合金涂覆的EDM丝的制作方法

文档序号:18030459发布日期:2019-06-28 22:36阅读:222来源:国知局
合金涂覆的EDM丝的制作方法
本申请要求2016年10月14日提交的美国临时申请序列62/408,275的优先权,其全文经此引用并入本文。本发明涉及用于通过使用edm机床的电火花加工(edm)制造金属或导电部件的电极丝,尤其涉及利用γ相黄铜涂层制造高性能edm电极丝的方法和由该方法制成的edm丝。背景自二十多年前在美国专利5,945,010中确定商业可行的γ相黄铜涂覆的edm丝电极构造以来,高性能edm丝市场已被γ-黄铜合金涂覆的edm丝构造控制。γ-黄铜合金涂层已施加到多种多样的非合金化、合金化、单一和/或多层复合铜轴承芯上。它们通常通过扩散退火法形成,其最初由tominaga(us4,686,153)在铜包钢芯上,随后由brifford(us4,977,303)在铜芯上引入至edm应用。在扩散退火法中,通过电解沉积或浸渍成型法施加非合金化锌,接着在150℃-900℃的温度下扩散退火。扩散退火可以是在罩式炉中的静态退火或是丝行进经过在精确受控的热处理曲线下的细长炉的动态退火。通常,炉气氛是空气或空气/氮气混合物以仅发生最小氧化。所有现有技术状况的γ-黄铜合金构造产生单相、二元cu/zn合金γ-黄铜涂层,因为该合成反应是准平衡扩散退火。这又产生如通过平衡二元cu-zn相图,如hansen在1958年在参考文献constitutionofbinaryalloys中发布的相图预测的62-65%zn的典型平衡组成。现有的涂覆edm丝电极构造包括薄氧化物表面层的教导。brifford等人(u.s.4,341,939)提出在黄铜基底上的非合金化锌涂层的初始氧化物表面层构造,其中表面薄氧化物膜具有配置为展现半导体电特性的厚度,其防止放电过程中的短路。随后当brifford(u.s.4,977,303)提出在铜芯上的单相β黄铜合金涂层时,该丝也包括厚度估计为大约1微米的氧化锌表面涂层。由该技术带来的后续产品在商业上称为cobracutx和cobracutd并变成至今仍在使用的工业标准。更最近,已经提出在半连续或连续β-黄铜合金中间分层构造上的双层不连续γ-黄铜合金外层(参见gross等人(us6,781,081)、shin(us7,723,635)、baumann等人(us8,853,587)和blanc等人(us8,378,247))。在这些构造中,薄(大约1微米)最外氧化锌层涂覆edm丝以如brifford等人最初提出的那样充当防止短路的半导体屏障。此刻在edm技术演化中,blanc等人最完整描述了现有技术状况的γ-黄铜涂覆的丝电极技术,其指出双层γ/β涂层和用于精确测量优选的半导体氧化锌阻隔层的厚度(例如100nm-250nm)的分析技术(选择性溶解试验)。另外,yen(us2016/0039027)已经提出更厚的(>1μm)氧化锌外层可利用在edm应用中可提供的逆压电效应增强edm丝性能。概述在一个实例中,一种用于电火花加工装置的电极丝包括金属芯和布置在金属芯上的γ相黄铜层。β相黄铜的粒子散布在γ相黄铜层内。在γ相黄铜层上布置含锌的氧化物层。在另一实例中,一种形成用于电火花加工装置的电极丝的方法包括将含锌层涂覆到金属芯上以形成复合丝。将所述复合丝在富氧环境中热处理以在芯上形成γ相黄铜层,其包含从γ相层中沉淀出的β相黄铜的粒子。将所述复合丝拉细(drawndown)至最终直径。本发明基于以下令人惊讶的发现,即在edm丝上的厚度大于1μm的氧化锌层在富氧环境中热处理时可提供有利的性质。更具体地,响应在低温下长时间暴露于富氧环境,位于单相γ-黄铜合金层上的这样的氧化锌层从单相γ-黄铜合金相区中优先消耗锌。最终,γ-黄铜相区中的局部锌含量随机降低直至局部锌浓度降至低于γ-黄铜合金存在界限。因此,在γ-黄铜合金层内发生β-相黄铜合金粒子的局部沉淀。如果如此构造的γ-黄铜合金随后在丝拉拔工艺中变形(为达到所需拉伸强度和所需丝直径,情况通常如此),由于该合金的极度脆性,丝中的所有γ-黄铜合金元素断裂并嵌在下方芯的表面中。在γ/β双层构造的情况下,所得微结构的特征在于单相γ-黄铜合金粒子嵌在半连续或连续的β相黄铜合金层中,后者又覆盖在芯上。在这样的双层构造中,β-相黄铜层挤进γ-相黄铜层之间和与其相邻的间断处,但不包含在这些粒子内。β-相黄铜层的位置具有冶金重要性。在这些双层γ/β构造的演化中,认识到在γ-相层下方的β-相层通常冶金结合到γ-相层。这种特定的结合改进已内部断裂的γ粒子的附着力。此外,β-相层位于γ-相层粒子之间通常提供比原本会占据该空间的芯丝合金更高效的冲洗(flushing)表面。在本发明中主要γ-相层还含有无规分散的、分离的β-相黄铜沉淀物的事实是重要的,因为如果它们通过后续丝拉拔变形,这些沉淀物可对γ-相层断裂成离散微粒的断裂力学具有潜在影响。β-相黄铜沉淀物也可影响在edm加工法的过程中在γ-相层与工件的界面处发生的任何放电事件。从下列详述和附图获得本发明的其它目的和优点和更充分的理解。附图简述图1a-1e是根据本发明的一个实施方案形成edm丝的各种阶段的示意图。图2是根据现有技术的edm丝的示意图。图3是图2的现有技术edm丝的端视图。图4是图2的现有技术edm丝的金相横截面。图5是在0.25mm直径下的图2的现有技术edm丝的表面的光学显微照片。图6是在1.2mm直径下的根据本发明的edm丝的金相横截面。图7是在0.25mm直径下的根据本发明的edm丝的金相横截面。图8是图6的edm丝的表面的光学显微照片。图9是为比较图1的edm丝与图2的现有技术edm丝而进行的试验切割(testcut)的草图。详述本发明涉及用于通过使用edm机床的edm制造金属或导电部件的电极丝,尤其涉及利用γ相黄铜涂层制造高性能edm电极丝的方法和由该方法制成的edm丝。图1a-1e图示说明根据本发明的一个方面的示例性丝电极或edm丝10。参照图1a,edm丝10包括由金属和/或金属合金,包括例如铜、铜锌合金、铜包钢或铝包钢形成的芯12。芯12可具有大约0.8至2.0mm的直径。在芯12上涂覆具有小于35kj/cm3的汽化热的第二金属,例如锌的层13。但是,要认识到,层13可包含除锌外的附加材料,如铜。层14可以任何已知方式,如通过电镀涂覆在芯12上。层13具有大约10-12μm的厚度并与芯12配合形成复合丝10。复合丝10通过扩散退火加热,这使层13的一部分转化成黄铜合金,如γ-相黄铜,以形成涂层14(见图1b)。在一个实例中,热处理含铜的芯12使铜向外扩散到层13中,由此依序将锌转化成γ-相黄铜合金。γ-相黄铜层14可具有基本均匀的组成和厚度。在一个实例中,扩散退火可在大约150℃-160℃下进行大约24小时。在富氧环境中,即在由多于22%氧气构成的环境中进行扩散退火,以使层13的外部氧化成薄氧化锌层16,其限定涂覆丝10的外侧。氧化锌层16具有至少1μm的厚度。根据热处理的程度和/或持续时间,与芯12相邻的γ-相层14的一部分可从芯中接收额外的铜,这将该部分转化成β-相黄铜层18(见图1c-1d)。在第一轮热处理后,涂覆丝10可再次扩散退火,但这次在比第一轮更高的温度和更短的持续时间下进行。在一个实例中,第二轮扩散退火可在富氧环境中在大约275℃下进行大约6小时。在热处理过程中,氧化锌层16由于反应动力学继续从下方的γ-相层14中优先消耗锌,由此在γ-相层内在随机位置局部降低锌含量直至局部锌浓度低于这些位置的γ-相存在界限。因此,在γ-相层14内发生β-相粒子20的局部沉淀。β-相粒子20因此分散在γ-相层14内并可完全被γ-相层包围或封住。接着,涂覆丝10经历冷拉工艺,其使该涂覆丝变形以达到所需拉伸强度和最终直径。在该拉拔步骤的过程中,γ-相层14如图1e中所示再分布在丝10的周界上。γ-相层14完全脆性并因此在通过该拉拔步骤伸长时断裂。因此,在拉拔过程中在层14中形成一系列间断处或间隙24。间隙24径向向内延伸以使部分芯和/或β-相层18透过γ-相层14暴露于环境条件。同时,形成层14的一些脆性γ-相黄铜粒子破裂并且自己嵌在下方β-相层18的表面中,由此沿γ-相层/β相层界面产生曲折(convoluted)形貌。这样的构造可在丝10表面创建水力湍流(hydraulicturbulence),由此增强电介质的冲洗作用。由上文清楚可见,当丝10在富氧环境中热处理时发生若干物理变化。首先,锌层13渐进转化成氧化锌层16和γ-相层14和如果需要,径向在芯12和γ-相层之间的附加β-相层18。其次,γ-相层14冶金结合到其下方的层,即芯12或β-相层18,由此改进γ-相层和其下方的层之间的附着力。第三,锌层13继续形成氧化锌层16并从γ-相层14中夺取锌直至在随机位置从γ-相层中沉淀出β-相黄铜粒子20。由上文也清楚可见,在拉拔过程中在丝10中发生若干物理变化。首先,脆性γ-相层14断裂并再分布在丝10的周界上,以在其中形成间断处或裂纹24。这些间断处24至少部分被由于其高延性而在拉拔步骤中向外挤出的部分β-相层18填充。因此,β-相层18径向向外挤出到间断处24中,由此提供比如果不存在β-相层则会占据该空间的芯丝12更高效的冲洗表面。氧化锌层16的部分也可在冷拉后延伸到间断处24中。此外,β-相黄铜粒子20可有利地影响在通过丝拉拔变形时丝10的断裂力学。实施例将本发明的edm丝的样品(htcln)与由blanc等人(美国专利8,378,247)中的描述再制的样品(sd2)比较。参照图2-3,sd2样品丝31包括γ/β双层构造,其含有由63cu/37zn制成的芯32,覆盖具有厚度e3的连续β-黄铜子层33涂层。表面层34覆盖子层33并具有厚度e4。表面层34包括断裂的γ-黄铜结构35a,在断裂处暴露出β-黄铜。表面层35的γ-相区35与表面层中的断裂35a相接。β-黄铜可至少部分填充γ-黄铜表面层34中的断裂35a,以赋予丝31的表面一定程度的连续性。氧化物层36覆盖表面层34并具有计算厚度e0。sd2丝样品31具有0.25mm的直径d1。为了比较本发明与现有技术状况的γ-黄铜涂覆的丝电极技术,适当的是,确立现有γ-黄铜涂覆构造,例如sd2样品的金相组织和性能的表征。也就是说,图4是sd2样品在高放大率下的轻微蚀刻的冶金光学横截面。图5是sd2样品的表面形貌在高放大率下的光学显微照片。对样品sd2进行如blanc等人规定的选择性溶解试验,结果是氧化物层36具有计算厚度e0=191nm(见图3)。该值与blanc等人的优选结果100nm-250nm一致。根据本发明使用如下详述的工艺进度制备样品htcln:阶段1.在1.2mm直径60cu/40zn芯丝上电镀10-12μm锌阶段2.在氧气气氛中在155℃下热处理24小时阶段3.提高热处理温度至275℃并继续另外6小时阶段4.在浓h2so4溶液(10%-15%h2so4/ph=1-2)中酸洗阶段5.拉拔到0.25mm的最终直径。用于加工样品htcln的策略是用已知产生在元素和尺寸上与样品sd2类似的微结构的热处理建造样品,同时除去由造成评估的独特微结构的热处理引入的任何潜在过量氧化物。为此,阶段4中的涂覆丝的酸洗从htcln样品上除去过量氧化物以对比sd2样品测试htcln样品。但是,在使用中,不从涂覆丝上除去氧化物。结果,除它们的γ-相层结构外,即在样品htcln中的γ-相层内存在β-相粒子沉淀物vs在样品sd2中的γ-相层内不存在这样的粒子,sd2和htcln样品旨在具有可比较的微结构。这样做的目的是确立本发明的独特微结构造成与现有技术相比改进的性能。图6是在阶段3结束时样品htcln在高放大率下的抛光冶金光学横截面的照片。该照片清楚表明在丝拉拔前在1.2mm的中等直径下在γ-相层14内存在β-相粒子20沉淀物。用paxit™图像分析软件分析阶段3后的htcln样品的这一和类似横截面并发现之前通过在扫描电子显微镜(sem)上的eds分析识别为β-相粒子的β-相粒子20沉淀物的平均6.4%空气含量(aerialcontent)。在阶段3结束时(此时丝直径为1.2mm)对htcln样品进行改进选择性溶解试验。由于htcln样品的直径大于0.25mm直径sd2样品,在对htcln样品进行试验时,使用120分钟溶解时间。使用这一改进试验,在阶段3结束时,计算htcln样品的e0为227nm。在阶段4结束时,计算e0为95nm,这与热处理后的值相比显著降低。图7是在阶段5结束时htcln样品在高放大率下的轻微蚀刻的冶金光学横截面。清楚显示β-相粒子20沉淀物分散在γ-相层14内。还清楚的是,在热处理过程中合成的连续γ-相层14断裂成离散但不连续的层,具有朝芯12径向向内延伸的一系列裂纹或间断处24。同时,β-相层18也围绕丝10的周界再分布,但由于其较大延性,仍为连续层。为此,β-相层18径向向外挤入在γ-相层14的部分中和之间的间断处24。氧化锌层16的部分也延伸到间断处24中。图8是htcln样品的表面形貌在高放大率下的光学显微照片,其在形貌上类似于sd2样品。该显微照片还显示在sd2样品中证实的相同的表面连续性。在0.25mm的最终直径下对htcln样品进行如blanc等人规定的选择性溶解试验,结果是e0=84nm。分析考虑sd2和htcln样品的上述特征,这两种构造的比较概括在下表中:丝构造sd2丝构造htcln标称γ-层e4厚度3-7μm5-10μmγ-层的结构γ-黄铜的单相区γ-黄铜+β-黄铜沉淀物的两相区标称β-层e3厚度5-12μm4-10μmβ-相的位置在γ-粒子下方+填充γ-粒子的断裂与sd2相同+沉淀在γ-粒子内双层厚度10-15μm12-15μme0的计算值191nm84nm由于1)γ-相层在拉拔过程中断裂成不规则形状的粒子和粒子群,和2)由于β-相层本身在拉拔过程中也再分布,估算e3和e4的精确厚度值是困难的。但是,可以更容易和精确地实现估算双层厚度(e3+e4),因为其可由丝的外直径和β-相层的内直径限定。考虑到这些限制以及样品sd2和htcln之间的结构相似性,得出如下结论是合理的:由于在htcln样品中存在从γ-相层中沉淀出的β-相粒子,htcln样品与sd2样品相比具有冶金学上显著的微结构差异。为了量化sd2和htcln样品的性能,在model650gplusexcetekedm丝机床上进行模拟冲头(punch)的试验切割。工件由2.0英寸厚的淬硬(rc为52-56)d2工具钢板构成,在顶部和底部表面研磨(surfaceground)以建立密封的冲洗条件。试验切割的几何形状在图9中图示说明。区段的长度为:a0=0.025英寸a=0.200英寸b=0.200英寸c=0.400英寸d=0.400英寸e=0.400英寸f=0.100英寸g=0.025英寸。该试验切割包括定时粗轧孔型(timedroughingpass),接着是相继进行的两次定时skim切割。每一遍在板的边缘开始。试验切割在板上间隔开以使边缘或切割路径决不在前一切口的0.200英寸内,以确保冲洗条件的完整性。最初进行粗轧孔型的多个循环以建立各丝构造可承受从a到g的完整周期而不发生任何丝断裂的最剧烈的机器技术(machinetechnology)。使用制造商提供的brassmachinetechnology作为起点并对其作出调整直至发生丝断裂。下面列出操作人员可得的excetek机器技术参数,在适当情况下,简要解释它们的功能:参数范围注释pm(功率)1-10ov(开路电压)1-20on0-24off4-50an(arcon)1-16aff(arcoff)4-50sv(伺服电压)16v-90vwt(丝张力)1-2010=1,200gmswf(丝进给)1-202-21m/minwa(h2o压力)1-88=250psifr%1-500f(进给速率)0-4in/minft(伺服模式)g95=伺服模式g94=手动模式sc(伺服控制)1-99可得的机器技术和用于两个sd2样品和一个htcln样品的试验切割的那些列在下表中:粗切割(roughcuts)黄铜sd2*sd2htclnskim1skim2pm10101010106ov898101412on1515151632off88881110an888822aff88881110sv384338383845wt101010101315wf777777wa888811fr%100100100100100100f0.1500.1500.1500.1500.2360.394ftg95g95g95g95g95g95sc101212141820偏移0.0080.0080.0080.0080.00560.0052概括而言,htcln样品表现出使其可承受比sd2样品更剧烈的机床技术的韧性。通过下划线标注最有效影响丝性能的参数。技术sd2*是最接近htcln技术的sd技术,但使用sd2*技术的试验切割在从区段a行进到g的过程中造成5次丝断裂。在样品sd2和样品htcln上使用相同的skim技术1和2和对所有粗切割和skimpasses的偏移(offsets)。试验切割的结果概括在下表中:sd2htcln粗切割时间(h:min:s)0:17:490:15:29skim1时间0:7:340:7:34skim2时间0:4:140:4:14计算的粗切割进给速率(in/min)0.10250.1179表面光洁度(raμm)0.7950.825机床将粗切割定时为在区段a0的起点开始,直到区段g结束,其中区段a0包括建立理想冲洗条件和伺服平衡的过渡,但这些不平衡条件的短跨度对由定时数据得出的任何结论的影响极小。检查来自该试验的完成的试验冲头的尺寸稳定性并且两个冲头都精确到1密尔的1/10内。如在mitutoyosj-410表面粗糙度测试仪上测量的,这两个样品的表面光洁度也都可接受地接近。测定htcln样品的计算进给速率(切割长度除以周期时间)比sd2样品快大约15%。这清楚证实,htcln样品的独特微结构,即β-相粒子沉淀物在γ-相层内的存在,允许htcln样品表现出比现有技术的edm丝改进的性能。上文已经描述了本发明的实施例。当然不可能为了描述本发明而描述组分或方法的每种可能的组合,但本领域普通技术人员会认识到,本发明的许多进一步的组合和排列是可能的。因此,本发明意在包括落在所附权利要求书的精神和范围内的所有这样的替代、修改和变化。例如,要认识到,根据本发明形成的edm丝可以仅包括γ-相层或γ-相层和β-相层两者-这两种构造都包括分散/隔离在γ-相层内的沉淀β-相粒子。在前一构造中,间断处可延伸到芯以暴露出芯。在后一构造中,间断处暴露出β-相层。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1