渣壳反应器的制作方法

文档序号:3438743阅读:213来源:国知局
专利名称:渣壳反应器的制作方法
技术领域
本发明涉及用于处理含硅材料或活性金属材料的方法、设备和系统。
背景技术
超纯或高级多晶硅(多晶形硅)是用于半导体(SC)和光电(PV)工业两者的关键 原料。尽管对于特定的PV应用具有替代品,但是在近期和可预见的未来多晶硅将仍然是优 选的原料。因此,提高多晶硅的可用性和制造多晶硅的经济性将提高这两种工业的发展机石。大部分多晶硅是通过通常称作西门子(Siemens)热线法的方法,利用硅烷或三氯 硅烷(TCS)作为含硅气体(SBG)源而制造的。对通常与其它惰性或反应气体混合的SBG进 行热解分解并将其淀积在受热的硅细丝上。另一种方法是在流化床中热解淀积SBG。对于 制造PV和半导体工业用多晶硅,这是有吸引力的替代方案,因为大大降低了能耗并可用于 连续生产。这些优势源于优异的传质和传热以及增大的淀积表面。与所述西门子型反应器 相比,在一部分能耗下,所述流化床反应器提供了高得多的产率。所述流化床反应器还会更 加连续且高度自动化,从而也大大降低了劳动力成本。与TCS相比,用作西门子或流化床反应器方法中的SBG的硅烷或高级硅烷具有下 列劣势除了(多相)多晶硅淀积之外,其还能够经受(均相)气相分解而成为粉末粒子。 将发生分解的温度称作临界成核温度(CNT)。所述CNT取决于SBG种类、SBG分压、总压和 惰性稀释气体的类型。一旦达到CNT,在1 5°C的范围内粒子浓度将提高IO4 IO6倍。 晶核硅粉末粒子的尺寸通常为1 lOOnm,这取决于停留时间,且所述晶核硅粉末粒子能够 为无定形的或晶体。在任一情况中,在这些粒子的表面上存在中等浓度的未成键电子,这使 得所述粒子能够易于凝聚成为更大的粉末粒子。根据条件,这种粉末能够为从非单晶核粒 子、微米级圆形团块到扩展至几百微米的大粒子的任意一种。如果随后将所述多晶硅用于生长无位错的单晶,特别是在半导体工业中,则认为 这些粉末粒子(也称作硅细粒)是西门子法中的污染物。因此,在利用硅烷或高级硅烷作为 SBG的西门子法中,将反应器壁保持冷却,应用热迁移将粉末粒子从制造粉末粒子的靠近热 棒的区域驱动至粉末粒子淀积的冷却反应器壁。从气相中除去粉末降低了硅棒污染的可能 性。在流化床反应器方法中,粉末可粘附成细粒并合并成粒子,因此有助于总体的粒 状生长。然而,大部分粉末被从流化床反应器流出的气体带走。在用于粒状硅生产的流化 床反应器方法中,认为这种细硅粉末是一种生产损失,因为其不会对粒状材料有所帮助。
还可在其它SBG淀积法中制造硅粉末,例如,有意地在自由空间反应器(Free Space Reactor)中或无意地在化学气相淀积(CVD)反应器中在衬底上进行薄膜淀积。另一 种硅粉末的来源为硅锭研磨或切割。产率和硅的品质随方法的不同而显著不同。按目前上述方法中所述而制造的粉末回收起来非常困难,因为其为蓬松、低密度、 高表面积的产物,易于被空气传播的物质污染。另外,通常将所述硅粉末作为废产物进行处 置或者以非常低的价值将其供应至商业硅市场。

发明内容
在本文中公开了对含硅材料或活性材料进行热处理的方法,从而将这种材料转化 成更有用的产物形式。例如,所公开的方法对硅粉末进行升级,从低级、散装的高表面积产 物升级成适用于PV和SC加工要求的硅给料。避免在热处理过程期间造成污染对于得到纯 的、尤其是超纯产物是重要的。一种污染源是构成反应器系统结构元件的材料。根据本文中 公开的设备、系统和方法,在反应器内表面的至少一部分上形成了包含固体硅或固体活性 金属的渣壳层。所述固体渣壳层阻止了进料材料和产物与反应器系统的表面接触,从而避 免或降低了污染。所述渣壳层还可以提供扩散屏障以阻止反应器壁元素迁移至硅产物中。根据一个实施方案,在本文中公开了一种用于制造硅或活性金属的方法,所述方 法包括向反应室内引入含硅进料或活性金属进料,其中所述反应室包括反应室壁,所述 反应室壁具有(i)面对反应空间的内表面和(ii)相反的外表面;在所述反应空间内产生足以产生液体硅产物或液体活性金属产物的第一热能;在所述反应室壁外部产生第二热能,使得来自所述第二热能的热流开始冲击所述 反应室壁的外表面;以及通过控制所述第一热能源和所述第二热能源来将所述内表面的壁温设置在所述 硅或所述活性金属的熔点温度以上或以下的温度范围内。在还一个实施方案中,公开了制造硅的方法,所述方法包括将硅粉末引入至反应室中,其中所述反应室包括反应室壁,所述反应室壁具有(i) 面对反应空间的内表面和(ii)相反的外表面;在所述反应器空间内产生等离子体;通过所述等离子体使所述硅粉末经受高于所述硅粉末熔点的温度而热熔化所述 硅粉末,其中所述熔化过程制造液体硅; 在热熔化所述硅粉末的同时,将所述反应室壁的内表面保持在所述硅粉末熔点以 下的平衡温度下;以及在将所述液体硅排出所述反应室之后,使其凝固。另外公开的实施方案涉及制造固体多晶体硅的方法,所述方法包括将含硅气体引入至反应室内,其中所述反应室包括反应室壁和产物出口,所述反 应室壁具有(i)面对反应空间的内表面和(ii)相反的外表面;在所述反应器空间内产生等离子体;通过使所述含硅气体经受足够的温度来热分解所述含硅气体,从而制造液体硅;在热分解所述含硅气体的同时,将所述反应室壁的内表面保持在硅熔点温度以下的平衡温度下;以及将所述液体硅从产物出口直接引入至模块中以将所述液体硅铸造成固体多晶体 硅锭或晶片。在本文中公开了制造硅的其它方法,所述方法包括将硅烷气体引入至反应室内,其中所述反应室包括反应室壁和产物出口,所述反 应室壁具有(i)面对反应空间的内表面和(ii)相反的外表面;在所述反应器空间内产生等离子体;通过使所述硅烷气体经受所述等离子体而热分解所述硅烷气体,从而制造液体 硅;以及在热分解所述硅烷气体的同时,将所述反应室壁的内表面保持在硅熔点温度以下 的平衡温度下。本文中还公开了一种反应器系统,其包括含硅给料或活性金属给料;反应室,所述反应室包括限定室反应空间的反应室壁且所述反应室壁包括(i)面 对所述反应空间的内表面和(ii)相反的外表面;等离子体能源,其联接到所述反应室并被构造成在所述室反应空间内产生热能;外部热能源,其被构造成对所述反应室壁的外表面进行加热,所述外部热能源位 于所述反应室外面;和产物出口,其被构造用于从所述反应室中取出液体硅或液体活性金属。从参考附图进行的下列详细说明将使得上述内容变得更加明显。


图IA和IB为公开的反应器系统的一个实施方案的示意图。图IA为图IB中所示的反应器的壁部分的分解图。图2为公开的反应器系统的还一个实施方案的示意图。图3为包括一个凝固实施方案的反应器系统的示意图。图4为包括另一个凝固实施方案的反应器系统的示意图。图5为包括还一个凝固实施方案的反应器系统的示意图。图6为在公开的反应器系统中的温度梯度的示意图。图7为在公开的反应器系统中的两股热流的示意图。在所述图中,除非另作说明,否则相同的参考符号表示相同的元件。
具体实施例方式单数术语包含了所指对象的复数,除非上下文中明确表示不是这样。单词“包括” 表示“包含”。除非另作说明,否则在化学命名法中成分的描述是指在添加至本说明书中 规定的任意组合时的成分,但是不需要排除在曾经混合的混合物的成分之间的化学相互作 用。在本文中引用的所有数值包含以一个单位的增量从下限值到上限值的所有值,条件是 在任意下限值和任意上限值之间存在至少2个单位的间隔。作为例子,如果据称成分的量 或过程变量的值为1 90,优选20 80,更优选30 70,则是指在本说明书中明确列举的值如15 85、22 68、43 51、30 32等。关于具有小于一个单位差的值,可适当地认 为一个单位为0. 1,0. 01,0. 001或0. 0001。因此,在本文中列举的最低值和最高值之间的数 值的所有可能组合都被认为是在本申请中明确描述的。对本文中公开的反应器系统进行热设计,从而保持反应室壁内表面上的硅或活性 金属进料的基本固体渣壳层。而且,所述系统的热设计使得能够更精确地控制渣壳层的厚 度。所述渣壳层可仅覆盖所述内壁表面的一部分或者其可覆盖所述内表面的整个表面区 域。在所述反应室壁的内表面上形成固体渣壳层可保护所述室壁构成材料免受液体硅或液 体活性金属的腐蚀。换言之,所述渣壳层阻止了所述室壁与所述液体硅之间的直接接触,由 此将使所述液体硅产物的污染最小化。通过将所述反应室壁的内表面保持在所述硅的熔点 或各种活性金属熔点以下的温度下,形成了所述渣壳层。所述热控制系统包括在反应室内的内部热能源和位于反应室外面或外部的外部 热能源的组合。也可以将所述外部热能源设置在还包含了所述反应室的封闭室内。所述 外部热能源可通过感应加热、电阻加热或所述两者的组合直接为反应器壁的外表面提供热 量。在图1A、1B、3和7B中所示的实施方案中,外部能源为感应盘管。在图2中所示的另一 个实施方案中,外部能源为电阻加热器。微波是另一种可能的外部能源。所述内部热能源 可以为下面进行更详细说明的等离子体。或者,所述内部热能源可以为电子束、电阻加热元 件或感应加热元件。将通过内部热能源和外部能源产生的热流分别示于图7A和7B中。所述内部热流 按如下前进受热反应气一液体硅薄膜一固体硅渣壳层一反应室壁。所述外部热流按如下 前进反应室壁一固体硅渣壳层一液体硅薄膜。所述内部热能源为给料材料的热分解提供 能量。所述外部热能源将所述反应室壁内表面的温度精确控制在充分接近(但是低于)所 述硅或所述活性金属熔点的范围内。将得到的温度梯度示于图6中。可以将所述外部热能源配置为至少一个温度控制区。可使用不同的温度控制区来 沿所述反应室的轴长建立不同的温度分布或区域。如上所述,在本文中公开的方法使得从反应室的外表面到反应室内的反应空间建 立了温度梯度,如图6中所示。具体的温度梯度将随包括下列的几个因素而发生变化给料 材料、进料速率、反应器空间内的运行压力等。另外,所述温度梯度与时间有关,因为其将从 反应器开始运行到稳态运行而发生变化。因此,热控制系统的具体温度将发生变化。然而, 通常,所述反应室壁的内表面可以比所述给料材料的熔点低1 300°C,更特别地比所述给 料材料的熔点低1 100°C ;所述渣壳层可以在所述给料材料的熔点至比所述给料材料的 熔点低300°C的温度下,更特别地在所述熔点至比所述熔点低100°C的温度下;且反应器空 间可以在硅或活性金属的熔点至最高达超过5000°C的温度下。总体的热控制方法可还包含如下面更详细描述的热绝缘。在图1 5中示出了反应器系统的示例性实施方案。通常,反应器系统1包含至 少一个给料进口 2、至少一个液体产物出口 3、反应室4、外部容纳室5和等离子体发生源6。给料进口 2可以为能够控制给料进入反应室4的任意类型的端口或阀门。例如, 所述进口 2可以为喷嘴如由石英、石墨和/或硅制成的水冷却结构。反应室4包括限定位于反应室壁10内的反应空间13的反应室壁10。所述反应室 壁10包括面对所述反应器空间13的内表面11和相反的外表面12。可以以任意形状如圆柱形、椭圆形、矩形等提供所述反应室。在图中示出了圆柱形反应室。在特定实施方案中, 所述反应室可具有几种不同尺寸和/或形状的部分。例如,图1描述了第一圆柱形部分14 和第二锥形或圆锥形部分15。所述第二部分15逐渐变细而成为产物出口 3。所述反应室 壁10可由能够抵抗给料或产物的腐蚀和污染的任意材料制成,所述反应室壁10经得起渣 壳层的形成并提供期望的热或能量的传导或抵抗性能。示例性的壁构成材料包括石墨、钼、 钨、钛、陶瓷(例如氧化铝)和石英。内表面11的面积应足够大,从而能够收集所述内表面11上的给料材料并使其发 生液体转化。根据期望的生产量(单位为kg/小时),对于1 50kg/小时的产物生产量, 所述内表面11的面积应为0. 2m2 5m2。用于产生等离子体的电 源可以为任意类型的电源。示例性等离子体包括RF、DC弧 或微波等离子体。根据具体的等离子体类型,等离子体功率可为1 IOOOkW,更特别地为 10 200kW。可将产物出口 3联接到产物收集模块和/或产物凝固模块上。例如,如果期望mm 级的液滴,则能够在自由降落而穿过凝固塔期间对产物进行冷却并然后在水冷箱中进行收集。在图IA和IB的实施方案中,将至少一个热感应盘管20设置在反应室壁的外表面 12处或其附近。所述盘管20可以围绕所述反应室的整个外围或仅围绕所述反应室外围的 一部分。所述盘管20可由能够充分加热所述反应室壁的任何传热材料制成。所述盘管20 还能够充当散热件并为也充当散热件的外部水冷容纳室进行补充。在图2的实施方案中,将至少一个电阻加热器21布置在反应室壁的外表面12处 或其附近。所述电阻加热器21对所述反应室壁进行加热。图2的实施方案还包括布置在 反应室壁和容纳室壁之间的绝热元件22。可以对绝热厚度进行设计,从而使得在沿反应器 垂直高度的轴的方向上具有不同的厚度。例如在图2和3中示出了外部容纳室5。所述容纳室5至少对反应室4进行密封。 所述容纳室5包括可以进行水冷的容纳室壁16。所述水冷容纳室壁16还能够为用于上述 反应室热能和热流的散热件。图3 5示出了能够联接至反应器系统的几种不同的凝固模块。图3包括联接至能够铸造硅锭的连续铸造系统的电磁坩埚。图4描述了能够制造 定向凝固硅锭的构造。能够将来自出口3的液体硅引导入电磁坩埚内。直接联接的电磁 铸造的优势包括没有用于运输容器的额外成本、硅不需要重新熔化、以及污染最小化,因为 超纯硅在未污染的渣壳层坩埚中发生凝固。图5描述了通过将目前公开的反应器系统的 液体硅产物引入至移动的水平支持衬底27上而能够进行直接晶片铸造的构造。美国专利 4,670,096描述了利用液体硅在移动的水平支持衬底上进行直接晶片铸造的方法,通过参 考将所述专利引入至本文中。图3还包括连接到废气处理系统的废气口 23。通过将反应室壁加热(通过来自外部热源、内部热源或外部和内部热源两者的组 合的热能)至高于给料材料的熔点,可启动反应器系统的运行。利用存在的含硅材料的这 种预热,会在石墨反应室壁上形成碳化硅层。然后,降低所述反应室壁的温度,从而使内表 面在所述给料材料的熔点以下。在反应空间13内熔化的材料将与所述内表面接触,由此开始形成固体(冻结的)渣壳层17。所述渣壳层17包括内表面18和相反的壁接触表面19。 穿过图6中所示的反应空间内的反应室壁、渣壳层和气体而建立温度梯度。在热平衡条件 下,渣壳层的厚度不再增加,且所述渣壳层的温度达到了面对反应器的反应空间13的表面 18上的液体材料温度。液体硅薄膜28将在所述内表面18处发生冷凝,然后,沿所述内表面 18从反应室的垂直轴向下流动。所述熔化过程还可以制造硅蒸汽。 在含硅材料给料的情况中,在渣壳层的形成和稳态运行期间,室壁内表面11的最 高温度应不超过1414°C (比硅的熔点低1°C )。在特定的实施方案中,所述内表面11的温 度可为1115 1414°C,更特别地为1215 1414°C。来自外部热能源的热将所述反应室壁 的温度保持在期望的温度范围内,使得通过控制壁温来控制渣壳的厚度。通常使来自反应室的热流消散在所述反应室外部的散热件上。所述散热件可以为 主动冷却(例如水冷容纳室壁)和/或被动冷却如绝热。通过进口 2将给料材料引入至反应室4内。所述给料材料可以为任意的含硅材料 或活性金属。所述含硅材料可以为固体硅如硅粉末或细粒(如本文中所更详细描述的)、或 含硅气体如硅烷、二硅烷、高级硅烷(SinH2n+2)、二氯硅烷、三氯硅烷、四氯化硅、二溴硅烷、三 溴硅烷、四溴化硅、二碘硅烷、三碘硅烷、四碘化硅或其混合物。使用本文中公开的方法和设 备还能够还原活性金属如钛或锆。引入至反应器系统中的硅粉末可以为由硅处理(例如破 碎、研磨或切割)制造的或通过分解含硅气体的任意方法制造的小硅粒子(细粒/粉末)。 可以将所述粉末分散或悬浮在载体介质中以注入至反应器系统中。例如,所述载体介质可 以是对硅呈惰性的气体和/或具有相对低的电离电位的气体如Ar。在反应空间13中的运行压力可以为0. Ibar 2. Obar,更特别地为0. 5bar 2. Obar0如果给料材料为含硅气体,则临界温度为气体分解成液体的热分解温度。因此,将 反应室壁的内表面保持在熔点温度以下的平衡温度下。图4和5中所示的实施方案能够直 接从含硅气体(例如硅烷)给料制造硅锭(图4)或晶片(图5),因此避免了多晶硅的形 成、再熔化和切割的花费高的步骤。第二气体氢气与含硅气体一起存在于反应空间13内。 由SiH4热分解成Si和氢气而得到所述氢气。所述渣壳层应具有足以保护液体产物不受反应室壁材料污染的厚度。然而,所述 渣壳层的厚度不应过大而占据反应室内不必要量的空间,由此不利地减小了可用的反应空 间。另外,在平衡厚度下将更加难以对不必要厚度的渣壳层进行热控制。通常,平均的渣壳 层厚度应该为0. 01 200mm,更特别地为0. 1 30mm。液体硅或液体活性金属流过液体产物出口 3。通过对所述产物出口 3进行设计,能 够控制液体产物的几何形状(和尺寸)。例如,能够对所述出口 3进行设计以排放(例如通 过喷嘴喷射)液滴或球(其为用于单晶或多晶锭制造的给料的优选物理形式)。在一个实 施方案中,能够以自由降落而通过凝固塔的方式对这些液滴进行凝固。能够在凝固塔底部 的容器中收集所述液滴或者所述液滴能够通过空气作用而传送至收集容器内。还能够对所 述出口 3进行振动或使其经受气体流股以影响液滴的大小。考虑到可应用的公开的方法、设备和系统的原理的许多可能实施方案,应理解,所 列举的实施方案仅为优选的例子且不应将其理解为限制本发明的范围。
权利要求
1.一种制造硅或活性金属的方法,所述方法包括将含硅进料或含活性金属的进料引入至反应室内,其中所述反应室包括反应室壁,所 述反应室壁具有(i)面对反应空间的内表面和(ii)相反的外表面;在所述反应空间内产生足以产生液体硅产物或液体活性金属产物的第一热能;在所述反应室壁外部产生第二热能,使得来自所述第二热能的热流开始冲击所述反应 室壁的外表面;以及通过控制所述第一热能源和所述第二热能源将所述内表面的壁温设置在所述硅或所 述活性金属的熔点温度以上或以下的温度范围内。
2.如权利要求1所述的方法,其中通过控制所述第一热能源和所述第二热能源制造从 所述反应空间到所述反应室壁的1 2000kW/m2的可调节能流。
3.如权利要求2所述的方法,其中所述可调节能流的范围为50kW/m2 500kW/m2。
4.如权利要求1所述的方法,其中所述第一热能为等离子体能,且所述第二热能为感 应热或电阻热。
5.如权利要求1所述的方法,还包括在所述反应室壁的内表面上形成硅或所述活性金 属的固体渣壳层。
6.如权利要求1所述的方法,其中所述第一热能在硅熔点以上的温度下、在所述反应 器空间内产生热,且所述第一能源和所述第二能源结合以将所述内表面的壁温保持在硅熔 点以下的温度下。
7.如权利要求1所述的方法,其中将所述反应器壁垂直排列,使得所述液体硅或液体 金属能够沿所述室壁向下流动。
8.如权利要求5所述的方法,其中所述固体渣壳层的厚度小于200mm。
9.如权利要求1所述的方法,其中对来自所述第二热能的热进行控制,以将所述内表 面的壁温保持在所述含硅进料或所述活性金属进料的熔点温度以下的温度下。
10.如权利要求9所述的方法,其中将所述内表面的壁温保持在比硅或所述活性金属 的熔点温度低1 300°C的温度下。
11.如权利要求10所述的方法,其中将所述内表面的壁温保持在比硅或所述活性金属 的熔点温度低1 200°C的温度下。
12.如权利要求1所述的方法,其中将含硅进料引入至所述反应室内,且所述第二热能 将所述内表面的壁温保持在1115°C 1414°C的温度下。
13.—种制造硅的方法,所述方法包括将硅粉末引入至反应室中,其中所述反应室包括反应室壁,所述反应室壁具有(i)面 对反应空间的内表面和(ii)相反的外表面;在所述反应器空间内产生等离子体;通过所述等离子体使所述硅粉末经受高于所述硅粉末熔点的温度而热熔化所述硅粉 末,其中所述熔化过程制造液体硅;在熔化所述硅粉末的同时,将所述反应室壁的内表面保持在所述硅粉末的熔点以下的 平衡温度下;以及在将所述液体硅排出所述反应室之后,使其凝固。
14.如权利要求13所述的方法,还包括对所述反应室壁的外表面进行可控加热。
15.如权利要求13所述的方法,还包括在所述反应室壁的内表面上形成固体硅渣壳层。
16.如权利要求5所述的方法,其中所述第一热能在硅熔点以上的温度下、在所述反应 器空间内产生热,且所述第一能源和所述第二能源结合以将所述内表面的壁温保持在硅熔 点以下的温度下。
17.—种制造硅或活性金属的方法,所述方法包括将含硅进料或含活性金属的进料引入至反应室中,其中所述反应室包括反应室壁,所 述反应室壁具有(i)面对反应空间的内表面和(ii)相反的外表面;在所述反应空间内产生足以产生受热的反应气体和液体硅产物或液体活性金属产物 的第一热能;在所述反应室壁外部产生第二热能;在所述反应室壁的内表面上形成硅或所述活性金属的固体渣壳层;以及 形成所述液体硅产物或所述液体活性金属产物的膜,使得所述膜在所述固体渣壳层的 至少一部分上向下流动;其中所述第一热能产生按如下前进的第一热流受热反应气体一液体硅或活性金属膜 —固体硅或活性金属渣壳层一反应室壁,且所述第二热能产生按如下前进的第二热流反 应室壁一固体硅或活性金属渣壳层一液体硅或活性金属膜。
18.如权利要求1所述的方法,其中所述含硅进料为选自下列的含硅气体SinH2n+2,其 中η为1 4 ;二氯硅烷;三氯硅烷;四氯化硅;二溴硅烷;三溴硅烷;四溴化硅;二碘硅烷; 三碘硅烷;四碘化硅;或它们的混合物。
19.如权利要求1所述的方法,其中所述含硅进料为硅烷气体。
20.一种制造硅的方法,所述方法包括将硅烷气体引入至反应室内,其中所述反应室包含反应室壁和产物出口,所述反应室 壁具有(i)面对反应空间的内表面和(ii)相反的外表面; 在所述反应器空间内产生等离子体;通过使所述硅烷气体经受所述等离子体来热分解所述硅烷气体,以制造液体硅;以及 在热分解所述硅烷气体的同时,将所述反应室壁的内表面保持在硅熔点温度以下的平 衡温度下。
21.如权利要求20所述的方法,还包括在所述反应器外部产生热能;且其中所述等离子体在硅熔点以上的温度下、在所述反应器空间内产生热,且所述等离 子体和所述外部能源结合以将所述内表面的壁温保持在硅熔点以下的温度下。
22.—种反应器系统,其包括 含硅给料或活性金属给料;包括反应室壁的反应室,所述反应室壁限定室反应空间并包括(i)面对所述反应空间 的内表面和(ii)相反的外表面;等离子体能源,其联接到所述反应室并被构造成在所述室反应空间内产生热能; 外部热能源,其被构造成对所述反应室壁的外表面进行加热,所述外部热能源位于所 述反应室外面;和产物出口,其被构造用于从所述反应室中取出液体硅或液体活性金属。
23.如权利要求22所述的反应器系统,还包括用于向所述反应室内注入硅粉末给料的 装置。
24.如权利要求22所述的反应器系统,还包括密封的容纳室,所述容纳室至少包含所 述反应室和所述外部热能源。
25.如权利要求22所述的反应器系统,还包括用于振动所述产物出口的装置。
26.如权利要求22所述的反应器系统,其中所述外部能源包含布置在所述反应室壁外 表面的一部分周围的至少一个感应盘管。
27.如权利要求22所述的反应器系统,其中所述外部能源包含以与所述反应室壁外表 面的一部分接触的方式布置的至少一个电阻加热器。
全文摘要
本发明公开一种制造硅或活性金属的方法,所述方法包括将含硅进料或含活性金属的进料引入至反应室内,其中所述反应室包括反应室壁,所述反应室壁具有(i)面对反应空间的内表面和(ii)相反的外表面;在所述反应空间内产生足以产生液体硅产物或液体活性金属产物的第一热能;在所述反应室壁外部产生第二热能,使得来自所述第二热能的热流开始冲击所述反应室壁的外表面;以及通过控制所述第一热能源和所述第二热能源而将所述内表面的壁温设置在所述硅或所述活性金属的熔点温度以上或以下的温度范围内。
文档编号C01B33/027GK102083751SQ200980118728
公开日2011年6月1日 申请日期2009年5月20日 优先权日2008年5月23日
发明者弗朗茨·雨果 申请人:瑞科硅公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1