一种具有自润滑性能的纳米复合涂层硬质合金刀具的制作方法

文档序号:11900554阅读:391来源:国知局
一种具有自润滑性能的纳米复合涂层硬质合金刀具的制作方法与工艺

本发明公开了一种切削刀具,尤其涉及一种带自润滑效应的纳米复合涂层切削刀具。



背景技术:

涂层技术发展与应用对刀具性能的改善与切削技术进步起到了关键作用,PVD涂层刀具已成为现代切削刀具的重要标志。早期的涂层刀具材料主要有TiC、TiN、TiCN等。在TiN涂层中加入Al形成TiAlN涂层,不仅在硬度、耐磨性方面优于TiN,且显著改善涂层耐腐蚀性,提升抗氧化温度。Al含量高的TiAlN涂层称为AlTiN涂层,涂层中Al含量提高(1<Al/Ti<2/1),涂层晶粒细化,硬度、抗氧化性与耐磨性也显著提升,刀具的切削寿命也极大提高。

随着加工材料的日新月异,性能的不断提升,对涂层刀具提出了更高要求。涂层多元化与多层复合是涂层技术发展的两大趋势。

在现有AlTiN涂层硬质合金刀具中引入Si、Cr等元素,能提高涂层的硬度与抗氧化性,显著改善对硬化钢等的切削寿命。钛合金、高温合金等难加工航空材料,由于其脆性大,加工过程粘结严重、切削力大、切削温度高等特性,普通AlTiN与超硬AlTiSi(Cr)N硬质合金涂层刀具在切削加工时,涂层与工件摩擦系数高,导致切削力大,切削热高,切削过程中易出现粘刀、崩刃等问题,急速降低刀具的使用寿命。

普通TiAlN/AlTiN与TiAlN/TiAlSiN纳米多层复合涂层能显著提高涂层的硬度与抗氧化性能,但由于其摩擦系数高,增大了刀具阻力与刀具表面粘屑程度。在对表面质量要求高以及润滑和排屑要求高的场合存在一定的使用缺陷,最终影响其切削应用。



技术实现要素:

本发明主要是提供一种具有摩擦系数低、耐磨性能高、韧性好的纳米复合涂层切削刀具。

为解决上述技术问题,本发明采用技术方案为一种纳米复合涂层切削刀具,包括刀具基体和沉积于所述刀具基体上的纳米复合涂层,所述纳米复合涂层为AlTiN-Ni纳米颗粒复合涂层与AlTiN/Ni纳米多层复合涂层。所述AlTiN-Ni纳米颗粒复合涂层中Ni元素均匀分布于AlTiN之中;所述AlTiN/Ni纳米多层复合涂层是以AlTiN层、Ni层为一个循环,按AlTiN层、Ni层、AlTiN层、Ni层……循环分布的复合涂层。

上述AlTiN-Ni纳米颗粒复合涂层切削刀具中,AlTiN-Ni纳米复合涂层按通式(AlaTibNc)Niz构成;

其中:a+b+c+z=1;

a取值范围0.25-0.33;

b取值范围0.17-0.25;

z取值范围0-0.07。

上述AlTiN/Ni纳米多层涂层切削刀具中,AlTiN层的单层厚度为3~100nm,所述Ni层的单层厚度为3~40nm。

上述AlTiN-Ni纳米颗粒复合涂层切削刀具中AlTiN-Ni纳米颗粒的晶粒尺寸为6-8nm。

上述AlTiN层中,按摩尔比计,Al:Ti:N=0.25-0.33:0.17-0.25:0.45-0.58。

上述纳米复合涂层切削刀具中,Ni元素的价态为0价。且不与Al、Ti、N中任意一种或几种元素形成化合物或合金。

上述AlTiN-Ni纳米复合涂层中Ni以非晶态存在。

上述纳米复合涂层切削刀具中,涂层的总厚度为2.5μm~3.5μm。

所述纳米复合涂层在下列条件下使用阴极弧法生成:反应气体为氮气;

总压力为1.0Pa至3.2Pa;

偏压为-120V至-30V;

沉积温度为400℃至600℃之间。

与现有技术相比,本发明优点在于:

本发明的纳米颗粒Ni引入AlTiN涂层后,涂层组织细密,结构均匀;涂层AlTiN晶粒显著细化至纳米级别;进而显著改善涂层的抗热震性能。由于涂层中Ni主要以零价非晶态赋存时,可显著改善涂层的韧性。同时非氮化物金属Ni层在切削过程中的自润滑效应可显著降低涂层刀具与工件之间的摩擦系数,具有出色的润滑效果。软质金属Ni弥散在整个涂层中,在切削加工的摩擦与高温作用下逐渐磨损,能够起到明显的减磨润滑效果,直至刀具涂层最终完全失效。

本发明的纳米多层涂层切削刀具中的多层复合涂层综合了两种成分涂层的特点与优点,其中非氮化物金属Ni层在切削过程中的自润滑效应可显著降低涂层刀具与工件之间的摩擦系数,具有出色的润滑效果。在微观结构中交替沉积AlTiN层与非氮化物金属Ni层,使得金属Ni在宏观上贯穿于整个涂层厚度区间,在切削加工的摩擦与高温作用下逐渐磨损,软质金属Ni元素能够起到明显的减磨润滑效果,直至刀具涂层最终完全失效。

本发明的多层涂层通过对涂层结构和组分设计,克服了传统AlTiN涂层摩擦系数差,与韧性差的缺点。本发明的多层涂层切削刀具实现了高润滑性能,高耐磨损性能,且涂层具有较好的韧性,适用于硬质合金可转位刀片和硬质合金铣刀、钻头等。

附图说明

图1为本发明制备的沉积在硬质合金基体上实施例1的AlTiN-Ni纳米复合涂层的截面扫描电镜图。

图2为本发明制备的沉积在硬质合金基体上实施例1的AlTiN-Ni纳米复合涂层XRD图。

图3为本发明制备的实施例1的AlTiN-Ni纳米复合涂层中Ni的XPS能谱图。

从图1可以看出纳米颗粒Ni引入AlTiN涂层后,涂层组织细密,结构均匀。

根据图2所得XRD图,采用谢乐公式计算得到AlTiN晶粒尺寸为7.107nm。由此可知,涂层的晶粒得到显著细化,同时XRD未检测到Ni;结合图3可知此时的Ni是以非晶态赋存的。

从图3中可以看出涂层中Ni主要以金属态形式存在,也就是说AlTiN-Ni纳米复合涂层中Ni以非氮化物态形式存在于AlTiN涂层中。

具体实施方式

下面通过具体实施例对本发明作进一步的说明,但发明的保护内容不局限于以下实施例。

本发明实施例和对比例中,依据刀具的要求使用AlTiNi、AlTi靶与Ni靶,涂层制备均采用普通PVD阴极弧沉积方法制备。

实施例1

一种纳米颗粒复合涂层刀具,复合涂层的组成为Al0.63Ti0.34N-Ni0.03,复合涂层的厚度为3.1μm。刀具基体为硬质合金VNEG160408-NF刀片。

一种本实施例纳米颗粒复合涂层切削刀具制备方法,包括以下步骤:

(1)利用现有硬质合金VNEG160408-NF刀片;对刀具基体进行刃口处理、表面处理;(2)利用常规PVD工艺在刀具基体上沉积上述Al0.63Ti0.34N-Ni0.03纳米颗粒复合涂层,刀具涂层的总厚度为3.2μm。依据刀具的要求使用AlTiNi靶用于功能复合涂层制备作为涂层源,采用PVD阴极弧沉积涂层方式。

实施例2

一种纳米颗粒复合涂层刀具,复合涂层的组成为Al0.52Ti0.43N-Ni0.05,复合涂层的厚度为3.5μm。刀具基体为硬质合金VNEG160408-NF刀片。涂层制备方法与实施例1相同。

实施例3

一种本发明多层涂层切削刀具,由内向外依次由刀具基体和复合涂层组成,涂层总厚度为3.2μm。复合涂层包括由内向外设置的周期性相互交替沉积的AlTiN层与Ni层,且最内层的AlTiN层设于基体上;AlTiN按原子比组成为Al0.65Ti0.35N,Al0.65Ti0.35N的单层厚度为10nm,Ni层的单层厚度为4nm,复合涂层的厚度为3.2μm。刀具基体1为硬质合金VNEG160408-NF刀片。

具体操作如下:

(1)利用现有硬质合金VNEG160408-NF刀片;对刀具基体进行刃口处理、表面处理;(2)利用常规PVD工艺在基体上沉积沉积上述的Al0.65Ti0.35N层;(3)利用常规PVD工艺在前一个步骤的Al0.65Ti0.35N层上沉积Ni层;(4)利用常规PVD工艺在前一个步骤的Ni层上沉积Al0.65Ti0.35N层;(5)重复步骤(3)与步骤(4),以内层Al0.65Ti0.35N层与第二内层Ni层作为第一周期,直至得到共230个周期,刀具涂层的总厚度为3.2μm。依据刀具的要求使用AlTi靶用于过渡层制备,AlTi靶与Ni靶用于功能复合涂层制备作为涂层源,均采用PVD阴极弧沉积涂层方式。

对比试验

对比例1

对照刀具为与上述实施例1的纳米复合涂层切削刀具具有相同形状和相同刀具基体组分的株洲钻石切削集团生产的VNEG160408-NF刀片,对比例1的涂层为与实施例1具有相同阴极弧沉积方法制备的Al0.65Ti0.35N涂层(靶材选用粉末冶金Al0.66Ti0.34靶),涂层厚度3μm。

将上述实施例1的纳米复合涂层切削刀具、对比例1所得试样刀具在低速下对钛合金进行切削加工,切削加工条件如下:

加工材料为TC4钛合金;

加工方式为车削;

切削速度Vc=60m/min;

切削深度ap=1mm;

每转进给量f=0.2mm/r;

冷却方式:水性冷却液。

产品寿命判定标准为刀具后刀面平均磨损量Vb达到0.3mm,或后刀面沟槽磨损量Vbmax=0.6mm。结果显示,本实施例的纳米复合涂层加工36min后,后刀面磨损量达到0.3mm,正常磨损失效;对照刀具加工28min后,后刀面平均磨损量达到0.3mm。本实施例的纳米复合涂层切削刀具寿命较对照刀具提高28%以上。

对比例2

对照刀具为与上述实施例2的纳米复合涂层切削刀具具有相同形状和相同刀具基体组分的株洲钻石切削集团生产的VNEG160408-NF刀片,对比例2的涂层为与实施例1具有相同阴极弧沉积方法制备的Al0.65Ti0.35N涂层(靶材选用粉末冶金Al0.66Ti0.34靶),涂层厚度为3μm。

将上述实施例2的纳米复合涂层切削刀具、对比例2所得试样刀具在高速下对钛合金进行切削加工,切削加工条件如下:

加工材料为TC4钛合金;

加工方式为车削;

切削速度Vc=80m/min;

切削深度ap=1mm;

每转进给量f=0.2mm/r;

冷却方式:水性冷却液。

产品寿命判定标准为刀具后刀面平均磨损量Vb达到0.3mm,或后刀面沟槽磨损量Vbmax=0.6mm。结果显示,本实施例的纳米复合涂层加工12min后,后刀面磨损量达到0.3mm,正常磨损失效;对照刀具加工9min后,后刀面平均磨损量达到0.3mm。本实施例的纳米复合涂层切削刀具寿命较对比例所得试样刀具提高33%以上。

对比例3

对照刀具为与上述实施例3的纳米复合多层涂层切削刀具具有相同形状和相同刀具基体组分的株洲钻石切削集团生产的VNEG160408-NF刀片,对比例3涂层为与实施例1具有相同阴极弧沉积方法制备的Al0.65Ti0.35N涂层(靶材选用粉末冶金Al0.66Ti0.34靶),涂层厚度为3μm。

将上述本实施例3的纳米复合涂层切削刀具、对比例3所得试样刀具在高速下对GH4169高温合金进行切削加工,切削加工条件如下:

加工材料为GH4169高温合金;

加工方式为车削;

切削速度Vc=40m/min;

切削深度ap=1mm;

每转进给量f=0.2mm/r;

冷却方式:水性冷却液。

产品寿命判定标准为刀具后刀面平均磨损量Vb达到0.3mm,或后刀面沟槽磨损量Vbmax=0.6mm。结果显示,本实施例的纳米复合涂层加工15min后,后刀面磨损量达到0.3mm,正常磨损失效;对照刀具加工11min后,后刀面平均磨损量达到0.3mm。本实施例的纳米复合涂层切削刀具寿命较对比例3所得试样刀具提高了36%以上。

该测试结果表明,与商业级普通AlTiN切削刀具相比,本发明的涂层刀具对钛合金与高温合金均表现出优异的切削性能。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1