一种等离子体增强原子层沉积铜薄膜的方法

文档序号:9541521阅读:1019来源:国知局
一种等离子体增强原子层沉积铜薄膜的方法
【技术领域】
[0001]本发明属微电子器件制作领域,尤其涉及一种等离子体增强原子层沉积铜薄膜的方法。
【背景技术】
[0002]随着集成电路中CMOS晶体管尺寸的不断缩小,单位面积内集成电路中的晶体管数量急剧增加。这些晶体管之间需要金属连线进行互连导通,而特征尺寸的不断缩小使得互连金属的选取和沉积制备成为限制集成电路高发展的主要因素。
[0003]现如今,半导体工业领域中采用铜互连取代了传统的铝互连成为互连工艺的主流。相比于金属铝,铜具有较低的电阻,较好的抗电迀移特性,能够提供具有更大载流能力的更高速互连。
[0004]电子器件中铜互连金属的制备主要是大马士革工艺,该制备工艺的步骤之一是在已制备好的沟槽或通孔内先沉积一扩散阻挡层,该层用来阻止后续的金属铜与单晶硅基底的反应和扩散,确保器件的质量。在使用电镀工艺快速填充沟槽或通孔之前,一般需要在扩散阻挡层上沉积一层导电的铜籽晶层,用作电镀工艺的导电金属层来确保铜电镀顺利进行。
[0005]传统的铜籽晶层沉积工艺主要有物理气相沉积(PVD),除此之外,化学气相沉积(CVD),原子层沉积(ALD)现已被应用或处于研究当中。后两者相对来讲,若使用合适的有机金属前驱体,将会是沉积铜籽晶层最有前景的方法。特别是对原子层沉积工艺来讲,该工艺基于前驱体的表面自限制有序循环化学吸附反应,对高深宽比孔洞及复杂三维结构表面具有优异的台阶覆盖性,更重要的是原子层沉积可通过控制周期数来精确控制薄膜生长厚度。化学气相沉积工艺中,有机金属前驱体与还原性气体同时连续通入反应腔,通过控制沉积时间,沉积温度以及反应气体的流量与压强来控制所沉积的铜薄膜厚度与质量。而在原子层沉积工艺中,有机金属前驱体与还原性气体交替循环进入反应腔。其间,用惰性反应气体将多余未反应气体吹扫干净,以免发生气相化学反应,确保反应气体为交替自限制金属单分子层沉积在各种复杂基底上。
[0006]为了提高铜籽晶层的质量与导电性,所沉积的铜籽晶层应该连续致密。目前使用的化学气相沉积或原子层沉积的沉积工艺主要为通过加热方式来提供能量以驱动反应,而大部分铜前驱体的反应活化能较高,热温度一般高于150°C。高的沉积温度使得基底表面的铜粒子发生团聚,形成大的晶粒从而造成铜薄膜的不连续,为保证铜薄膜的连续性需要进行一定的铜晶粒生长时间,增大横向接触面积使各晶粒之间能够相互接触连通,从而制备出连续电导通的金属铜薄膜,因此热驱动沉积带来的主要问题是电导通铜薄膜的厚度具有一最小值,限制了沉积铜籽晶层向更薄厚度更宽使用范围的发展,除此之外大的铜晶体颗粒造成晶界散射、边界散射等问题,影响铜薄膜的质量。
[0007]根据以上所述铜薄膜的特性,解决这一问题的方法:一是在保持高温沉积条件下寻找对铜润湿性更好的基底材料(比如贵金属钌、铂等)做扩散阻挡层,但此方法限制了铜薄膜的应用范围,同时增加了制作成本;二是尽可能的降低铜薄膜的沉积温度,这是由于在更低温度(50°C甚至室温)下铜原子的团聚受到温度限制,外界提供的能量低使得铜原子没有足够的能量进行迀移,不会形成大的铜晶粒,同时温度的降低使得在各类基底表面都可以沉积得到连续致密的铜薄膜。
[0008]因此,本发明的目的是提供一种新型的能量驱动反应方式,利用各类铜前驱体进行低温下的铜薄膜沉积,在集成电路、微电子器件结构及各类应用中得到连续致密的铜薄膜的方法。

【发明内容】

[0009]本
【发明内容】
为使用等离子体增强原子层沉积以降低沉积温度,涉及各类铜前驱体的使用,在各类基底材料上低温沉积得到连续致密的铜薄膜,并用于铜籽晶层的制备工艺当中。
[0010]为了实现上述目的本发明采用如下技术方案:
[0011]—种等离子体增强原子层沉积铜薄膜的方法,其特征在于:使用铜前驱体进行等离子体辅助原子层沉积铜薄膜;
[0012]所述等离子体原子层沉积铜薄膜的工艺条件为:
[0013]沉积温度为室温-300 °C,等离子体输入功率为20-2000W,反应腔沉积气压为50_2000Pa。
[0014]所述的一种等离子体增强原子层沉积铜薄膜的方法,其特征在于:所述铜前驱体包括脒基类、铜-氧-氮类、铜-氧类、铜-氧-碳类前驱体。
[0015]所述的一种等离子体增强原子层沉积铜薄膜的方法,其特征在于:所用的沉积基底指的是单晶硅,沉积了金属、金属氧化物、金属氮化物的单晶硅,二氧化硅,玻璃片,石英片,碳纤维管,高分子薄膜中的一种。
[0016]所述的一种等离子体增强原子层沉积铜薄膜的方法,其特征在于:所述的高分子薄膜指的是PE、PET、PI中的一种。
[0017]所述的一种等离子体增强原子层沉积铜薄膜的方法,其特征在于:
[0018](1)沉积基底在丙酮、异丙醇、酒精、去离子水中分别超声lOmin后用高纯氮气吹洗干净;
[0019](2)清洗好的基底放入沉积腔内的基片台上,待腔体内气压抽至本底后通入30s的碘乙烷,对铜前驱体、反应腔室、基底进行加热,升到指定温度(如50°C)后对其进行
0.5h的预热处理,预热处理结束后通入50SCCm的氢气,射频功率为80W,对基底进行3min的氢等离子体预处理;设定铜前驱体通入时间、氢气吹洗时间、氢等离子体作用时间、氢气吹洗时间依次分别5s、10s、10s、10s,设定周期数,进行等离子体辅助原子层沉积铜薄膜。
[0020]所述等离子体增强原子层沉积铜薄膜的方法使用的等离子体辅助沉积薄膜设备,其特征在于:包括若干个ALD气动阀,手动阀、加热烘箱、射频电源及匹配器、分压阀、机械栗Ο
[0021]所述的等离子体增强原子层沉积铜薄膜的方法使用的等离子体辅助沉积薄膜设备,其特征在于:将手动阀安装在铜前驱体瓶上,再连接ALD气动阀,将前驱体瓶与控制吹扫气与氢气的ALD阀放置在加热烘箱内,再与ALD反应腔室的末端法兰进气口连接。射频电源通过匹配器连接到介质管或介质窗口外的ICP线圈,机械栗连接到ALD反应腔。
[0022]所述的等离子体增强原子层沉积铜薄膜的方法使用的等离子体辅助沉积薄膜设备,其特征在于通入反应腔的气流主要有三路:
[0023]—,氮气经过分压阀分压后流入气体质量流量控制器,气体质量流量控制器控制氮气气流以设定的气体流速在管路中流动,当铜前驱体脉冲开始时,氮气经过ALD阀与手动阀进入铜单体瓶内,并携带铜前驱体进入反应腔;
[0024]二,氢气从氢气发生器经过分压阀分压后流入气体质量流量控制器,气体质量流量控制器控制氢气气流以设定的气体流速在管路中流动,实验过程中氢气始终经由ALD阀流入反应腔;
[0025]三,碘乙烷由单体瓶经手动阀,在经过ALD阀进入反应腔。
[0026]本发明的原理为:
[0027]本发明涉及的铜前驱体包括以下几种:(1) [Cu(R' NC(R)NR" )]2,R:CH3, CH2CH2CH2CH3, R': CH2CH2CH3, CH2 (CH3) 3, CH2CH2CH2CH3, ch2 (ch3) CH2CH3, CH2CH (CH3) 2, R ": CH2CH2CH3, ch2(CH3) 3, CH2CH2CH2CH3, CH2 (CH3) CH2CH3, CH2CH (CH3) 2; (2) [Cu (iPr-guan) ] 2; (3) Cu (dmae) 2; (4)Cu (dmap) 2; (5) Cu (deap) 2; (6) Cu (acac) 2; (7) Cu (tfac) 2; (8) Cu (hfac) 2; (9) Cu (thd) 2; (10)Cu (hfac) (vtms) ; (11) Cu (hfac) (atms) ; (12) Cu (acac) (nBu3P);
[0028]上述铜前驱体除了可以有载气携带进入沉积腔外,还可以将铜前驱体溶入溶剂,以溶液的方式进样再在气化室气化后引入沉积腔。
[0029]本发明的一个例子是以二(N, N,- 二 -异丙基乙酰脒)二铜[Cu CPr-Me-amd) ]2为铜前驱体,利用射频氢气等离子体增强原子层沉积铜薄膜。
[0030]在进行等离子体增强原子层沉积铜薄膜时,分别将上述1?12种铜前驱体在Ar气氛围的手套箱内装入铜前驱体单体瓶并安装在加热烘箱里,依次打开7与1号ALD阀,将反应腔室与输送管路抽至低压(?2Pa左右),打开单体瓶出气手动阀,将单体瓶内抽至低压(?2Pa左右),之后将上述打开的ALD阀与手动阀关闭。烘箱加热到设定温度后,单体瓶内具有一定量的铜单体蒸汽,不同的单体设定温度不同,具体在45-150°C之间。升到设定温度后在开始实验之前进行lh的预热,活化单体并保证实验过程中单体蒸汽稳定通入。
[0031]将沉积基底置于反应腔内的基片台上,其中基底包括单晶硅、二氧化硅、玻璃片、石英片、碳纤维管、各类高分子薄膜(PE、PET、PI等),在这之前需要对基底进行清洗处理,各类基底依次在丙酮、异丙醇、酒精、去离子水分别超声lOmin,最后用氮气吹干后直接置于基片台上。基片台内部插入热电偶进行加热,提供主要的反应温度。当基片台升到设定的温度(室温-300°C)之后,在开始实验之前基片台上的各类基底预热0.5h,以保证反应过程中温度的均匀。
[0032]射频电源提供连续的射频输入,输入功率在40-300W之间。射频的输入主要用于裂解氢分子成为氢原子,在射频输入时,氢气及铜前驱体载气输入反应腔内的气流应达到稳定。
[0033]加热炉设定某一温度来维持反应腔室的室温,该温度一般低于基片台温度20°C,温度范围在室温?300°C,温度升到设定温度在沉积之前预热0.5h来确保反应腔室的温度恒定。
[0034]在升温之前,打开3ALD阀与碘乙烷手动阀,通入30s的碘乙烷,使其在基底表面吸附碘离子,对铜薄膜沉积起到催化作用。
[0035]设定好LabView软件的循环程序。设定好的循环主要目的为:
[0036]打开1、2、4和5四个ALD阀,通入时间为0.5?30s,在通入氢气的同时通入铜前驱体,此为铜前驱体通入步骤;
[0037]打开2和4两个ALD阀,通入时间为1?60s,此为铜前驱体吹洗步骤,将多余的铜前驱体吹走,防止发生化学气相沉积;
[0038]打开2和4两个ALD阀,同时通过8控制点启动射频电源进行氢气等离子体放电,放电时间为0.5?30s,此为氢气放电步骤,通过射频将氢气裂解出氢原子并参与基底化学吸附物种的反应,还原出铜原子,并进行氢等离子体预处理基底,使得基底接上反应终端;
[0039]打开2和4两个ALD阀,通入时间为1?60s,此为反应吹洗步骤,将反应出来的产物吹走,防止杂质掺入铜薄膜。
[0040]该循环的设置能
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1