一种大厚度Q960E超高强钢生产方法与流程

文档序号:12458037阅读:395来源:国知局
一种大厚度Q960E超高强钢生产方法与流程

本发明涉及一种超高强钢材生产方法,具体的说是一种大厚度Q960E超高强钢生产方法,属于钢铁技术领域。



背景技术:

超高强度钢是一种资源节约型同时也是一种技术含量高、附加值高的产品,随着国内大型工程的大力发展,Q890D及以上等级的高强钢在工程机械、矿山开采、起重矿车、海洋平台等方面得到了大力应用,其特点是:结构简单,自重轻,安全性高,能够承载较大的动、静态载荷,服役时间较长;然而,由于国内铸坯受厚度影响,大厚度结构件目前只能采用常规Q345-Q550系列低合金结构钢代替,而此类结构钢因为强度低,在苛刻的服役条件下,使用强度不高,易出现工程事故;为此,针对大型工程结构钢件,国内企业只能花高价进口大厚度的超高强钢;

国内很多钢厂均在研究Q960及以上超高强钢的生产工艺,但对于大厚度Q960E超高强钢目前尚未有实质性的报道,已公布的专利文献内容中产品在实际工程应用更是微乎其微,本申请介绍了一种大厚度的Q960E超高强钢生产方法,且应用到国内某大型吊车底座,使用性能得到行业内的认可。

公开号为CN102560274A的专利公开了一种屈服强度1000MPa级调质超高强钢及其生产方法,通过合理的成分设计,经过调质,得到合理的性能,但该专利公布的生产厚度为12-50mm,且-40℃冲击功比较低,仅为60J以下,韧性不好;

公开号为CN102134680A的专利公开了一种屈服强度960MPa级超高强钢及其生产方法,采用低碳+1.05%Cr合金设计,通过调质热处理得到了屈服强度达到960MPa以上的强度,但整个生产方法采用热连轧工艺及生产的厚度仅为8mm,生产工序繁琐且生产方法仅为实验室的数据;

考虑到性能最优的70mm的大厚度Q960E超高强度结构钢板不仅要求较高的强度和韧性性能,还要求有良好的焊接性能,所有的要求均要易于生产且成本较低;因此,本申请针对70mm的大厚度Q960E超高强度钢板的化学成分和生产工艺进行了研究,设计了一种大厚度Q960E超高强钢生产方法。



技术实现要素:

本发明所要解决的技术问题是,克服现有技术的缺点,提供一种大厚度Q960E超高强钢生产方法,该生产方法简单易行,生产工序流程短,成本低,生产出的钢力学性能优良,大厚度,高强度,良好的塑性、冲击功值以及良好的焊接性能。

为了解决以上技术问题,本发明提供一种大厚度Q960E超高强钢生产方法,该生产方法包括以下流程:铁水脱硫预处理-转炉冶炼-LF+RH精炼-连铸-铸坯堆垛缓冷-铸坯检验-铸坯判定-铸坯验收-铸坯加热-除鳞-轧制-空冷-探伤-抛丸-淬火-回火-矫直-切割、取样-喷印标识-检验-入库,其中:

(1)该超高强钢的化学成分按重量百分比计包括:C:0.14-0.16%,Si:0.2-0.3%,Mn:1.1-1.2%,P≤0.008%,S≤0.0015%,Cr:0.4-0.6%,Cu≤0.1%,Ni:0.6-0.8%,Mo:0.1-0.3%,Nb:0.02-0.04%,Ti:0.01-0.02%,V:0.04-0.06%,B:≤0.0015%,Alt:0.025-0.04%,Ceq≤0.61%,余量为Fe及不可避免的杂质;

该超高强钢的化学成分中碳当量Ceq(百分比)按以下公式计算:

Ceq=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15≤0.61;

(2)对铸坯加热,加热段温度为1240-1250℃,均热段温度控制在1220℃,出钢温度介于1180-1200℃,在炉时间为350-420min,二阶段开轧温度≤1050℃,成品厚度为70mm,待温铸坯厚度控制在≥133mm,二阶段终轧温度850-860℃,轧后空冷;

(3)进行调质热处理,淬火温度控制在880-890℃,升温速率为1.5±0.1min/mm,在炉时间为125-135min,回火温度控制在590-600℃,升温速率为2.5±0.1min/mm,在炉时间为220-230min,缓冷至室温;

(4)热轧态矫直时先在790-830℃下进行预矫。

本发明进一步限定的技术方案是:

进一步的,前述大厚度Q960E超高强钢生产方法中,该超高强钢的化学成分按重量百分比计包括:C:0.16%,Si:0.23%,Mn:1.19%,P≤0.005%,S≤0.0012%,Cu≤0.1%,Cr:0.45%,Ni:0.78%,Mo:0.2%,Nb:0.02%,Ti:0.013%,V:0.044%,B:0.0012%,Alt:0.033%,Ceq:0.55%,余量为Fe及不可避免的杂质。

前述大厚度Q960E超高强钢生产方法中,在对铸坯进行轧制时采用二阶段轧制法,一阶段轧制形变率≥55%,二阶段轧制形变率≥45%。

前述大厚度Q960E超高强钢生产方法中,该超高强钢的力学性能达到以下水平:屈服强度≥1000MPa,抗拉强度≥1050MPa,延伸率≥13%,-40℃,Akv冲击功值≥90J;显微组织为回火索氏体组织,晶粒尺寸控制在10μm-12μm,晶粒度控制在8-9级。

本发明的有益效果是:

(1)通过中碳加少量的铬、镍、钼合金、Nb+Ti+V+B微合金化成份设计,碳当量为≤0.61,生产工序流程短,成本低;(2)本方法采用合理的控轧工艺生产厚度达到70mm的超高强钢,通过最优的调质热处理工艺,各力学性能指标均达到国内某大型企业工程机械对材料设计的标准要求,屈服强度≥1000MPa,抗拉强度≥1050MPa,延伸率≥13%,-40℃,Akv冲击功值≥90J;(3)该发明方法成功解决了70mm的大厚度超高强钢的高强度低塑性、低冲击功值以及高碳当量对焊接性能影响的技术难点,制备出的钢力学性能优良,大厚度,高强度,良好的塑性、冲击功值以及良好的焊接性能;(4)该发明方法成功解决了在粗轧机轧制力为5000吨、精轧机轧制力为4000吨四辊可逆的2800mm轧机生产线能够生产高强度、高韧性大厚度的Q960E高强钢,应用到国内大型工程机械设备,大大降低了依赖进口高成本费用;(5)由于70mm厚度钢板轧后强度较高,需要在790-830℃进行预矫,保证原始板形,在坚持低成本生产要求的基础上,确保淬火能淬透,在成分设计中采用中碳加少量的提高淬透性的Cr、B元素从而可以提高冷速设计思路解决生产高等级设备要求;(6)由于实验钢强度高,70mm钢板采用高温大压下模式进行控轧,整体压缩比>4倍,故选用320mm厚度坯料,且均热温度控制在1220℃左右,在炉时间适当延长,确保坯料钢温整体均匀,避免出现“红黑”相间的钢温;(7)由于成品厚度为70mm,在轧制过程中为避免出现心部偏析,影响强度和冲击值,故采用二阶段轧制方法,且一阶段轧制形变率≥55%,二阶段总形变率≥45%,确保表面到心部组织无明显差异性。

附图说明

图1(a)为本发明的大厚度Q960E超高强钢1/4厚度处金相组织照片;

图1(b)为本发明的大厚度Q960E超高强钢1/2厚度处金相组织照片。

具体实施方式

实施例1

本实施例提供的一种大厚度Q960E超高强钢生产方法,该生产方法包括以下流程:铁水脱硫预处理-转炉冶炼-LF+RH精炼-连铸-铸坯堆垛缓冷-铸坯检验-铸坯判定-铸坯验收-铸坯加热-除鳞-轧制-空冷-探伤-抛丸-淬火-回火-矫直-切割、取样-喷印标识-检验-入库,其中:

(1)该超高强钢的化学成分按重量百分比计包括:C:0.15%,Si:0.28%,Mn:1.15%,P≤0.008%,S≤0.0015%,Cu≤0.1%,Cr:0.59%,Ni:0.61%,Mo:0.28%,Nb:0.023%,Ti:0.018%,V:0.058%,B:0.0014%,Alt:0.025%,Ceq:0.57%,余量为Fe及不可避免的杂质;

该超高强钢的化学成分中碳当量Ceq(百分比)按以下公式计算:

Ceq=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15≤0.61;

(2)对铸坯加热,加热段温度为1240-1250℃,均热段温度控制在1207℃,出钢温度介于1195℃,在炉时间为405min,二阶段开轧温度886℃,成品厚度为70mm,待温铸坯厚度133mm,二阶段终轧温度856℃,轧后空冷;

(3)进行调质热处理,淬火温度控制在887℃,升温速率为1.4min/mm,在炉时间为122min,回火温度控制在599℃,升温速率为2.4min/mm,在炉时间为221min,缓冷至室温;

(4)热轧态矫直时先在828℃下进行预矫。

在本实施例中:在对铸坯进行轧制时采用二阶段轧制法,一阶段轧制形变率≥55%,二阶段轧制形变率≥45%;生产出的该超高强钢的力学性能达到以下水平,具体见下表1:

表1力学性能

屈服强度≥1000MPa,抗拉强度≥1050MPa,延伸率≥13%,-40℃,Akv冲击功值≥90J;显微组织为回火索氏体组织,晶粒尺寸控制在10μm-12μm,晶粒度控制在8-9级。

实施例2

本实施例提供的一种大厚度Q960E超高强钢生产方法,该生产方法包括以下流程:铁水脱硫预处理-转炉冶炼-LF+RH精炼-连铸-铸坯堆垛缓冷-铸坯检验-铸坯判定-铸坯验收-铸坯加热-除鳞-轧制-空冷-探伤-抛丸-淬火-回火-矫直-切割、取样-喷印标识-检验-入库,其中:

(1)该超高强钢的化学成分按重量百分比计包括:C:0.16%,Si:0.23%,Mn:1.19%,P≤0.005%,S≤0.0012%,Cu≤0.1%,Cr:0.45%,Ni:0.78%,Mo:0.2%,Nb:0.02%,Ti:0.013%,V:0.044%,B:0.0012%,Alt:0.033%,Ceq:0.55%,余量为Fe及不可避免的杂质;

(2)选用320mm厚的铸坯,对铸坯加热,加热段温度为1240-1250℃,均热段温度控制在1220℃,出钢温度介于1180℃,在炉时间为373min,二阶段开轧温度890℃,成品厚度为70mm,待温铸坯厚度控制为≥133mm,二阶段终轧温度854℃,轧后空冷;

(3)进行调质热处理,淬火温度控制在881℃,升温速率为1.5min/mm,在炉时间为130min,回火温度控制在595℃,升温速率为2.5min/mm,在炉时间为223min,缓冷至室温;

(4)热轧态矫直时先在798℃下进行预矫。

在本实施例中:在对铸坯进行轧制时采用二阶段轧制法,一阶段轧制形变率≥55%,二阶段轧制形变率≥45%;生产出的该超高强钢的力学性能达到以下水平见表2所示:

表2力学性能

实施例3

本实施例提供的一种大厚度Q960E超高强钢生产方法,该生产方法包括以下流程:铁水脱硫预处理-转炉冶炼-LF+RH精炼-连铸-铸坯堆垛缓冷-铸坯检验-铸坯判定-铸坯验收-铸坯加热-除鳞-轧制-空冷-探伤-抛丸-淬火-回火-矫直-切割、取样-喷印标识-检验-入库,其中:

(1)该超高强钢的化学成分按重量百分比计包括:C:0.14%,Si:0.25%,Mn:1.1%,P≤0.008%,S≤0.0015%,Cu≤0.1%,Cr:0.4%,Ni:0.8%,Mo:0.1%,Nb:0.039%,Ti:0.015%,V:0.04%,B:0.0011%,Alt:0.038%,Ceq:0.48%,余量为Fe及不可避免的杂质;

该超高强钢的化学成分中碳当量Ceq(百分比)按以下公式计算:

Ceq=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15≤0.61;

(2)对铸坯加热,加热段温度为1240-1250℃,均热段温度控制在1210℃,出钢温度介于1189℃,在炉时间为378min,二阶段开轧温度887℃,成品厚度为70mm,待温铸坯厚度133mm,二阶段终轧温度858℃,轧后空冷;

(3)进行调质热处理,淬火温度控制在885℃,升温速率为1.5min/mm,在炉时间为125min,回火温度控制在591℃,升温速率为2.6min/mm,在炉时间为228min,缓冷至室温;

(4)热轧态矫直时先在825℃下进行预矫。

在本实施例中:在对铸坯进行轧制时采用二阶段轧制法,一阶段轧制形变率≥55%,二阶段轧制形变率≥45%;生产出的该超高强钢的力学性能达到以下水平,见表3所示:

表3力学性能

屈服强度≥1000MPa,抗拉强度≥1050MPa,延伸率≥13%,-40℃,Akv冲击功值≥90J;

图1的(a)和(b)为通过加热温度:595℃,升温速率:2.5min/mm,加热时间为:223min,回火后的金相组织,从图中的组织可以看出,从1/4厚度处到1/2处金相组织,显微组织为回火索氏体组织,从1/4厚度处到心部均为回火索氏体组织,且晶粒尺寸控制在10μm-12μm,晶粒度达到8-9级。

本发明通过中碳和少量铬、镍、钼合金、铌+钒+钛+硼微合金化的成份设计,配合合理的控轧工艺、调质热处理工艺,开发出70mm厚度的Q960E超高强度钢,经过控轧、调质热处理后,其力学性能中屈服强度≥1000MPa,抗拉强度≥1050MPa,延伸率≥13%,-40℃,Akv冲击功值≥90J;由于国标对70mm厚度Q960E超高强度尚未有力学性能标准规定,本发明所获得的这些强度和塑韧性指标均达到国内某大型企业工程机械其力学性能的设计标准,由于强度高,厚度大,在实际工业生产过程中,对轧制设备和淬火机冷却能力要求较高,同时由于2800mm双机架轧机为粗轧机轧制力为5000吨、精轧机轧制力为4000吨的可逆四辊轧机组合,轧制力低,在生产过程中不能满足大压下轧制要求,易造成原始晶粒尺寸粗大,甚至出现混晶现象,从而严重影响强度和低温韧性相匹配的力学性能,通过中碳加淬透性较高的合金元素成分设计,从而弥补了满足常规轧制生产线因装备能力有限不能够生产高强度、高韧性、高焊接稳定性的Q960E高强钢的缺陷,同时采用高温结束轧制,使得高温态强度较低,使得低轧制力装备轧制能力得到发挥。

除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1