阴极电弧蒸镀方式淀积类金刚石碳膜的制备方法

文档序号:3398258阅读:319来源:国知局
专利名称:阴极电弧蒸镀方式淀积类金刚石碳膜的制备方法
技术领域
本发明是有关于一种阴极电弧蒸镀类金刚石碳膜的制备方法,以及特别是有关于一种以阴极电弧蒸镀法为核心技术发展出复合物理汽相淀积制备工艺,即结合PVD淀积中介层及等离子体增强化学汽相淀积(以PEC VD淀积类金刚石碳膜)的制备工艺,因此其实在是一种相当具有实用性及进步性的发明,相当值得产业界来推广,并公诸于社会大众。
由于类金刚石碳膜(DIAMOND-LIKE CARBON(DLC),FILMS)具有高硬度、极低导电性、低摩擦系数、低化学亲和力等特性,因此而被广泛应用于需具低磨耗、抗腐蚀的场合,诸如半导体工业与机械耐磨耗零部件;而类金刚石碳膜的组织为一非晶形(NON-CRYSTALLINE)结构同时具有sp2及sp3键合碳膜,另外类金刚石碳膜又可分为含氢类金刚石碳膜(a-cH)与不含氢的类金刚石碳膜(a-c);含氢类金刚石碳膜一般是采用烃类气体裂解方式来获得,如等离子体增强化学汽相淀积法(PECVD)、热灯丝化学汽相淀积方法(HOT-FILAMENT CVD)或激光淀积法(LASER ABLASION);而不含氢的类金刚石碳膜则采用磁控溅射法(MAGNETRONSPUTTERING),电子束蒸发法(ELECTRON BEAM EVEPORATION)或阴极电弧等离子体蒸镀法(CATHODIC ARC EVEPORATION,CAE),而值得一提的是,阴极电弧蒸镀法可利用其高离化率并控制离子动能以获得高硬度类金刚石碳膜。
目前采用以上方法制备类金刚石碳膜的主要缺点在于此类金刚石碳膜高内应力及附着力不佳以致淀积的厚度只有0.2~1.0μm,因而无法有效应用于机械模具或零部件,而为了改善此项缺点,请参看附件一所示,FRANCESCHINI[1]等人即在含氢类金刚石碳膜中加入氮以改善内应力并获致某种程度的效果。FALABELLA[2]等人利用阴极电弧蒸镀法以石墨靶淀积类金刚石碳膜,在其专利所引用的方法乃加入金属作为中介层或在类金刚石碳膜中加入氮以减少内应力,但以上的方法须在同一蒸镀系统中采用2种以上的靶材。MONAGHAM[3]等人利用结合磁控溅射与PECVD的合成法以制备含金属中介层及杂质的类金刚石碳膜,此制备工艺的优点在于可以低温结合PVD与PECVD方法制备DLC,但受限于其非对称式磁控溅射(UBM)系统的离化能,其薄膜硬度介于金属氮化物与传统DLC之间,且其淀积速度亦较低。
因此有鉴于此,本发明人乃积极开发研究,以期能创作一种阴极电弧蒸镀类金刚石碳膜的制备方法,而能改进传统的类金刚石碳膜制法,而使得其更具产业上的利用价值。
本发明的主要目的是在于提供一种阴极电弧蒸镀类金刚石碳膜的制备方法,而使得其可以提高所制成的类金刚石碳膜的附着力,同时亦可以改善类金刚石碳膜的残余应力;而本发明的次要目的是可以使得其制成的类金刚石碳膜更具较高的硬度,以利产业上的利用;因此其总体来讲,本发明可说是相当具有功效性,且可以称为相当突破的一种发明,相当具有产业上的利用价值。
本发明是有关于一种阴极电弧蒸镀类金刚石碳膜的制备方法,这种阴极电弧蒸镀类金刚石碳膜的制备方法其主要乃是在利用电弧蒸镀法淀积类金刚石碳膜制备工艺中,利用高离化率的金属弧源所提供的高能量等离子体与通入的烃类气体(如CH4或C2H2)产生裂解及淀积反应,形成含金属渗入物的类金刚石碳膜,并经由调整基材偏压、工作压力、反应气体种类及弧源靶材种类,而制成具有不同机械性质的含金属类金刚石碳膜;而所通入的烃类气体分压可介于0.5Pa~5.0Pa之间,同时经由控制基材偏压与烃类气体分压的调整而可获得不同微观结构及机械性质的类金刚石碳膜,以薄膜硬度为例,经由参数的调整可介于HV1800~HV4200之间。适当的基材偏压参数可形成良好的中介层,如Cr、Ti中介层,一般基材偏压介于-100V~-300V之间,而基材偏压电源形式可采用直流(DC)、脉动式(Pulsed)或RF电源供应器;请配合参看实施例所示,其是为利用本发明制备类金刚石碳膜的制备工艺实施例及其制备工艺参数,如此可以利用本发明而获得不同机械性质的含金属类金刚石碳膜。


图1是阴极电弧蒸镀法激发淀积类金刚石碳膜的(a)-特性拉曼光谱及(b)-EELS光谱图。利用阴极电弧蒸镀法以铬(Cr)金属作为阴极靶材,基材材质为M2,借助于激发C2H2裂解以制备类金刚石碳膜的制程参数如表一所列。
表一利用阴极电弧蒸镀法制备类金刚石碳膜的制备工艺参数参数 数值工作压力(Pa) 2.0弧源电流(A) 70基材偏压(V) -150ID/IG 0.97G Band(cm-1) 1550薄膜硬度(Hv25) 3824在加入工作压力为2.0Pa的反应气体(C2H2)并施以-150V的基材偏压下,可获得类金刚石碳膜的淀积。拉曼光谱及EELS光谱分析显示,如图一,碳膜中富含具DLC特性波型的sp2及sp3的非晶质混合碳键。所淀积的薄膜硬度约为HV253824,较金属氮化物高出甚多,同时借助于金属、金属氮化物或金属碳化物中介层产生良好的薄膜附着性。此种含铬类金刚石碳膜同时借助于金属、金属氮化物或金属碳化物中介层产生良好的薄膜附着性。可应用于耐磨耗机械零部件或模具的保护涂层。例如在20牛顿负荷下,与51200轴承钢球对磨的划痕(pin-on-disk)磨耗试验中,本实施例所淀积的类金刚石碳膜即可得到3500公尺以上的磨耗距离仍未见薄膜发生破坏。此类金刚石碳膜的磨擦系数只有0.02~0.04,相对于一般PVD表面处理的氮化钛薄膜磨擦系数为0.3~0.5来得低很多,可见利用本发明所制备的类金刚石碳膜是耐磨耗机械零部件或模具极佳的选择。
因此本发明提供一种利用阴极电弧蒸镀法以金属靶激发PECVD制备工艺淀积类金刚石碳膜的制备方法,经由调整基材偏压,工作偏压,反应气体种类及弧源靶材种类可获得不同机械性质的含金属类金刚石碳膜,如此,本发明所制备的类金刚石碳膜可应用在半导体、光电、光学及各式刀具、模具与机械零部件需提供耐磨耗的保护涂装。
另外在阴极电弧蒸镀法中通入烃类气体的同时亦可以加入其他气体作为掺杂剂(Dopant),如氮气(N2),经由添加掺杂剂参与裂解反,可改善类金刚石碳膜的sp3碳键的自由度,借助于掺杂剂的添加即可获得不同比例的拉曼偏移强度比(The intensity ratio of Raman shifts,ID/IG),同时亦改善类金刚石碳膜的薄膜硬度值。
因此由以上所述的阴极电弧蒸镀类金刚石碳膜的制备方法,可知本发明提供比常规的类金刚石碳膜的制备方法更新颖的制备工艺,而且可以使得阴极电弧蒸镀类金刚石碳膜的制备方法所制成的类金刚石碳膜更具产业上的利用价值,为使贵审查员更能了解到本发明所能达到的功效及价值性,现就以上的论点加以论述1.本发明可以应用于半导体、光电、光学及机械抗磨耗产业,而运用于各种机械零部件、模具及刀具上时类金刚石碳膜即需同时具备高硬度及韧性。
2.本发明所制备的类金刚石碳膜能改善附着力并提高硬度。
3.利用本发明而可以提高类金刚石碳膜的附着力,亦可在类金刚石碳膜中渗入金属、金属氮化物或金属碳化物以改善类金刚石碳膜的残余应力。
综上所述,本发明阴极电弧蒸镀类金刚石碳膜的制备方法在结构设计、使用实用性及成本效益上,确实是完全符合产业上发展所需,且所揭露的结构发明亦是具有前所未有的创新构造,其既未见于任何刊物,而且市面上亦未见有任何类似的产品,所以其具有“新颖性”应无疑虑;且本案申请人是为实际生产制造“阴极电弧蒸镀类金刚石碳膜的制备方法”的公司,其发展此类产品已有十数年的经验,对于常规阴极电弧蒸镀类金刚石碳膜的制备方法所产生的问题缺失相当了解,本发明确实具有增进相当的功效,因此本案确实符合钧局有关发明专利的要件,请查照之。
权利要求
1.一种阴极电弧蒸镀类金刚石碳膜的制备方法,其主要乃是在利用阴极电弧蒸镀法淀积类金刚石碳膜制备工艺中,利用高离化率的金属弧源所提供的高能量等离子体与通入的烃类气体产生裂解及淀积反应,形成含金属掺杂剂的类金刚石碳膜,并经由调整基材偏压、工作压力、反应气体种类及弧源靶材种类,而制成具有不同机械性质的含金属类金刚石碳膜。
2.根据权利要求1所述的阴极电弧蒸镀类金刚石碳膜的制备方法,在蒸镀工艺过程中,其金属弧源可先行淀积金属、金属氮化物或金属碳化物中介层以提高类金刚石碳膜的附着力。
3.根据权利要求2所述的阴极电弧蒸镀类金刚石碳膜的制备方法,其中该添加的金属介质为可形成金属氮化物或金属碳化物的金属如铬、钛或锆等,即可提升类金刚石碳膜的韧性。
4.根据权利要求1所述的阴极电弧蒸镀类金刚石碳膜的制备方法,其中该弧源部份可采用随机式弧源、操控式弧源或过滤式弧源。
5.根据权利要求1所述的阴极电弧蒸镀类金刚石碳膜的制备方法,在通入烃类气体产生裂解及淀积反应的同时可加入杂质原子,如氮原子,即可提升类金刚石碳膜的韧性。
6.根据权利要求1所述的阴极电弧蒸镀类金刚石碳膜的制备方法,其中该基材偏压形式可采用直流、脉波或RF电源供应器。
全文摘要
本发明采用阴极电弧蒸镀方式淀积类金刚石碳膜的制备方法,是利用CAE金属离子的高离子能量激发真空室中烃类气体的裂解反应而淀积高硬度、高润滑性的类金刚石碳膜,该碳膜由于内含金属成分而具有良好的韧性,另外淀积类金刚石碳膜之前可借助于同一金属弧源以CAE制备工艺先淀积一层或多层的金属、金属氮化物或金属碳化物中介层以强化类金刚石碳膜的附着性,再通过烃类气体与金属弧源等离子体产生烃类气体的裂解反应而淀积类金刚石碳膜。
文档编号C23C14/06GK1289861SQ9911946
公开日2001年4月4日 申请日期1999年9月29日 优先权日1999年9月29日
发明者汪大永 申请人:永源科技股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1