一种BDD膜电极材料及其制备方法与流程

文档序号:15363836发布日期:2018-09-05 01:16阅读:998来源:国知局

本发明属于金刚石膜电极材料领域,特别涉及一种bdd膜电极材料及其制备方法。



背景技术:

通过电解可氧化废水中的有害污染物,从而将污染物的量降低至排放可接受的水质要求,适用于生物制药、纺织、垃圾处理、石油化工、工业气体等产生的废水。与化学处理相比,对废水进行电解的主要优势在于难降解污染物的降解效率增加。

已知的氧化铅、氧化钨、铂等金属和金属氧化物是用于电解的阳极电极材料,但由于电解过程发生在恶劣的化学环境下,用于电极的上述材料在使用过程中存在如下缺点:

(1)电解过程中,电极中的重金属物质被分解并进入废水中,带来二次污染问题;

(2)恶劣的化学环境下,电极被逐渐腐蚀掉,电极的有效寿命缩短;

(3)消耗了例如电极中的铂等不可再生的贵金属资源,使得处理成本增加;

(4)多数电极材料在使用过程中具有较差的能量效率。

金刚石因具有优异的化学稳定性,宽的电化学势窗等特点,是用作污水处理阳极电极的理想材料,已知通过掺杂微量的硼赋予金刚石导电性后,可用于替代上述电极材料并不引起上述问题的出现。化学气相沉积(cvd)如热丝cvd和微波等离子体cvd等方法可用于制造上述硼掺杂金刚石(bdd,即boron-dopeddiamond)膜电极材料,制造技术的关键在于:

(1)金刚石层为形成在基材表面的致密的多晶结构金刚石,以消除电解产生的离子造成对基材的损害;

(2)金刚石层与基材之间紧密结合,以消除因热膨胀系数差异产生的热应力导致的金刚石层的剥落;

(3)构成金刚石层的金刚石晶体有高的结晶度,以消除由结晶性差引起的电性能的下降。

bdd膜电极的常规制造方案通常采用由导电硅、钛、铌等构成的基材,并直接在基材表面沉积金刚石层。钛和铌基材与金刚石层之间形成共价键碳化物的能力强,可实现基材与金刚石层之间牢固的化学结合,但钛和铌的热膨胀系数与金刚石显著不同,因而,制造所述电极时因钛和铌基材与金刚石层之间热膨胀系数的差异而导致巨大残余应力,残余应力足以破坏所述电极的基材与金刚石层之间的碳化物,并导致基材与金刚石层的彼此分离,从而不利的缩短所述电极的寿命。导电硅基材与金刚石之间热膨胀系数的差异是相对小的,所述电极的导电硅基材与金刚石层之间存在较小的残余应力,但制造所述电极时导电硅基材与金刚石层之间形成共价键碳化物的能力弱,残余应力足以破坏导电硅基材与金刚石层之间的结合,并导致所述分离问题。

目前工业上没有广泛应用bdd膜电极,主要技术原因在于制造bdd膜电极存在的上述问题没有得到有效解决。因此,急需一种新的bdd膜电极制备技术来解决上述问题。



技术实现要素:

本发明的目的在于提供一种bdd膜电极材料及其制备方法,所述bdd膜电极材料的金刚石层具有致密的结构和与基材的紧密结合,构成金刚石层的金刚石晶体具有高的结晶度。

基于上述目的,本发明采取如下技术方案:

本发明提供的bdd膜电极材料包括基材,金刚石层,以及位于基材与金刚石层之间的过渡层,其中过渡层包括与基材之间的合金或化合物,以及与金刚石层之间的碳化物,本发明bdd膜电极材料的结构示意图如图1所示。所述基材为热膨胀系数低且具有良好导电性的材料,以降低基材与金刚石层热膨胀系数的失配并使bdd膜电极材料具备优良的导电性;所述过渡层为能够形成共价键碳化物的过渡族金属,并且所述过渡族金属能够与基材形成合金或化合物,并且所述共价键碳化物在热力学上具有低的形成能,以提高基材与金刚石层的结合强度;所述金刚石层在化学气相沉积的形核期具有高的形核密度,并且所述金刚石层在化学气相沉积的生长期几乎不存在金刚石晶格或晶界中非sp3金刚石键合形式的碳,以形成致密的且结晶度高的金刚石层。

具体制备过程如下:

1.基材表面处理

本发明提供的bdd膜电极材料的基材优选热膨胀系数低且具有良好导电性的材料,可以由诸如,但不仅限于,钨,钼,导电硅,或这些材料的组合。对所述基材表面实施粗糙化处理可以由离子刻蚀、化学刻蚀、喷砂、研磨等任何能获得ra0.5-1μm的表面粗糙度的方法形成,以增大基材的接触面积和结合强度。

2.基材表面沉积过渡层

通过物理气相沉积(包括真空蒸镀、离子镀、磁控溅射等),电镀,化学镀等任何形成金属镀层的方法,优选磁控溅射,在表面处理后的上述基材表面沉积过渡层,所述过渡层为能够形成共价键碳化物的过渡族金属,所述过渡族金属能够与基材形成合金或化合物,所述共价键碳化物在热力学上具有低的形成能,过渡层可以由诸如,但不仅限于,钛、钒、锆、铌、钽等过渡族金属中的一种或多种,过渡层厚度优选0.5-2μm。

3.基材与过渡层之间形成合金或化合物

对表面形成过渡层的上述基材在真空炉内进行退火处理,退火温度800-1200℃,时间10-120min,以在基材与过渡层之间形成合金或化合物,上述合金或化合物的形成有利于实现基材与过渡层之间牢固的化学结合。

4.过渡层表面形成碳化物

热丝cvd(即hfcvd)或微波等离子体cvd(即mpcvd)方法可用于在过渡层表面原位形成碳化物,以及后续在碳化物表面沉积金刚石层。分别使用氢气作为载气,甲烷作为碳源,控制甲烷相对于氢气的含量为10-16%,气压10-20kpa,基材温度800-1200℃,将步骤3处理过的基材在上述条件下保持10-60min后,甲烷中分解的碳元素扩散进入过渡层后,在过渡层表面形成0.1-1μm厚的碳化物。上述碳化物的形成有利于提高基材与金刚石层的结合强度。

5.碳化物表面金刚石形核

扩散进入过渡层的碳元素达到饱和后,进入金刚石形核期,在碳化物表面形成金刚石晶体核心。分别使用氢气作为载气,甲烷作为碳源,使用三甲基硼、乙硼烷等气态含硼物,硼酸三甲酯等液态含硼物,或溶于有机溶剂的三氧化二硼、硼酸作为硼源,控制甲烷相对于氢气的含量为6-10%,控制含硼物相对于甲烷的含量为100-10000ppm,气压10-16kpa,基材温度600-800℃,将步骤4处理过的基材在上述条件下保持5-20min后,在过渡层表面形成金刚石晶体核心,此方法可形成高的金刚石形核密度,有利于后续形成致密的金刚石层。

6.金刚石层生长

碳化物表面金刚石晶体核心达到一定尺寸后,进入金刚石生长期,控制甲烷相对于氢气的含量为2-6%,控制含硼物相对于甲烷的含量为100-10000ppm,气压10-16kpa,基材温度700-900℃,金刚石层的生长速度将保持在0.5-3μm/h,根据金刚石层的厚度需求选择工艺时间。此方法有利于形成结晶度高的金刚石晶体,金刚石层几乎不存在金刚石晶格或晶界中非sp3金刚石键合形式的碳。

对上述方法得到的bdd膜电极材料的性能进行测试,采用扫描电子显微镜(sem)观察膜层表面的致密性,sem图显示本发明技术方案制备的bdd膜电极材料的致密性好;采用涂层附着力划痕仪测定基材与金刚石层的结合强度,以金刚石层产生裂纹或脱落的临界载荷衡量基材与金刚石层的结合强度,结果表明本发明技术方案制备的bdd膜电极材料的结合强度高;采用拉曼光谱仪测定金刚石晶体的结晶度,以金刚石1332cm-1特征峰的强度与半高宽,sp2碳1500cm-1附近的宽带峰强度,以及拉曼光谱的荧光背底高度衡量金刚石晶体的结晶度,结果显示本发明技术方案制备的bdd膜电极材料的金刚石层有较高的结晶度;最后采用电阻率测试仪测定金刚石层的电阻率,本发明技术方案制备的bdd膜电极材料的金刚石层的电阻率为1×10-1-3×10-4ω∙cm。

本发明采用的技术方案具有如下优点:

1.本发明采用的技术方案可实现基材表面致密的金刚石层结构,有利于消除电解产生的离子对基材的损害,获得bdd膜电极长的使用寿命。

2.本发明采用的技术方案可实现基材与金刚石层的紧密结合,有利于消除热膨胀系数差异产生的热应力导致的金刚石层的剥落,获得bdd膜电极长的使用寿命。

3.本发明采用的技术方案可实现构成金刚石层的金刚石晶体高的结晶度,有利于消除结晶性差引起的电性能的下降,获得bdd膜电极高的电解效率。

附图说明

图1本发明bdd膜电极材料的层状结构示意图;

图2实施例2金刚石层的拉曼光谱;

图3对比例2金刚石层的拉曼光谱;

图4实施例3金刚石层的sem图像;

图5实施例3金刚石层的sem图像。

具体实施方式

以下结合具体实施例对本发明的技术方案做进一步详细说明。

实施例1

一种bdd膜电极材料的制备方法,本实施例具体过程如下:

(1)选用金属钼作为基材,通过金刚石颗粒研磨获得ra0.5-1μm的基材表面粗糙度,然后利用丙酮对基材表面进行超声波清洗;

(2)通过磁控溅射在基材表面沉积厚度约2μm的金属钛过渡层,对表面形成过渡层的上述基材在真空炉内1000℃下进行退火处理120min,使金属钼与钛界面结合处形成钛钼合金,将退火处理后的基材在分散有金刚石微粉的乙醇中进行超声波震荡10min;

(3)利用微波等离子体cvd方法在过渡层表面原位形成碳化物,控制甲烷相对于氢气的含量为12%,气压12kpa,基材温度1000℃,将上述工艺保持30min后,过渡层表面形成约0.5μm厚的碳化钛;

(4)在金刚石形核期,在步骤(3)条件下加入三甲基硼,控制三甲基硼相对于甲烷的含量为5000ppm,改变甲烷相对于氢气的含量为6%,基材温度700℃,将上述工艺保持10min后,在过渡层表面形成高密度的金刚石晶体核心;

(5)在金刚石生长期,在步骤(4)条件下改变甲烷相对于氢气的含量为4%,基材温度800℃,金刚石层的生长速度将保持在3μm/h,直至生长为20μm厚的金刚石层。

所述bdd膜电极材料的层状结构依次由钼基材、钛过渡层、金刚石层组成,其中,钼基材与钛过渡层界面结合处反应形成钛钼合金,钛过渡层与金刚石层之间存在碳化钛,所获得金刚石层的电阻率为3×10-3ω∙cm。

对比例1

和实施例1的不同之处在于省略步骤(2),直接在基材表面形成碳化物。

将实施例1与对比例1未沉积过渡层的样品作对比,采用划痕法测量金刚石层脱落的临界载荷,未沉积过渡层样品的金刚石层在临界载荷为79±27n即出现金刚石层的开裂和脱落等情况;本实施例测得的临界载荷为128±13n,表明基材与金刚石层具有较高的结合强度,从而有利于延长bdd膜电极的使用寿命。

实施例2

一种bdd膜电极材料的制备方法,本实施例具体过程如下:

(1)选用(100)晶面的p型导电硅作为基材,通过金刚石颗粒研磨获得ra0.5-1μm的基材表面粗糙度,然后利用丙酮对基材表面进行超声波清洗;

(2)通过磁控溅射在基材表面沉积厚度约5μm的金属钛过渡层,对表面形成过渡层的上述基材在真空炉内800℃下进行退火处理20min,使导电硅与金属钛界面结合处形成钛硅化合物,将退火处理后的基材在分散有金刚石微粉的乙醇中进行超声波震荡15min;

(3)利用热丝cvd方法在过渡层表面原位形成碳化物,控制甲烷相对于氢气的含量为12%,气压12kpa,基材温度1000℃,将上述工艺保持30min后,过渡层表面形成约0.5μm厚的碳化钛;

(4)在金刚石形核期,在步骤(3)条件下加入三甲基硼,控制三甲基硼相对于甲烷的含量为100ppm,改变甲烷相对于氢气的含量为8%,基材温度700℃,将上述工艺保持10min后,在过渡层表面形成高密度的金刚石晶体核心;

(5)在金刚石生长期,在步骤(4)条件下改变甲烷相对于氢气的含量为3%,基材温度800℃,金刚石层的生长速度将保持在2μm/h,直至生长为10μm厚的金刚石层。

所述bdd膜电极材料的层状结构次由导电硅基材、钛过渡层、金刚石层组成,其中,导电硅基材与钛过渡层界面结合处反应形成钛硅化合物,钛过渡层与金刚石层之间存在碳化钛,所获得金刚石层的电阻率为1×10-1ω∙cm。

对比例2

调整步骤(5)金刚石生长期甲烷相对于氢气的含量为8%,其他同实施例2。

测得实施例2的金刚石层的拉曼光谱如图2所示,金刚石1332cm-1拉曼峰的强度较强,半高宽为4.8cm-1,sp2碳在1500cm-1附近的宽带峰强度较弱,且无明显荧光背底,表明本实施例制得的金刚石层几乎不存在金刚石晶格或晶界中非sp3金刚石键合形式的碳,金刚石层具有高的结晶度;对比例2的拉曼光谱出现图3所示明显的荧光背底和1450cm-1附近强度较强的宽带峰,金刚石1332cm-1拉曼峰的强度较弱,半高宽为7.1cm-1,表明金刚石层中存在实质量的非sp3金刚石键合形式的碳,金刚石的结晶性差,从而不利的降低金刚石层的电性能,测得对比例2金刚石层的电阻率为3×10-1ω∙cm,高于实施例2样品测得的电阻率1×10-1ω∙cm。

实施例3

一种bdd膜电极材料的制备方法,本实施例具体过程如下:

(1)选用金属钨作为基材,通过金刚石颗粒研磨获得ra0.5-1μm的基材表面粗糙度,然后利用丙酮对基材表面进行超声波清洗;

(2)通过磁控溅射在基材表面沉积厚度约2μm的金属铌过渡层,对表面形成过渡层的上述基材在真空炉内1200℃下进行退火处理120min,使金属钨与铌界面结合处形成铌钨合金,将退火处理后的基材在分散有金刚石微粉的乙醇中进行超声波震荡12min;

(3)利用微波等离子体cvd方法在过渡层表面原位形成碳化物,控制甲烷相对于氢气的含量为14%,气压16kpa,基材温度1200℃,将上述工艺保持60min后,过渡层表面形成约0.5μm厚的碳化铌;

(4)在金刚石形核期,在步骤(3)条件下加入乙硼烷,控制乙硼烷相对于甲烷的含量为5000ppm,改变甲烷相对于氢气的含量为10%,气压14kpa,基材温度750℃,将上述工艺保持15min后,在过渡层表面形成高密度的金刚石晶体核心;

(5)在金刚石生长期,在步骤(4)条件下改变甲烷相对于氢气的含量为2.5%,基材温度850℃,金刚石层的生长速度将保持在1.5μm/h,直至生长为5μm厚的金刚石层。

所述bdd膜电极材料的层状结构次由金属钨基材、铌过渡层、金刚石层组成,其中,金属钨基材与铌过渡层界面结合处反应形成铌钨合金,铌过渡层与金刚石层之间存在碳化铌,所获得金刚石层的电阻率为3×10-4ω∙cm。

对比例3

调整步骤(4)金刚石形核期甲烷相对于氢气的含量为3%,其他同实施例3。

实施例3和对比例3金刚石层的sem图分别如图4与图5所示,实施例3的金刚石层的表面形貌显示金刚石层具有致密的结构,对比例3显示金刚石晶体之间出现了孔隙,金刚石层的致密性较差。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1