一种层状互通结构复合材料的制备方法与流程

文档序号:13841795阅读:224来源:国知局

本发明涉及一种层状互通结构复合材料的制备方法,属于复合材料技术领域。



背景技术:

随着建筑、交通、航天航空以及电子工业等领域的快速发展,对材料的应用性能提出了更高的要求。传统的单一材料(如陶瓷、金属和高分子材料)早已不能满足工业应用要求。未来的一个重大挑战是开发新的更强、更韧且轻质的结构材料。金属基复合材料是其中最理想的材料之一,它兼有金属与陶瓷的优点,不仅具有高比强度、高比模量、耐磨损,重量轻,能够承受较高的工作温度,而且还具有良好的热物理性能,因此既可以作为抗蚀、耐磨、耐高温的结构件,又可作为导电、导热、抗辐射的功能材料,其需求量日益增长。但遗憾的是,这类材料目前还很少实现商业化,究其原因:一是生产成本高,二次加工困难;二是随着陶瓷增强体含量的增加,复合材料的韧性下降,断裂功减少,性能不稳定,使用起来不够安全,这也是陶瓷颗粒增强金属基复合材料多年来一直没有解决的瓶颈难题。想要达到材料的最佳性能,必须充分理解材料结构参数与力学性能之间的内在关系和相互作用,此外,有必要寻求和开发合成块体结构材料的新制造技术。材料的多组分、多功能以及结构功能一体化已成为材料科学发展的必然趋势。利用延性相增强脆性相以提高断裂韧性,这一思想在复合材料的设计中由来已久,实践中也取得了显著的效果。然而,强度和韧性是互相排斥的两种性能。要达到最佳的力学表现往往是这两种性能相互妥协的结果。在金属基复合材料中,目前人们已经广泛研究了影响力学响应的因素,其中包括基体成分、增强相种类和形态、体积分数、分布情况以及增强相与基体之间的界面结构与结合等。同时,力学研究证实,在复合材料中含相同体积但不同形貌的增强相(如层状,颗粒状,纤维状)时,层状结构将呈现最大的增韧效果,其次是纤维状和颗粒状。而最终高强韧(即高损伤容限)复合材料的获得主要依靠对组分材料性能和多尺度范围内微观结构的有效控制。在优化复合材料强韧性的过程中,大自然中的生物材料给予了人们很多启示。生物材料(如牙质、骨、贝壳等)经过数亿年的进化,形成了与环境和功能需求相适应的精细结构,表现出传统人工合成材料无法比拟的优异性能。贝壳珍珠层是众多生物材料中的优秀代表,它由硬相和软相交替排列形成了纳米级“砖-泥”复合结构,因此不仅具有较高的强度,而且还显示出惊人的断裂韧性以及良好的耐磨性,现已成为制备轻质、高强韧性仿生层状复合材料的模型结构。在最近的20年,采用仿生原理制备类珍珠贝结构的复合材料引起了学术界的极大兴趣。但是传统的技术(像流延成型、热压烧结、反应烧结、气相沉积渗透等)难以仿制像贝壳精细结构的块体复合材料,也不能使材料的力学性能达到最佳。



技术实现要素:

本发明所要解决的技术问题:针对目前金属陶瓷复合材料力学性能差,耐磨性能差的问题,提供了一种层状互通结构复合材料的制备方法。

为解决上述技术问题,本发明采用的技术方案是:

一种层状互通结构复合材料的制备方法,其特征在于,具体制备步骤为:

(1)取羧甲基纤维素钠、葡萄糖、去离子水、碳化硅、氧化铝、氧化锆混合均匀后转入行星式高能球磨机中球磨8~10h,得陶瓷浆料;

(2)将陶瓷浆料喷洒入聚四氟乙烯模具中,静置定向凝固2~3h,得凝固体;

(3)将凝固体脱模后置于真空冷冻干燥箱中冷冻干燥40~48h,得层状多孔陶瓷坯体;

(4)将层状多孔陶瓷坯体置于管式炉中烧结,降温至室温,得层状多孔陶瓷;

(5)将层状多孔陶瓷置于高压浸渗炉内,并在陶瓷顶部放置铝合金,抽真空并加热至800~900℃使铝合金熔化,通入氩气加压10~15min后降温至450~500℃保温10~12h,再自然冷却至室温,得层状互通结构复合材料。

步骤(1)所述各组分原料的重量份为:8~10份羧甲基纤维素钠,8~10份葡萄糖,700~750份去离子水,200~240份碳化硅,50~60份氧化铝,8~10份氧化锆。

步骤(2)所述定向凝固为控制聚四氟乙烯模具底部温度为-30~-20℃,再将陶瓷浆料以10~20ml/min喷洒入模具中。

步骤(3)所述真空冷冻干燥箱内压力为1~10pa,温度为-60~-50℃。

步骤(4)所述烧结过程为在空气氛围下以5℃/min升温至1100~1200℃,保温反应60~80min,再在氩气氛围下升温至1500~1600℃,保温反应2~3h,所述升温、降温速率为5℃/min。

步骤(5)所述高压浸渗炉内压力为1~10pa,所述加压压力为2~3mpa。

本发明与其他方法相比,有益技术效果是:

本发明通过将浆料喷洒入具有温度梯度的模具中,使浆料均匀铺展并定向凝固,在定向凝固过程中,陶瓷浆料中的冰晶从冷端开始定向生长,陶瓷颗粒被不断生长的冰晶前沿“排挤”至冰晶晶界处,大量陶瓷颗粒沿晶界排布,最终形成冰晶层和陶瓷颗粒堆积层的交替排列,再将凝固体放置于低温低压环境中,使去离子水冰晶升华,再对冷冻干燥的坯体进行烧结处理后,便可得到层状多孔陶瓷,再用压力浸渗法将铝合金渗入层状结构中,形成具有轻质、高模量、高强韧性、耐磨的层状互通结构复合材料。

具体实施方式

取8~10g羧甲基纤维素钠,8~10g葡萄糖加入700~750ml去离子水中,以300~400r/min搅拌20~30min,再加入200~240g碳化硅,50~60g氧化铝,8~10g氧化锆,继续搅拌20~30min后转入行星式高能球磨机中,以100~150r/min球磨8~10h,得陶瓷浆料,取聚四氟乙烯模具,并控制底部温度为-30~-20℃,再将陶瓷浆料以10~20ml/min喷洒入模具中,喷洒完毕后,静置定向凝固2~3h,得凝固体,将凝固体脱模后置于真空冷冻干燥箱中,在1~10pa,-60~-50℃下冷冻干燥40~48h,得层状多孔陶瓷坯体,将层状多孔陶瓷坯体置于管式炉中,在空气氛围下以5℃/min加热至1100~1200℃,保温反应60~80min后再在氩气氛围下,加热至1500~1600℃,保温反应2~3h后以5℃/min降温至室温,得层状多孔陶瓷,将层状多孔陶瓷置于高压浸渗炉内,并在陶瓷顶部放置铝合金,抽真空至炉内压力为1~10pa,再以5℃/min加热至800~900℃,使铝合金熔化,并通入氩气至炉内压力为2~3mpa,保温10~15min后以5℃/min降温至450~500℃,保温10~12h,再自然冷却至室温,得层状互通结构复合材料。

实例1

取8g羧甲基纤维素钠,8g葡萄糖加入700ml去离子水中,以300r/min搅拌20min,再加入200g碳化硅,50g氧化铝,8g氧化锆,继续搅拌20min后转入行星式高能球磨机中,以100r/min球磨8h,得陶瓷浆料,取聚四氟乙烯模具,并控制底部温度为-30℃,再将陶瓷浆料以10ml/min喷洒入模具中,喷洒完毕后,静置定向凝固2h,得凝固体,将凝固体脱模后置于真空冷冻干燥箱中,在1pa,-60℃下冷冻干燥40h,得层状多孔陶瓷坯体,将层状多孔陶瓷坯体置于管式炉中,在空气氛围下以5℃/min加热至1100℃,保温反应60min后再在氩气氛围下,加热至1500℃,保温反应2h后以5℃/min降温至室温,得层状多孔陶瓷,将层状多孔陶瓷置于高压浸渗炉内,并在陶瓷顶部放置铝合金,抽真空至炉内压力为1pa,再以5℃/min加热至800℃,使铝合金熔化,并通入氩气至炉内压力为2mpa,保温10min后以5℃/min降温至450℃,保温10h,再自然冷却至室温,得层状互通结构复合材料。

实例2

取89g羧甲基纤维素钠,9g葡萄糖加入725ml去离子水中,以350r/min搅拌25in,再加入220g碳化硅,55g氧化铝,9g氧化锆,继续搅拌25min后转入行星式高能球磨机中,以120r/min球磨9h,得陶瓷浆料,取聚四氟乙烯模具,并控制底部温度为-25℃,再将陶瓷浆料以15ml/min喷洒入模具中,喷洒完毕后,静置定向凝固2h,得凝固体,将凝固体脱模后置于真空冷冻干燥箱中,在5pa,-55℃下冷冻干燥44h,得层状多孔陶瓷坯体,将层状多孔陶瓷坯体置于管式炉中,在空气氛围下以5℃/min加热至1150℃,保温反应70min后再在氩气氛围下,加热至1550℃,保温反应3h后以5℃/min降温至室温,得层状多孔陶瓷,将层状多孔陶瓷置于高压浸渗炉内,并在陶瓷顶部放置铝合金,抽真空至炉内压力为5pa,再以5℃/min加热至850℃,使铝合金熔化,并通入氩气至炉内压力为2mpa,保温12min后以5℃/min降温至470℃,保温11h,再自然冷却至室温,得层状互通结构复合材料。

实例3

取10g羧甲基纤维素钠,10g葡萄糖加入750ml去离子水中,以400r/min搅拌30min,再加入240g碳化硅,60g氧化铝,10g氧化锆,继续搅拌30min后转入行星式高能球磨机中,以150r/min球磨10h,得陶瓷浆料,取聚四氟乙烯模具,并控制底部温度为-20℃,再将陶瓷浆料以20ml/min喷洒入模具中,喷洒完毕后,静置定向凝固3h,得凝固体,将凝固体脱模后置于真空冷冻干燥箱中,在10pa,-50℃下冷冻干燥48h,得层状多孔陶瓷坯体,将层状多孔陶瓷坯体置于管式炉中,在空气氛围下以5℃/min加热至1200℃,保温反应80min后再在氩气氛围下,加热至1600℃,保温反应3h后以5℃/min降温至室温,得层状多孔陶瓷,将层状多孔陶瓷置于高压浸渗炉内,并在陶瓷顶部放置铝合金,抽真空至炉内压力为10pa,再以5℃/min加热至900℃,使铝合金熔化,并通入氩气至炉内压力为3mpa,保温15min后以5℃/min降温至500℃,保温12h,再自然冷却至室温,得层状互通结构复合材料。

将制备得的层状互通结构复合材料及广州某公司生产的灭火剂进行检测,具体检测如下:

(1)弹性模量测试

弹性模量是表征材料抵抗弹性变形的能力,本实验中通过测量超声波波速实现在非破坏状态下测量材料的弹性模量。采用电火花线切割机分别沿着平行和垂直于冷冻方向切出尺寸为10×10×10mm3的立方体。通过超声波测厚仪(olympus38dlplus,sa)测量超声波在复合材料不同方向中传播的纵波波速cl和横波波速cs。纵波单晶探头(m112-rm,10mhz)使用丙三醇作为耦合剂,而横波单晶探头(v156-rm,5mhz)使用糖浆作为耦合剂。

(2)磨损性能测试

在干摩擦磨损实验前,用2000#水磨砂纸对试样的待摩擦表面进行打磨,保证待磨面与对磨副完全接触,随后称重样品质量m0。摩擦磨损实验结束后将磨损样品放置于丙酮中,用超声波清洗机中清洗,然后用精度为0.1mg的光电天平称量其磨损试验后的质量m1。用失重法算出样品的磨损率w,其计算公式如下:

w=(m0-m1)/ρd

式中,ρ是磨损样品的密度,d是滑动距离。

(3)断裂韧性测试

采用单边缺口梁法(senb)测试样品的断裂韧性。利用电火花线切割机从复合材料中切割出尺寸为2×4×20mm3的试样,切口宽度为0.25mm,切口深度为2mm,试样表面进行抛光处理。在万能电子材料试验机(instron5689,instroncorp.,usa)上进行三点弯曲加载实验,其跨距是16mm,压头移动速率为0.05mm/min。具体测试结果如表1。

表1层状互通结构复合材料性能表征

由表1可知,本发明制得层状互通结构复合材料,具有高模量、高强韧性、低磨损率,是现在市场上缺少的复合材料,有较好的发展前景。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1