状绝缘包覆层的多个复合磁性颗粒组成。所述金属磁性颗粒由下列各项制成Fe、Fe-Si基合金、Fe-Al(铝)基合金、Fe-N(氮)基合金、Fe-Ni(镍)基合金、Fe-C(碳)基合金、Fe-B(硼)基合金、Fe-Co(钴)基合金、Fe-P基合金、Fe-P基合金、Fe-Ni-Co基合金、Fe-Cr(铬)基合金或Fe-Al-Si基合金。
为了减少粉末磁芯的铁损中的磁滞损耗,通过从金属磁性颗粒中消除应变和位错并且使磁畴壁的移动简单化,可以减少粉末磁芯的矫顽磁力Hc。为了从金属磁性颗粒中充分消除应变和位错,必须将成型的粉末磁芯在至少400℃的高温、优选在至少550℃的高温、更优选在至少650℃的高温加热处理。
然而,例如由于在成型中需要抗粉末变形性,绝缘包覆层由无定形化合物如磷酸铁化合物制成,并且得不到足够的高温稳定性。当试图在至少400℃的高温加热处理粉末磁芯时,由于组成金属磁性颗粒的金属元素扩散/渗透到无定形物质中,丧失了绝缘性能。因此,存在这样的问题,即当试图通过高温加热处理减少磁滞损耗时,粉末磁芯的电阻率ρ降低以致涡流损耗增加。特别是,近来要求电气设备小尺寸、高效率和高输出并且必须在更高频率范围内使用电气设备以满足这些要求。在高频率范围内增加的涡流损耗阻碍了对获得小尺寸、高效率和高输出的电气设备的尝试。
关于这点,例如日本专利公开号2003-272911(专利文献1)或日本专利公开号2003-303711(专利文献2)公开了能够提高绝缘包覆层的高温稳定性的技术。上述日本专利文献1公开了具有高温稳定性的含有磷酸铝绝缘包覆层的复合磁性颗粒的软磁材料。在上述专利文献1中,以如下方法制备软磁材料首先,在铁粉上喷射例如包含含铝的磷酸盐和含钾等的重铬盐的绝缘包覆层溶液。然后,将用绝缘包覆层溶液喷射的铁粉在300℃保持30分钟并且在100℃保持60分钟。从而使形成在铁粉上的绝缘包覆层干燥。然后,对形成有绝缘包覆层的铁粉进行压力成型并且在压力成型之后加热处理以完成软磁材料。
上述专利文献2公开了一种铁基粉末,其是这样的铁基粉末,包含主要由铁组成的粉末,所述粉末的表面覆盖有包含有机硅树脂和颜料的包覆层,并且所述的铁基粉末具有包含磷化合物的包覆层作为所述包含有机硅树脂和颜料的包覆层的底层。
专利文献1日本专利公开号2003-272911专利文献2日本专利公开号2003-303711

发明内容
本发明要解决的问题然而,在上述专利文献1中公开的技术具有这样的缺陷,即在磷酸铝和金属磁性颗粒之间的粘附性不足并且磷酸铝基绝缘包覆层的挠性低。因此,在对形成有磷酸铝基绝缘包覆层的铁粉压力成型时,绝缘包覆层由于压力而破裂以致降低软磁材料的电阻率ρ。因此,产生增加涡流损耗的问题。同样,在上述专利文献2公开的技术中,不能同时提高耐热性和挠性,并且不能充分减少铁损。
因此,本发明的一个目的是提供能够减少铁损的软磁材料、粉末磁芯和制备软磁材料的方法。
解决问题的手段根据本发明的软磁材料是包含复合磁性颗粒的软磁材料,所述复合磁性颗粒含有主要由Fe(铁)组成的金属磁性颗粒和覆盖该金属磁性颗粒的绝缘包覆层,并且所述绝缘包覆层包含磷酸、Fe和选自Al、Si(硅)、Mn(锰)、Ti(钛)、Zr(锆)和Zn(锌)中的至少一种原子。在与金属磁性颗粒接触的绝缘包覆层的接触表面中包含的Fe的原子比大于在该绝缘包覆层的表面中包含的Fe的原子比。在与金属磁性颗粒接触的绝缘包覆层的接触表面中包含的上述至少一种原子的原子比小于在该绝缘包覆层的表面中包含的上述至少一种原子的原子比。
根据本发明的软磁材料,与金属磁性颗粒接触的绝缘包覆层的接触表面由包含大量磷酸和Fe的层形成。所述包含大量磷酸和Fe的层具有与Fe的高粘附性,由此可以提高金属磁性颗粒和绝缘包覆层之间的粘附性。因此,在压力成型中绝缘包覆层几乎不破裂并且可以抑制涡流损耗的增加。此外,绝缘包覆层的表面由包含大量磷酸和选自Al、Si、Mn、Ti、Zr和Zn中的至少一种原子的层形成。与包含大量磷酸和Fe的层相比,包含大量磷酸和选自Al、Si、Mn、Ti、Zr和Zn中的至少一种原子的层具有优良的高温稳定性,由此将其在高温加热处理时,软磁材料不破裂。另外,该层还抑制在与金属磁性颗粒接触的绝缘包覆层的接触表面上形成的层的分解。因此,可以提高绝缘包覆层的耐热性,并且可以在不降低涡流损耗的情况下减少通过压力成型这种软磁材料制备的粉末磁芯的磁滞损耗。因此,可以减少粉末磁芯的铁损。
优选在根据本发明的软磁材料中,绝缘包覆层含有覆盖金属磁性颗粒的第一绝缘包覆层和覆盖第一绝缘包覆层的第二绝缘包覆层。第一绝缘包覆层包含磷酸和Fe并且第二绝缘包覆层包含磷酸和所述的至少一种原子。
因此,绝缘包覆层具有如下两层结构第一绝缘包覆层,所述第一绝缘包覆层具有与金属磁性颗粒优异的粘附性;和覆盖第一绝缘包覆层的第二绝缘包覆层,所述第二绝缘包覆层具有对于第一绝缘包覆层优良的高温稳定性。通过第一绝缘包覆层可以提高金属磁性颗粒与绝缘包覆层之间的粘附性,并且通过第二绝缘包覆层可以提高绝缘包覆层的耐热性。
优选在根据本发明的软磁材料中,复合磁性颗粒还具有展示绝缘性能、覆盖绝缘包覆层的表面的含Si包覆层。因此,含Si包覆层确保金属磁性颗粒之间的绝缘性能,由此还可以抑制在通过压力成型这种软磁材料制备的粉末磁芯中涡流损耗的增加。
通过压力成型上述软磁材料而制备根据本发明的粉末磁芯。
根据本发明所述方面制备软磁材料的方法是制备包含这样的复合磁性颗粒的软磁材料的方法,所述复合磁性颗粒含有主要由Fe组成的金属磁性颗粒和覆盖该金属磁性颗粒的绝缘包覆层,所述方法包括形成覆盖金属磁性颗粒的绝缘包覆层的步骤。形成绝缘包覆层的步骤包括第一包覆步骤,所述第一包覆步骤通过用包含Fe离子和磷酸离子的化合物或溶液包覆金属磁性颗粒形成第一绝缘包覆层;和在第一包覆步骤之后的第二包覆步骤,所述第二包覆步骤通过用包含选自Al离子、Si离子、Mn离子、Ti离子、Zr离子和Zn离子中的至少一种离子和磷酸离子的化合物或溶液包覆第一绝缘包覆层形成第二绝缘包覆层。
根据本发明另一个方面制备软磁材料的方法是制备包含这样的复合磁性颗粒的软磁材料的方法,所述复合磁性颗粒含有主要由Fe组成的金属磁性颗粒和覆盖该金属磁性颗粒的绝缘包覆层,所述方法包括形成所述覆盖金属磁性颗粒的绝缘包覆层的步骤。形成绝缘包覆层的步骤包括第一包覆步骤,所述第一包覆步骤通过将磷酸溶液加入到通过将软磁颗粒粉末分散在有机溶剂中而制备的悬浮液中并且进行混合/搅拌形成第一绝缘包覆层;和在第一包覆步骤之后的第二包覆步骤,所述第二包覆步骤通过将磷酸溶液和包含选自Al、Si、Mn和Zn中的至少一种原子的金属醇盐溶液加入到所述悬浮液中并且进行混合/搅拌形成第二绝缘包覆层。
根据本发明制备软磁材料的方法,与金属磁性颗粒接触的绝缘包覆层的接触表面由包含磷酸和Fe的第一绝缘包覆层形成。包含大量磷酸和Fe的层具有与Fe的高粘附性,由此可以提高金属磁性颗粒和绝缘包覆层之间的粘附性。因此,在压力成型中绝缘包覆层几乎不破裂并且可以抑制通过压力成型这种软磁材料制备的粉末磁芯的涡流损耗的增加。此外,绝缘包覆层的表面由包含磷酸和选自Al、Si、Ti和Zr中的至少一种原子的第二绝缘包覆层形成。与包含大量磷酸和Fe的第一绝缘包覆层相比,包含大量磷酸和选自A、Si、Ti和Zr中的至少一种原子的层具有优良的高温稳定性,由此在高温加热处理软磁材料时不降低绝缘性能。另外,第二绝缘包覆层还防止第一绝缘包覆层的分解。因此,可以提高绝缘包覆层的耐热性,并且可以减少通过压力成型这种软磁材料制备的粉末磁芯的磁滞损耗。因此,可以减少粉末磁芯的铁损。
在本说明书中,用语″主要由Fe组成″表示Fe的比率至少是50质量%。
本发明的效果根据本发明的软磁材料、本发明的粉末磁芯和本发明的制备软磁材料的方法的每一种,在压力成型中绝缘包覆层几乎不破裂并且可以抑制粉末磁芯的涡流损耗的增加。此外,可以提高绝缘包覆层的耐热性,并且可以减少磁滞损耗。从而可以减少粉末磁芯的铁损。
附图简述

图1是以放大的方式显示由根据本发明第一实施方案的软磁材料制备的粉末磁芯的示意图。
图2A是显示图1中的一个复合磁性颗粒的放大图。
图2B是显示Fe的原子比和Al的原子比沿着示于图2A中的绝缘包覆层中的线II-II变化的图。
图3是顺着步骤顺序显示根据本发明第一实施方案制备粉末磁芯的方法的图。
图4是以放大的方式显示由根据本发明第二实施方案的软磁材料制备的粉末磁芯的示意图。
图5A是显示图4中的一个复合磁性颗粒的放大图。
图5B是显示Fe的原子比和Al的原子比沿着示于图5A中的绝缘包覆层中的线V-V变化的图。
图6是顺着步骤顺序显示根据本发明第二实施方案制备粉末磁芯的方法的图。
图7是显示根据本发明第三实施方案的绝缘包覆层中,Fe的原子比和Al的原子比沿着图5A中的线V-V变化的图。
图8是以放大的方式显示由根据本发明第四实施方案软磁材料制备的粉末磁芯的示意图。
图9A是显示图8中的一个复合磁性颗粒的放大图。
图9B是显示Fe的原子比和Al的原子比沿着示于图9A中的绝缘包覆层中的线IX-IX变化的图。
图10是顺着步骤顺序显示根据本发明第四实施方案制备粉末磁芯的方法的图。
图11是以放大的方式显示由根据本发明第五实施方案的软磁材料制备的粉末磁芯的示意图。
图12是顺着步骤顺序显示根据本发明的第五实施方案的制备粉末磁芯的方法的图。
图13A是显示本发明第六实施方案中的一个复合磁性颗粒的放大图。
图13B是显示Fe的原子比和Al的原子比沿着示于图13A中的绝缘包覆层中的线XIII-XIII变化的图。
图14是顺着步骤顺序显示根据本发明第六实施方案制备粉末磁芯的方法的图。
附图标记的描述10金属磁性颗粒,20,20a至20c绝缘包覆层,20d边界区域,25包覆层,30复合磁性颗粒。
实施本发明的最佳方式现在参考附图描述本发明的实施方案。
(第一实施方案)图1是以放大的方式显示由根据本发明第一实施方案的软磁材料制备的粉末磁芯的示意图。如图1所示,由根据本发明的第一实施方案的软磁材料制备的粉末磁芯包含多个复合磁性颗粒30,所述复合磁性颗粒30含有金属磁性颗粒10和覆盖金属磁性颗粒10的表面的绝缘包覆层20。例如,由有机物质(没有显示)或通过在复合磁性颗粒30的不规则处之间啮合,将多个复合磁性颗粒30相互结合。
金属磁性颗粒10由例如下列各项制成Fe、Fe-Si基合金、Fe-Al(铝)基合金、Fe-N(氮)基合金、Fe-Ni(镍)基合金、Fe-C(碳)基合金、Fe-B(硼)基合金、Fe-Co(钴)基合金、Fe-P基合金、Fe-P基合金、Fe-Ni-Co基合金、Fe-Cr(铬)基合金或Fe-Al-Si基合金。金属磁性颗粒10仅仅主要由Fe组成并且可以具有单一物质或合金的形式。
金属磁性颗粒10的平均颗粒直径优选为至少5μm且不大于300μm。当金属磁性颗粒10的平均颗粒直径为至少5μm时,金属几乎不被氧化以致可以防止软磁材料的磁性降低。当金属磁性颗粒10的平均颗粒直径不大于300μm时,在后续成型步骤中可以抑制混合粉末的可压缩性降低。因此,不降低通过成型步骤得到的坯块的密度并且可以防止处理困难。
平均颗粒直径表示在通过筛选测量的颗粒直径的柱状图中,从具有最小颗粒直径的颗粒的质量之和达到总质量的50%的颗粒的颗粒直径,即50%的颗粒直径D。
绝缘包覆层20含有例如磷酸铁化合物的绝缘包覆层20a和例如磷酸铝化合物的绝缘包覆层20b。绝缘包覆层20a覆盖金属磁性颗粒10并且绝缘包覆层20b覆盖绝缘包覆层20a。换句话说,用两层结构的绝缘包覆层20覆盖金属磁性颗粒10。绝缘包覆层20在金属磁性颗粒10之间起着绝缘层的作用。通过用绝缘包覆层20覆盖金属磁性颗粒10,可以增加通过压力成型这种软磁材料得到的粉末磁芯的电阻率ρ。因此,通过抑制涡流在金属磁性颗粒10之间的流动可以减少粉末磁芯的涡流损耗。尽管在该实施方案中绝缘包覆层20b由磷酸铝化合物组成,但是根据本发明,绝缘包覆层20b可以备选地由磷酸锰化合物或磷酸锌化合物组成。
绝缘包覆层20的厚度优选为至少0.005μm且不大于20μm。通过设定绝缘包覆层20的厚度为至少0.005μm,可以有效地抑制涡流导致的能量损耗。此外,设定绝缘包覆层20的厚度为不大于20μm,使得绝缘包覆层20占软磁材料的比率不过分地增加。因此,可以防止通过压力成型这种软磁材料得到的粉末磁芯的磁通密度显著降低。
图2A是显示图1中的一个复合磁性颗粒的放大图。图2B是显示Fe的原子比和Al的原子比沿着示于图2A中的绝缘包覆层中的线II-II变化的图。
参考图2A和2B,绝缘包覆层20a包含恒量的Fe并且不包含Al。在绝缘包覆层20a和绝缘包覆层20b之间的界面边界上Fe的原子比和Al的原子比不连续地变化,并且绝缘包覆层20b不包含Fe而包含恒量的Al。换句话说,在与金属磁性颗粒10接触的绝缘包覆层20的接触表面中包含的Fe的原子比大于在绝缘包覆层20的表面中包含的Fe的原子比。此外,在与金属磁性颗粒10接触的绝缘包覆层20的接触表面中包含的Al的原子比小于在绝缘包覆层20的表面中包含的Al的原子比。
现在描述制备示于图1中的粉末磁芯的方法。
图3是顺着步骤顺序显示根据本发明第一实施方案制备粉末磁芯的方法的图。参考图3,制备主要由Fe构成的金属磁性颗粒10,其例如由纯铁、Fe、Fe-Si基合金或Fe-Co基合金组成,并且将金属磁性颗粒10在至少400℃且小于900℃的温度加热处理(步骤S1)。加热处理的温度更优选为至少700℃且小于900℃。在还没有加热处理的金属磁性颗粒10中存在大量应变(位错和缺陷)。通过对金属磁性颗粒10进行加热处理,可以减少这些应变的数量。可以省略这种加热处理。
然后,通过例如湿法处理形成绝缘包覆层20a(步骤S2)。详细地描述该步骤。首先,将金属磁性颗粒10浸入水溶液中以将水溶液涂覆到金属磁性颗粒10上。使用包含Fe离子和PO4(磷酸)离子的水溶液(第一溶液)作为在该实施方案中使用的水溶液。用例如NaOH调整水溶液的pH。浸渍金属磁性颗粒10的时间是例如10分钟,并且在浸渍过程中连续搅拌水溶液使得在底部没有金属磁性颗粒10沉淀。由于水溶液涂覆到金属磁性颗粒10上,金属磁性颗粒10覆盖有磷酸铁化合物的绝缘包覆层20a。之后,用水和丙酮洗涤覆盖有绝缘包覆层20a的金属磁性颗粒10。
然后,将覆盖有绝缘包覆层20a的金属磁性颗粒10干燥(步骤S3)。在不大于150℃的温度、优选在不大于100℃的温度进行干燥。此外,将干燥进行例如20分钟。
然后,通过例如湿法处理形成磷酸铝化合物的绝缘包覆层20b(步骤S4)。更具体而言,将形成有绝缘包覆层20a的金属磁性颗粒10浸入水溶液中以将水溶液涂覆到绝缘包覆层20a上。使用包含Al离子和PO4离子的水溶液作为在该实施方案中使用的水溶液。其余的具体条件与在形成绝缘包覆层20a的情况中的条件基本上相同,因此不重复多余的描述。
尽管在该实施方案中说明了形成磷酸铝化合物的绝缘包覆层20b的情况,但是可以通过将包含Mn离子和PO4离子的水溶液代替包含Al离子和PO4离子的水溶液备选地形成磷酸锰化合物的绝缘包覆层20b。此外,备选地,可以通过包含Zn离子和PO4离子的水溶液形成磷酸锌化合物的绝缘包覆层20b。
然后,将覆盖有绝缘包覆层20b的金属磁性颗粒10干燥(步骤S5)。在不大于150℃的温度、优选在不大于100℃的温度进行干燥。此外,将干燥进行例如120分钟。
通过上述步骤完成根据该实施方案的软磁材料。在制备粉末磁芯的情况下,还实施如下步骤然后,将得到的软磁材料粉末引入到模具中并且使用例如390(MPa)至1500(MPa)的压力进行压力成型(步骤S6)。因此,通过将金属磁性颗粒10压紧得到生坯块。优选将压力成型气氛设定为惰性气体气氛或减压气氛。在此情况下,可以防止混合粉末被包含在气氛中的氧气氧化。
然后,将通过压力成型得到的生坯块在至少400℃且不大于900℃的温度加热处理(步骤S7)。由于加热处理可以消除在通过压力成型步骤得到的生坯块中形成的大量应变和位错。通过上述步骤完成示于图1中的粉末磁芯。
根据本发明的软磁材料是包含复合磁性颗粒30的软磁材料,所述复合磁性颗粒30含有主要由Fe(铁)组成的金属磁性颗粒10和覆盖金属磁性颗粒10的绝缘包覆层20,并且绝缘包覆层20包含磷酸铁化合物和磷酸铝化合物。在与金属磁性颗粒10接触的绝缘包覆层20的接触表面中包含的Fe的原子比大于在绝缘包覆层20的表面中包含的Fe的原子比。在与金属磁性颗粒10接触的绝缘包覆层20的接触表面中包含的Al的原子比小于在绝缘包覆层20的表面中包含的Al的原子比。
按照根据本发明的软磁材料,与金属磁性颗粒10接触的绝缘包覆层20的接触表面由磷酸铁化合物制成。Fe和磷酸铁化合物之间的粘附性优于Fe和磷酸铝化合物之间的粘附性、Fe和磷酸硅化合物之间的粘附性、Fe和磷酸锰化合物之间的粘附性和Fe和磷酸锌化合物之间的粘附性,由此可以提高金属磁性颗粒10和绝缘包覆层20之间的粘附性。因此,在压力成型中绝缘包覆层20几乎不破裂并且可以抑制在通过压力成型这种软磁材料得到的粉末磁芯中涡流损耗的增加。此外,绝缘包覆层20的表面由磷酸铝化合物制成。与磷酸铁化合物相比,磷酸铝化合物具有优良的高温稳定性,由此将软磁材料在高温加热处理时不降低绝缘包覆层20b的绝缘性能。此外,绝缘包覆层20b还防止绝缘包覆层20a的分解。因此,可以提高绝缘包覆层20的耐热性,并且可以减少通过压力成型这种软磁材料得到的粉末磁芯的磁滞损耗。因此,可以减少粉末磁芯的铁损。
在根据该实施方案的软磁材料中,绝缘包覆层20含有覆盖金属磁性颗粒10的绝缘包覆层20a和覆盖绝缘包覆层20a的绝缘包覆层20b。绝缘包覆层20a由磷酸铁化合物组成并且绝缘包覆层20b由磷酸铝化合物组成。
因此,绝缘包覆层20具有如下两层结构绝缘包覆层20a,所述绝缘包覆层20a具有与金属磁性颗粒10的优异的粘附性;和覆盖绝缘包覆层20a的绝缘包覆层20b,所述绝缘包覆层20b具有对于绝缘包覆层20a优良的高温稳定性。通过绝缘包覆层20a可以提高金属磁性颗粒10与绝缘包覆层20之间的粘附性,并且通过绝缘包覆层20b可以提高绝缘包覆层20的耐热性。
根据该实施方案的制备软磁材料的方法是制备包含复合磁性颗粒30的软磁材料的方法,所述复合磁性颗粒30含有主要由Fe组成的金属磁性颗粒10和覆盖金属磁性颗粒10的绝缘包覆层20,所述方法包括形成覆盖金属磁性颗粒10的绝缘包覆层20的步骤。形成绝缘包覆层20的步骤包括如下步骤通过用包含Fe离子和磷酸离子的化合物或溶液覆盖金属磁性颗粒10形成绝缘包覆层20a。在形成绝缘包覆层20a之后,通过用包含Al离子和磷酸离子的化合物或溶液覆盖绝缘包覆层20a形成绝缘包覆层20b。
按照根据该实施方案的制备软磁材料的方法,与金属磁性颗粒10接触的绝缘包覆层20的接触表面由包含磷酸铁化合物的绝缘包覆层20a形成。Fe和磷酸铁化合物具有高粘附性,由此可以提高金属磁性颗粒10和绝缘包覆层20之间的粘附性。因此,可以抑制通过压力成型这种软磁材料得到的粉末磁芯的涡流损耗的增加。此外,绝缘包覆层20的表面由包含磷酸铝化合物的绝缘包覆层20b形成。磷酸铝化合物具有对于包含磷酸铁化合物的绝缘包覆层20a优良的高温稳定性,由此在加热处理通过压力成型这种软磁材料得到的粉末磁芯时绝缘性能的降低小。绝缘包覆层20b还可以防止绝缘包覆层20a的分解。因此,可以提高绝缘包覆层20的耐热性并且可以减少粉末磁芯的磁滞损耗。从而可以减少粉末磁芯的铁损。
尽管在第一实施方案中说明了通过湿法涂覆处理形成绝缘包覆层20的情况,但是本发明不限于该情况,而可以通过机械合金化或溅射代替湿法涂覆处理备选地形成绝缘包覆层20,所述机械合金化将绝缘包覆层20的组分的固体粉状化合物和金属磁性颗粒10相互机械混合并且形成膜。
尽管在该实施方案中说明了绝缘包覆层20a由磷酸铁化合物组成并且绝缘包覆层20b由磷酸铝化合物组成的情况,但是本发明不限于该情况,而绝缘包覆层20a可以只包含磷酸和Fe并且绝缘包覆层20b可以只包含磷酸和选自Al、Si、Mn、Ti、Zr和Zn中的至少一种原子。
(第二实施方案)图4是以放大的方式显示由根据本发明第二实施方案的软磁材料制备的粉末磁芯的示意图。如图4所示,由根据该实施方案的软磁材料制备的粉末磁芯包含多个复合磁性颗粒30,所述复合磁性颗粒30含有金属磁性颗粒10和覆盖金属磁性颗粒10的表面的绝缘包覆层20。绝缘包覆层20含有磷酸铁化合物的绝缘包覆层20a、磷酸铁化合物和磷酸铝化合物的绝缘包覆层20b和磷酸铝化合物的绝缘包覆层20c。绝缘包覆层20a覆盖金属磁性颗粒10,绝缘包覆层20b覆盖绝缘包覆层20a并且绝缘包覆层20c覆盖绝缘包覆层20b。换句话说,金属磁性颗粒10覆盖有三层结构的绝缘包覆层20。
图5A是显示图4中的一个复合磁性颗粒的放大图。图5B是显示Fe的原子比和Al的原子比沿着示于图5A中的绝缘包覆层中的线V-V变化的图。
参考图5A和图5B,绝缘包覆层20a包含恒量的Fe并且不包含Al。在绝缘包覆层20a和绝缘包覆层20b之间的界面边界上Fe的原子比和Al的原子比不连续变化,同时绝缘包覆层20b包含比绝缘包覆层20a中更少量的Fe并且还包含恒量的Al。在绝缘包覆层20b和绝缘包覆层20c之间的界面边界上Fe的原子比和Al的原子比不连续变化,同时绝缘包覆层20c不包含Fe并且包含比在绝缘包覆层20b中更大量的Al。在与金属磁性颗粒10接触的绝缘包覆层20的接触表面中包含的Fe的原子比大于在绝缘包覆层20的表面中包含的Fe的原子比。此外,在与金属磁性颗粒10接触的绝缘包覆层20的接触表面中包含的Al的原子比小于在绝缘包覆层20的表面中包含的Al的原子比。
现在描述制备示于图4中的粉末磁芯的方法。
图6是顺着步骤顺序显示根据本发明第二实施方案制备粉末磁芯的方法的图。参考图6,在根据该实施方案的制备方法中用于形成绝缘包覆层20b的水溶液与在第一实施方案中的水溶液不同。此外,关于形成绝缘包覆层20c(步骤S5a)和在干燥(步骤S5)绝缘包覆层20b之后干燥绝缘包覆层20c(步骤S5b),该实施方案与第一实施方案不同。
更具体而言,在形成绝缘包覆层20b(步骤S4)时使用包含Fe离子、Al离子和PO4离子的水溶液代替包含Al离子和PO4离子的水溶液。在该水溶液中包含的Fe离子浓度小于在形成绝缘包覆层20a时已使用的水溶液中包含的Fe离子浓度。通过使用该水溶液,可以形成绝缘包覆层20b,所述绝缘包覆层20b由磷酸铁化合物和磷酸铝化合物组成并且包含比在绝缘包覆层20a中更少量的Fe。
然后,将覆盖有绝缘包覆层20b的金属磁性颗粒10干燥(步骤S5)。然后,通过例如磷酸盐处理形成磷酸铝化合物的绝缘包覆层20c(步骤S5a)。更具体而言,将形成有绝缘包覆层20b的金属磁性颗粒10浸入水溶液中以将该水溶液涂覆到绝缘包覆层20b上。使用包含Al离子和PO4离子的水溶液作为在该实施方案中使用的水溶液。之后,将覆盖有绝缘包覆层20c的金属磁性颗粒10干燥(步骤S5b)。
粉末磁芯的其余结构和制备该其余结构的方法基本上类似于第一实施方案中显示的粉末磁芯的结构和制备该结构的方法,因此不重复多余的描述。
同样,当如该实施方案中绝缘包覆层20由三层绝缘包覆层20a至20c形成时,只要在与金属磁性颗粒10接触的绝缘包覆层20的接触表面中包含的Fe的原子比大于在该绝缘包覆层的表面中包含的Fe的原子比,并且在与金属磁性颗粒10接触的绝缘包覆层20的接触表面中包含的Al的原子比小于在绝缘包覆层20的表面中包含的Al的原子比,可以得到本发明的效果。
(第三实施方案)在使用根据该实施方案的软磁材料的粉末磁芯中,在绝缘包覆层20a至20c中包含的Fe和Al的原子比与在第二实施方案中不同。换句话说,绝缘包覆层20含有磷酸铁化合物和磷酸铝化合物的绝缘包覆层20a、磷酸铁化合物的绝缘包覆层20b和磷酸铝化合物的绝缘包覆层20c。
图7是显示在根据本发明第三实施方案的绝缘包覆层中,Fe的原子比和Al的原子比沿着图5A中的线V-V变化的图。参考图7,绝缘包覆层20a包含恒量的Fe和Al。在绝缘包覆层20a和绝缘包覆层20b之间的界面边界中的Fe的原子比和Al的原子比不连续变化,同时绝缘包覆层20b包含比绝缘包覆层20a中更大量的Fe并且不包含Al。此外,在绝缘包覆层20b和绝缘包覆层20c之间的界面边界中的Fe的原子比和Al的原子比不连续变化,同时绝缘包覆层20c不包含Fe并且包含比绝缘包覆层20a中更大量的Al。在与金属磁性颗粒10接触的绝缘包覆层20的接触表面中包含的Fe的原子比大于在绝缘包覆层20的表面中包含的Fe的原子比。此外,在与金属磁性颗粒10接触的绝缘包覆层20的接触表面中包含的Al的原子比小于在绝缘包覆层20的表面中包含的Al的原子比。
在制备根据该实施方案的软磁材料的方法中,在绝缘包覆层20a和20b的形成中使用的水溶液与在第二实施方案中的水溶液不同。更具体而言,当形成绝缘包覆层20a(步骤S2)时,使用包含Fe离子、Al离子和PO4离子的水溶液代替包含Fe离子和PO4离子的水溶液。在该水溶液中包含的Al离子的浓度小于在形成绝缘包覆层20c时使用的水溶液中包含的Al离子的浓度。通过使用该水溶液可以形成磷酸铁化合物和磷酸铝化合物的绝缘包覆层20a。当形成绝缘包覆层20b(步骤S4)时,使用包含Fe离子和PO4离子的水溶液代替包含Fe离子、Al离子和PO4离子的水溶液。通过使用该水溶液可以形成磷酸铁化合物的绝缘包覆层20b。
粉末磁芯的其余结构和制备该其余结构的方法基本上类似于第二实施方案中显示的粉末磁芯的结构和制备该结构的方法,因此不重复多余的描述。
同样,当如该实施方案中,绝缘包覆层20由三层绝缘包覆层20a至20c形成,在绝缘包覆层20b中包含的Fe的原子比大于在绝缘包覆层20a中包含的Fe的原子比并且在绝缘包覆层20b中包含的Al的原子比小于在绝缘包覆层20a中包含的Al的原子比时,只要在与金属磁性颗粒10接触的绝缘包覆层20的接触表面中包含的Fe的原子比大于在该绝缘包覆层的表面中包含的Fe的原子比,并且在与金属磁性颗粒10接触的绝缘包覆层20的接触表面中包含的Al的原子比小于在绝缘包覆层20的表面中包含的Al的原子比,可以得到本发明的效果。
(第四实施方案)图8是以放大的方式显示由根据本发明第四实施方案的软磁材料制备的粉末磁芯的示意图。如图8所示,由根据该实施方案的软磁材料制备的粉末磁芯包含多个复合磁性颗粒30,所述复合磁性颗粒30含有金属磁性颗粒10和覆盖金属磁性颗粒10的表面的绝缘包覆层20。绝缘包覆层20是磷酸铁化合物和磷酸铝化合物的单一绝缘包覆层。
图9A是显示图8中的一个复合磁性颗粒的放大图。图9B是显示Fe的原子比和Al的原子比沿着示于图9A的绝缘包覆层中的线IX-IX变化的图。
参考图9A和图9B,Fe的原子比从与金属磁性颗粒10的接触表面向绝缘包覆层20的表面单一地降低。Al的原子比从与金属磁性颗粒10的接触表面向绝缘包覆层20的表面单一地增加。换句话说,在与金属磁性颗粒10接触的绝缘包覆层10的接触表面中包含的Fe的原子比大于在绝缘包覆层20的表面中包含的Fe的原子比。此外,在与金属磁性颗粒10接触的绝缘包覆层20的接触表面中包含的Al的原子比小于在绝缘包覆层20的表面中包含的Al的原子比。
现在描述由所述软磁材料制备示于图8中的粉末磁芯的方法。
图10是顺着步骤顺序显示根据本发明第四实施方案制备粉末磁芯的方法的图。参考图10,关于在干燥绝缘包覆层20b(步骤S5)之后加热处理绝缘包覆层20a和20b(步骤S5c),根据该实施方案的制备方法与第一实施方案不同。
更具体而言,在将覆盖有绝缘包覆层20b的金属磁性颗粒10干燥(步骤S5)之后,将绝缘包覆层20a和20b在250℃的温度加热处理例如5小时(步骤S5c)。因此,在绝缘包覆层20a中的Fe原子扩散到绝缘包覆层20b中并且在绝缘包覆层20b中的Al原子扩散到绝缘包覆层20a中。因此,在绝缘包覆层20a和绝缘包覆层20b之间的边界消失以致形成单一绝缘包覆层20。
粉末磁芯的其余结构和制备该其余结构的方法基本上类似于第一实施方案中显示的粉末磁芯的结构和制备该结构的方法,因此不重复多余的描述。
同样,当如该实施方案中绝缘包覆层20由单层绝缘包覆层20形成时,只要在与金属磁性颗粒10接触的绝缘包覆层20的接触表面中包含的Fe的原子比大于在该绝缘包覆层的表面中包含的Fe的原子比,并且在与金属磁性颗粒10接触的绝缘包覆层20的接触表面中包含的Al的原子比小于在绝缘包覆层20的表面中包含的Al的原子比,可以得到本发明的效果。
(第五实施方案)图11是以放大的方式显示由根据本发明第五实施方案的软磁材料制备的粉末磁芯的示意图。如图11所示,由根据该实施方案的软磁材料制备的粉末磁芯包含多个复合磁性颗粒30,所述复合磁性颗粒30含有金属磁性颗粒10、覆盖金属磁性颗粒10的表面的绝缘包覆层20和覆盖绝缘包覆层20的有机硅树脂包覆层25。
现在描述制备示于图11中的粉末磁芯的方法。
图12是顺着步骤顺序显示根据本发明第五实施方案制备粉末磁芯的方法的图。参考图12,关于在干燥绝缘包覆层20b(步骤S5)之后形成有机硅树脂包覆层25(步骤S5d),根据该实施方案的制备方法与第一实施方案不同。
更具体而言,在将覆盖有绝缘包覆层20b的金属磁性颗粒10干燥(步骤S5)之后,将覆盖有绝缘包覆层20b的金属磁性颗粒10和包含有机硅树脂和颜料的涂料相互混合。备选地,将包含有机硅树脂和颜料的涂料喷射在覆盖有绝缘包覆层20b的金属磁性颗粒10上。之后,将涂料干燥并且除去溶剂。从而形成有机硅树脂包覆层25。
粉末磁芯的其余结构和制备该其余结构的方法基本上类似于第一实施方案中显示的粉末磁芯的结构和制备该结构的方法,因此不重复多余的描述。
在根据该实施方案的软磁材料中,复合磁性颗粒30还含有覆盖绝缘包覆层20的表面的有机硅树脂包覆层25。因此,包覆层25确保在金属磁性颗粒10之间的绝缘,由此还可以抑制在通过压力成型这种软磁材料得到的粉末磁芯中涡流损耗的增加。
尽管在该实施方案中说明了形成有机硅树脂包覆层25的情况,但是本发明不限于该情况,而可以只形成包含Si的包覆层。
尽管在第一至第五实施方案的每一个中示出了绝缘包覆层20包含磷酸铝化合物的情况,但是同样当绝缘包覆层20包含代替磷酸铝化合物的磷酸锰化合物或磷酸锌化合物时,可以得到本发明的效果。通过使用包含Si离子和PO4离子的水溶液、包含Mn离子和PO4离子的水溶液、包含Ti离子和PO4离子的水溶液、包含Zr离子和PO4离子的水溶液或包含Zn离子和PO4离子的水溶液代替包含Al离子和PO4离子的水溶液,可以形成包含该化合物的绝缘包覆层20。
(第六实施方案)图13A是显示本发明第六实施方案中的一个复合磁性颗粒的放大图。图13B是显示Fe的原子比和Al的原子比沿着示于图13A的绝缘包覆层中的线XIII-XIII变化的图。参考图13A和图13B,在使用根据该实施方案的软磁材料的粉末磁芯中,在绝缘包覆层20a和20b中包含的Fe和Al的原子比与在第一实施方案的情况不同。换句话说,绝缘包覆层20含有通过存在于金属磁性颗粒10的表面上的铁和磷酸之间的反应而形成的绝缘包覆层20a和磷酸和铝化合物的绝缘包覆层20b。
绝缘包覆层20a包含恒量的Fe并且不包含Al。在绝缘包覆层20a和绝缘包覆层20b之间的边界区域20d上Fe的原子比降低并且Al的原子比增加。绝缘包覆层20b包含比在绝缘包覆层20a中更少量的Fe并且还包含恒量的Al。在与金属磁性颗粒20接触的绝缘包覆层20的接触表面中包含的Fe的原子比大于在绝缘包覆层20的表面中包含的Fe的原子比。此外,在与金属磁性颗粒10接触的绝缘包覆层20的接触表面中包含的Al的原子比小于在绝缘包覆层20的表面中包含的Al的原子比。
现在描述制备示于图13中的粉末磁芯的方法。
图14是顺着步骤顺序显示根据本发明第六实施方案制备粉末磁芯的方法的图。参考图14,在根据该实施方案的制备方法中,形成绝缘包覆层20的方法和后续处理与第一实施方案的那些不同。
根据该实施方案,在加热处理金属磁性颗粒10(步骤S1)之后,将磷酸溶液加入到通过将金属磁性颗粒10分散在有机溶剂中制备的悬浮液中并且混合/搅拌。因此,存在于金属磁性颗粒10的表面上的铁和磷酸相互反应以在金属磁性颗粒10的表面上形成绝缘包覆层20a(步骤S12)。然后,将磷酸和包含选自Al、Si、Ti和Zr中的原子的至少一种金属醇盐的溶液加入到已用于形成绝缘包覆层20的悬浮液中并且混合/搅拌。此时,金属醇盐与水反应而水解,从而生成金属氧化物或含金属的氢氧化物。因此,在金属磁性颗粒10的表面上形成磷酸和金属化合物的绝缘包覆层20b(步骤S13)。然后,将覆盖有绝缘包覆层20的金属磁性颗粒10干燥(步骤S14)。更具体而言,将金属磁性颗粒在室温的气流中干燥3至24小时,之后在60至120℃的温度范围内干燥或者在减压气氛下,在30至80℃的温度范围内干燥。考虑到防止金属磁性颗粒的氧化,优选将可在空气中或N2气等惰性气体气氛下干燥的金属磁性颗粒在N2气的惰性气体气氛下干燥。从而得到根据该实施方案的软磁材料。
在该实施方案中使用的有机溶剂可以只是通常使用的有机溶剂并且优选水溶性有机溶剂。更具体而言,醇溶剂如乙醇、丙醇或丁醇,酮溶剂如丙酮或甲基乙基酮,乙二醇醚类溶剂如甲基溶纤剂、乙基溶纤剂、丙基溶纤剂或丁基溶纤剂,氧化乙烯如二甘醇、三甘醇、聚乙二醇、二丙二醇、三丙二醇或聚丙二醇,氧化丙烯加聚物,烷撑二醇如乙二醇、丙二醇或1,2,6-己三醇,丙三醇或2-吡咯烷酮。特别是,优选醇溶剂如乙醇、丙醇或丁醇,或酮溶剂如丙酮或甲基乙基酮。
在该实施方案中使用的磷酸可以只是通过五氧化二磷的水合而制备的酸。更具体而言,可以使用偏磷酸、焦磷酸、正磷酸、三磷酸或四磷酸。特别优选正磷酸。
在该实施方案中使用的金属醇盐是包含选自Al、Si、Ti和Zr中的原子的醇盐。可以使用甲醇盐、乙醇盐、丙醇盐、异丙醇盐、羟基异丙醇盐或丁醇盐作为醇盐。此外,可以使用通过将四乙氧基硅烷或四甲氧基硅烷部分水解/缩合得到的硅酸乙酯或硅酸甲酯作为醇盐。考虑到处理的均匀性和处理效果,特别优选使用四乙氧基硅烷、四甲氧基硅烷、硅酸甲酯、三异丙醇铝、三丁醇铝、四异丙醇锆或四异丙醇钛作为醇盐。
作为用于将金属磁性颗粒粉末与磷酸溶液和金属醇盐溶液混合的装置,使用例如高速搅拌混合机,并且更具体而言,使用亨舍尔混合机、快速搅拌机、球面刀、粉料混合机、混合型混合机或锥形混合器。
优选将金属磁性颗粒粉末和磷酸以及金属醇盐溶液在至少室温且不高于所使用的有机溶剂的沸点的温度混合/搅拌。考虑到防止金属磁性颗粒粉末的氧化,优选在N2气等惰性气体气氛下进行反应。
制备粉末磁芯的其余方法基本上类似于示于第一实施方案中的粉末磁芯的结构和制备该结构的方法,因此不重复多余的描述。
按照根据该实施方案的软磁材料,可以得到与第一实施方案的效果类似的效果。
(实施例1)现在描述本发明的实施例。根据该实施例,检测在通过压力成型根据本发明的软磁材料得到的粉末磁芯中减少铁损和提高耐热性的效果。首先,通过如下方法制备软磁材料的样品1至6样品1(发明例)根据第一实施方案的制备方法制备。更具体而言,将Hoeganaes AB的铁纯度为至少99.8%的ABC100.30制备为金属磁性颗粒10并且将其浸入磷酸铁溶液中,从而在金属磁性颗粒10的表面上形成具有50nm的平均厚度的磷酸铁化合物的绝缘包覆层20a。然后,将金属磁性颗粒浸入磷酸铝溶液中,从而在绝缘包覆层20a的表面上形成具有50nm的平均厚度的磷酸铝化合物的绝缘包覆层20b,以得到形成样品1的软磁材料。
实施例2(发明例)根据第五实施方案的制备方法制备。更具体而言,制备通过类似于样品1的制备方法的方法得到软磁材料并且将这种软磁材料浸入到通过将有机硅树脂溶解和分散到乙醇中得到的溶液中。从而在绝缘包覆层20的表面上形成具有100nm的平均厚度的有机硅树脂包覆层25,以得到形成样品2的软磁材料。
样品3(比较例)仅形成磷酸铁化合物的绝缘包覆层。更具体而言,将Hoeganaes AB的ABC100.30制备为金属磁性颗粒,并且将其浸入到磷酸铁溶液中,由此在金属磁性颗粒的表面上形成具有100nm的平均厚度的磷酸铁化合物的绝缘包覆层,以得到形成样品3的软磁材料。
样品4(比较例)仅形成磷酸铝化合物的绝缘包覆层。更具体而言,将Hoeganaes AB的ABC100.30制备为金属磁性颗粒,并将其浸入到磷酸铝溶液中,由此在金属磁性颗粒10的表面上形成具有100nm的平均厚度的磷酸铝化合物的绝缘包覆层,以得到形成样品4的软磁材料。
样品5(发明例)将磷酸溶液(磷酸含量85重量%)滴入通过将Hoeganaes AB的铁纯度为至少99.8%的ABC100.30悬浮于丙酮中而得到的悬浮液中并且在N2气流下,在45℃的反应温度搅拌/混合20分钟。然后,将分散有异丙醇铝的丙酮溶液加入到所述混合溶液中,随后加入四乙氧基硅烷并且搅拌/混合20分钟。将得到的混合溶液在减压下、在45℃干燥,以得到形成样品5的软磁材料。
样品6(发明例)在样品5的绝缘包覆层的表面上形成硅氧烷的绝缘包覆层。更具体而言,在样品5的绝缘包覆层的表面上形成具有100nm的平均厚度的有机硅树脂的包覆层以得到形成样品6的软磁材料。
然后,在通过高速Ar离子蚀刻对于所制备样品1至6进行蚀刻的同时,通过″X-射线光电子能谱仪ESCA3500″(Shimadzu Corporation)测量深度方向上每种原子的丰度比。用FIB(聚焦离子束)切割每个样品,并且通过EDX(能量分散X-射线衍射)分析绝缘包覆层20的截面的组成。对于组成的评价,测量各种元素P、Fe和Al的Ka光谱的峰面积,以使用Fe峰面积和P峰面积之间的比率和Al峰面积和P峰面积之间的比率(Fe/P原子丰度比和Al/P原子丰度比)作为指标。
通过如下方法得到每种软磁材料的耐热性首先,称出0.5g的样品粉末并通过KBr压片机(Shimadzu Corporation)使用13.72MPa的压力将其压力成型,以制备圆柱形的检测样。然后,将检测样在25℃的温度和60%的相对温度的环境下暴露至少12小时,之后将该检测样放置在不锈钢电极之间,以施加15V的电压并且使用电阻测量装置(Yokogawa-HokushinElectric Corporation生产的4329A型)测量电阻值R(mΩ)。
然后,测量检测样(圆柱形)的上表面的面积A(cm2)及其厚度t0(cm)以通过将每个测量值引入到下式1中得到比容电阻率(mΩ·cm)比容电阻率(mΩ·cm)=R×(A/t0)...(1)将上述检测样引入到电炉中,以在将电炉的温度改变至不同水平的同时在每个温度进行1小时的加热处理,测量在每个温度加热前后的比容电阻率,通过将加热前后的比容电阻率引入到下式2中得到所述比容电阻率的变化率,使用半对数图表以在横坐标和纵坐标的轴上分别标示加热温度和比容电阻率的变化率并且将比容电阻率的变化率刚好达到10%时的温度看作是该软磁材料的耐热温度加热前后的比容电阻率的变化率(%)={比容电阻率(加热前)-比容电阻率(加热后)}/比容电阻率(加热前)×100...(2)
然后,在1275 MPa的压力下压力成型样品1至6以制备环状粉末磁芯。然后,在氮气气氛中,在550℃的温度进行1小时的加热处理。通过在改变频率的同时,测量样品1至6在1.0(T)的激发磁通密度下的铁损,评价涡流损耗系数。表1显示了样品1至6的磷酸铁化合物的平均厚度、磷酸铝化合物的平均厚度、有机硅树脂的平均厚度和涡流损耗系数b。涡流损耗系数b是在如下表示铁损W的情况中的常数bW=a×f+b×f2(f=频率,a,b常数)
表1

如表1中所示,对于涡流损耗系数b,样品1的涡流损耗系数b为0.025(×10-3W·s2/kg)并且样品2的涡流损耗系数b为0.021(×10-3W·s2/kg)。另一方面,样品3的涡流损耗系数b为0.022(×10-3W·s2/kg)并且样品4的涡流损耗系数b为0.048(×10-3W·s2/kg)。样品5的涡流损耗系数b为0.024(×10-3W·s2/kg)并且样品6的涡流损耗系数b为0.016(×10-3W·s2/kg)。样品1、2、5和6的耐热性优于样品3且相当于样品5的耐热性。
因此,样品1、2、5和6在a方面小于样品3并且具有相当于样品3的b,由此应理解样品1、2、5和6在铁损方面小于样品3。此外,样品1、2、5和6在a值方面接近样品4并且在b值方面小于样品4,由此应理解样品1、2、5和6在铁损方面小于样品4。换句话说,应理解通过形成磷酸铁化合物的绝缘包覆层20a和磷酸铝化合物的绝缘包覆层20b可以减少铁损。此外,样品2和6的每一个的耐热性高出样品1至5的每一个的耐热性,由此应理解由于有机硅树脂包覆层25的形成进一步降低磁滞损耗。另外,样品2和6的每一个的涡流损耗系数b小于样品1和5的每一个的涡流损耗系数b,由此应理解由于有机硅树脂包覆层25的形成进一步降低涡流损耗。因此,应理解通过形成有机硅树脂包覆层25可以进一步减少铁损。
对于样品5和6的每一个,平均颗粒直径为100μm并且绝缘包覆层的厚度对于用作第一绝缘包覆层的绝缘包覆层20a是50nm并且对于用作第二绝缘包覆层的绝缘包覆层20b是50nm。通过X-射线光电子能谱仪评价的在金属磁性颗粒10和绝缘包覆层20之间的接触表面上的Fe/P原子丰度比为12.9或13.6,并且在绝缘包覆层的表面上的Fe/P原子丰度比为3.3或3.0。因此,在金属磁性颗粒10和绝缘包覆层20之间的接触表面上的Fe/P原子丰度比大于在绝缘包覆层的表面上的Fe/P原子丰度比。此外,在金属磁性颗粒10和绝缘包覆层20之间的接触表面上的Al/P原子丰度比为0.7或0.8并且在绝缘包覆层的表面上的Al/P原子丰度比为2.2或2.0,因此,在金属磁性颗粒10和绝缘包覆层20之间的接触表面上的Al/P原子丰度比小于在绝缘包覆层的表面上的Al/P原子丰度比。
必须理解此次公开的实施方案和实施例在所有方面上均是说明性而非限制性的。本发明的范围不是由上述说明而由专利权利要求的范围表示的,并且意在包含在相当于专利权利要求的范围的含义和范围内的所有修改。
权利要求
1.一种软磁材料,其包含复合磁性颗粒(30),所述复合磁性颗粒(30)含有主要由Fe组成的金属磁性颗粒(10)和覆盖所述金属磁性颗粒的绝缘包覆层(20),其中所述绝缘包覆层包含磷酸、Fe和选自Al、Si、Mn、Ti、Zr和Zn中的至少一种原子,在与所述金属磁性颗粒接触的所述绝缘包覆层的接触表面中包含的Fe的原子比大于在所述绝缘包覆层的表面中包含的Fe的原子比,并且在与所述金属磁性颗粒接触的所述绝缘包覆层的接触表面中包含的所述至少一种原子的原子比小于在所述绝缘包覆层的表面中包含的所述至少一种原子的原子比。
2.根据权利要求1所述的软磁材料,其中所述绝缘包覆层(20)含有覆盖所述金属磁性颗粒(10)的第一绝缘包覆层(20a)和覆盖所述第一绝缘包覆层的第二绝缘包覆层(20b),并且所述第一绝缘包覆层包含磷酸和Fe并且所述第二绝缘包覆层包含磷酸和所述的至少一种原子。
3.根据权利要求1所述的软磁材料,其中所述复合磁性颗粒(30)还含有覆盖所述绝缘包覆层(20)的含Si包覆层(25)。
4.一种粉末磁芯,所述粉末磁芯通过压力成型根据权利要求1所述的软磁材料而得到。
5.一种制备软磁材料的方法,所述软磁材料包含复合磁性颗粒(30),所述复合磁性颗粒(30)含有主要由Fe组成的金属磁性颗粒(10)和覆盖所述金属磁性颗粒的绝缘包覆层(20),所述方法包括形成覆盖所述金属磁性颗粒的所述绝缘包覆层的步骤(S2、S4),其中形成所述绝缘包覆层的所述步骤包括第一包覆步骤(S2),所述第一包覆步骤(S2)通过使用包含Fe离子和磷酸离子的化合物或溶液包覆所述金属磁性颗粒而形成第一绝缘包覆层(20a),和在所述第一包覆步骤之后的第二包覆步骤(S1),所述第二包覆步骤(S1)通过使用包含选自Al离子、Si离子、Mn离子、Ti离子、Zr离子和Zn离子中的至少一种离子和磷酸离子的化合物或溶液包覆所述第一绝缘包覆层而形成第二绝缘包覆层(20b)。
6.一种制备软磁材料的方法,所述软磁材料包含复合磁性颗粒(30),所述复合磁性颗粒(30)含有主要由Fe组成的金属磁性颗粒(10)和覆盖所述金属磁性颗粒的绝缘包覆层(20),所述方法包括形成覆盖所述金属磁性颗粒的所述绝缘包覆层的步骤(S12、S13),其中形成所述绝缘包覆层的所述步骤包括第一包覆步骤(S12),所述第一包覆步骤(S12)通过将磷酸溶液加入到通过将软磁颗粒分散在有机溶剂中得到的悬浮液中并且进行混合/搅拌而形成第一绝缘包覆层(20a),和在所述第一包覆步骤之后的第二包覆步骤(S13),所述第二包覆步骤(S13)通过将磷酸溶液和包含选自Al、Si、Mn和Zn中的至少一种原子的金属醇盐溶液加入到所述悬浮液中并且进行混合/搅拌而形成第二绝缘包覆层(20b)。
全文摘要
公开了一种包含复合磁性颗粒(30)的软磁材料,所述复合磁性颗粒(30)由主要由Fe组成的金属磁性颗粒(10)和覆盖金属磁性颗粒(10)的绝缘包覆层(20)构成。绝缘包覆层(20)包含磷酸铁化合物和磷酸铝化合物。在与金属磁性颗粒(10)接触的绝缘包覆层(20)的接触表面中包含的Fe的原子比大于在绝缘包覆层(20)的表面中包含的Fe的原子比。在与金属磁性颗粒(10)接触的绝缘包覆层(20)的表面中包含的Al的原子比小于在绝缘包覆层(20)的表面中包含的Al的原子比。由此结构,可以减少铁损。
文档编号B22F3/00GK1965379SQ20058001834
公开日2007年5月16日 申请日期2005年9月29日 优先权日2004年9月30日
发明者前田彻, 五十岚直人, 丰田晴久, 久贝裕一, 林一之, 森井弘子, 石谷诚治 申请人:住友电气工业株式会社, 户田工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1