一种二氧化锡亚微米棒的合成方法

文档序号:3456544阅读:253来源:国知局
一种二氧化锡亚微米棒的合成方法
【专利摘要】本发明属于微纳材料合成与制备领域,具体涉及一种二氧化锡亚微米棒的合成方法。该合成方法包括如下步骤:首先,按照一定的比例称取200目化学纯的Al、CaSO4、Sn粉末,并且将它们均匀混合。然后,将所得混合物装入反应器中,用引信和引火粉引燃,使得反应发生。待反应结束后,在反应器的收集室内收集反应过程中生成的二氧化锡亚微米棒。采用本发明方法来合成二氧化锡亚微米棒,工艺简单、设备要求低、生产效率高、成本极低、可控性强,所得二氧化锡亚微米棒具有很高的纯度和良好的品质,极具工业推广价值。
【专利说明】一种二氧化锡亚微米棒的合成方法
[0001]

【技术领域】
[0002]本发明属于微纳材料合成与制备领域,具体涉及一种二氧化锡亚微米棒自蔓延高温合成方法。

【背景技术】
[0003]随着当代电子科技的高速发展,各种电子元器件日趋细微化,需要利用具有良好气敏性、湿敏性的半导体材料制成相应的传感器进行检测。因此,具有优秀气敏性、湿敏性的微纳半导体材料,拥有广泛的应用前景和市场价值。其中具有微纳结构的氧化物材料,尤其是一维棒状、纤维状的氧化物材料具备最大优势。微纳尺度的一维氧化锡材料凭借其优异的电化学、光电及化学敏感性,在微纳材料合成领域引起了广泛的关注。
[0004]目前,一维微纳SnO2的合成方法主要有:化学气相沉积法,物理气相沉积法,激光烧蚀法,模版法,碳热还原法,水热合成法,溶胶-凝胶法等。化学气相沉积法、物理气相沉积法、激光烧蚀法、模版法等对设备要求非常高,而碳热还原法、水热合成法、溶胶-凝胶法等的制备工艺极度繁琐,这些缺点大大限制了以上方法在工业领域中的应用。
[0005]专利CN 102001700 A提出了一种自蔓延燃烧法,这种方法一定程度上克服了以上问题。该专利采用传统的Al、CuO放热体系,该放热体系热量足、反应快,得到了较广的应用,但是该体系拥有几点明显的不足:上述过程中的放热反应遵循以下热化学方程式:2Al+3Cu0 =A1203+3Cu+1.54X 106J,经计算,氧化铜体系铝热剂的放热效率为5238J/g。而较为廉价的硫酸钙体系遵循的热化学方程式为:8Al+3CaS04=3CaS+4Al203+3.82X 16J,其放热效率为10852J/g,故液化相同质量的锡源,相较于氧化铜体系,将减少约一半铝热剂的投入。Cu是一种较为昂贵的金属,而反应生成的Cu单质以气态的形式喷出体系,无法有效收集,造成了明显的浪费。原料CuO的价格较高,制备成本大。安全性和生产成本在工业领域的重要性不言而喻,虽然专利CN 102001700 A提出的方法在传统方法的基础上有着巨大的进步,但是上述缺点也限制了该方法在工业领域的应用。


【发明内容】

[0006]本发明所要解决的技术问题是提供一种廉价的二氧化锡亚微米棒的合成方法。本发明以硫酸钙(即石膏)作为氧化剂,反应原料硫酸钙成本低廉,且转化效率高,完全克服了专利CN 102001700 A中的问题,具有良好的工业应用前景。
[0007]本发明通过如下方式实现:
1)将质量分数比例分别为:A1粉7-8.75%,CaSO4粉13-16.25%,Sn粉75-80%的化学纯粉末混合均匀,然后将装入反应装置中;
2)在混合粉末表面铺上引火粉并插入引信,点燃引信启动反应;
3)反应结束后,在反应装置上方收集二氧化锡亚微米棒。
[0008]所述引火粉为质量比为58%KN03、18%Mg、20%Al、4%S的粉末混合物。
[0009]所述的Al粉,CaSO4粉和Sn粉粒度为200目。
[0010]所合成的二氧化锡亚微米棒的宽度在700~900nm。
[0011]在该反应过程中,Al粉和0&504粉作为高热剂提供足够热量,使得Sn粉液化喷出,并与空气中的氧气结合,快速氧化并冷却,获得一维SnO2微纳材料。
[0012]这些一维Sn0#i纳材料,最终将自然飘落在产物收集处。所涉及的相关化学反应主要有:
8Al+3CaS04=3CaS+4Al203
Sn+02=Sn02
本发明阐述的材料特征可用以下方法测试:
I X射线衍射(XRD)。本材料是二氧化锡微纳材料,在X射线衍射谱中会给出二氧化锡的特征衍射峰,以此来判断产物中是否含有二氧化锡和其他物质。
[0013]2扫描电子显微镜(SEM)。通过扫描电子显微镜可以清楚显示所得二氧化锡微纳材料的微观形貌和微观尺寸。
[0014]3 EDS能谱。通过EDS可获得样品的元素图谱,结合XRD图谱,判断产物中是否含除氧化锡之外的其他无定性态杂质。
[0015]图1是二氧化锡亚微米棒的X射线衍射图,其所示衍射峰除主要的二氧化锡的特征峰值外,还有存在属于SnS的特征峰,但峰高均较小,且在锂电负极应用中,SnS可视为有益相。图2是该产物的扫描电子显微镜照片,清晰的呈现所得二氧化锡的棒状微结构,利用标尺可以测得该亚微米棒的厚度(宽度)在800nm左右,能谱数据显示,SnO2样品的纯度超过95%,并含有微量的S,Al,Ca等杂质,结合XRD图谱数据,可初步断定,Ca和Al以无定形态存在于样品中,而S以SnS晶体的形式存在。
[0016]通过自蔓延法制备的Sn0#i纳材料与化学气相沉积法,物理气相沉积法,激光烧蚀法,模版法,碳热还原法,水热合成法,溶胶-凝胶法等方法相比,设备要求低,合成过程简易。而通过硫酸钙来代替先前的氧化铜作为反应体系的氧化剂,能进一步降低SnO2微纳材料的制备成本,此外由于硫酸钙与铝的反应能够释放出更多的热量,故液化相同质量的锡源所需的反应物较少,转化效率得到提高。对于所制备的二氧化锡亚微米棒,相较于微米级的氧化锡,由于比表面积大,在气敏、湿敏元件中应用时,能表现出更优异的性能。而相较于原先通过氧化铜体系制备的二氧化锡纳米线,亚微米氧化锡比表面积较小,接触电阻也较小,加上有SnS的存在,在作为锂电负极材料极应用时,具有一定的优势。

【专利附图】

【附图说明】
[0017]下面结合附图和实施例对该发明进一步说明。
[0018]图1是实施例2合成产物的X射线衍射谱线。
[0019]图2是实施例2合成产物的扫描电子显微镜照片及相关的能谱数据。
[0020]图3是合成装置的示意图。

【具体实施方式】
[0021]通过以下实施例的说明将有助于理解本发明,但并不限制本发明的内容。
[0022]实施例1
首先,称取质量分数分别为8.75%、16.25%,75%的200目化学纯Al、CaSO4' Sn粉末,并且将它们均匀混合。然后,将所得混合物装入反应器中,在其上铺撒引火粉,并插入引信。点燃引信,诱导自蔓延反应发生。待反应结束后,在反应器的收集腔内收集反应过程中生成的一维二氧化锡微纳材料。该产品经X射线衍射、扫描电子显微镜的表征结果证明:所得为高纯度二氧化锡亚微米棒,其平均宽度(厚度)约在900nm左右。
[0023]实施例2
首先,称取质量分数分别为7.8%、14.4%, 77.8%的200目化学纯Al、CaSO4' Sn粉末,并且将它们均匀混合。然后,将所得混合物装入反应器中,在其上铺撒引火粉,并插入引信。点燃引信,诱导自蔓延反应发生。待反应结束后,在反应器的收集腔内收集反应过程中生成的一维二氧化锡微纳材料。该产品经X射线衍射、扫描电子显微镜的表征结果证明:所得为高纯度二氧化锡亚微米棒,其平均宽度(厚度)约在800nm左右。
[0024]实施例3
首先,称取质量分数分别为7%、13%,80%的200目化学纯Al、CaSO4、Sn粉末,并且将它们均匀混合。然后,将所得混合物装入反应器中,在其上铺撒引火粉,并插入引信。点燃引信,诱导自蔓延反应发生。待反应结束后,在反应器的收集腔内收集反应过程中生成的一维二氧化锡微纳材料。该产品经X射线衍射、扫描电子显微镜的表征结果证明:所得为高纯度二氧化锡亚微米棒,其平均宽度(厚度)约在700nm左右。
【权利要求】
1.一种二氧化锡亚微米棒的合成方法,其特征在于,包括如下步骤: 1)将质量分数比例分别为=Al粉7-8.75%,CaSO4粉13-16.25%,Sn粉75-80%的化学纯粉末混合均匀,然后将装入反应装置中; 2)在混合粉末表面铺上引火粉并插入引信,点燃引信启动反应; 3)反应结束后,在反应装置上方收集二氧化锡亚微米棒。
2.根据权利要求1所述的二氧化锡亚微米棒的合成方法,其特征在于,所述的Al粉、CaSO4粉和Sn粉粒度为200目。
3.根据权利要求1所述的二氧化锡亚微米棒的合成方法,其特征在于,所述引火粉为质量比为58%KN03、18%Mg、20%Al、4%S的粉末混合物。
4.根据权利要求1所述的二氧化锡亚微米棒的合成方法,其特征在于,所合成的二氧化锡亚微米棒的宽度在700~900nm。
【文档编号】C01G19/02GK104445378SQ201410780994
【公开日】2015年3月25日 申请日期:2014年12月17日 优先权日:2014年12月17日
【发明者】张国栋, 张晖, 肖亚东, 刘念, 张斌, 邱智华 申请人:武汉大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1