一种单相多铁陶瓷材料及其制备方法与流程

文档序号:11610677阅读:512来源:国知局
一种单相多铁陶瓷材料及其制备方法与流程

本发明涉及多铁陶瓷及其制备方法。



背景技术:

多铁性材料是指在同一种相中存在两种或者两种以上铁序的材料,是由瑞士科学家schmid于1994年首次提出,其中铁序包括铁磁序、铁电序、铁弹序和铁涡序。而研究最多的多铁材料是磁性与铁电性共存的磁电多铁材料,一般将磁性(铁磁、亚铁磁、反铁磁和非共线磁性等)与铁电性共存的材料称为磁电多铁材料。在磁电多铁材料中,磁性与铁电性之间存在一定的耦合效应,在信息存储、自旋电子器件、电容-电感一体化器件和微波吸收技术领域存在着广泛的应用前景。但是目前能够应用的单相多铁材料非常稀少,因为从经验角度看磁性与铁电性具有一定的互斥性,再加上多数材料的磁性居里温度和铁电居里温度低于室温,所以就使得在室温下能够应用的单相多铁材料更少了。目前研究最多的室温单相多铁材料是铁酸铋(bifeo3),它在室温下同时具有铁电性和反铁磁性,铁电居里温度约1103k,铁磁尼尔温度约643k。但是由于具有反铁磁性,所以能表现出来的宏观磁性非常弱,也就限制了铁酸铋作为多铁材料的应用。



技术实现要素:

本发明是要解决现有的室温共存反铁磁性和铁电性的单相多铁材料铁酸铋磁性弱的技术问题,而提供一种单相多铁陶瓷材料及其制备方法。

本发明的单相多铁陶瓷材料的化学表达式为ba0.7ca0.3fetao3,简写为bcft,且为棒状晶粒构成的陶瓷材料。

上述的单相多铁陶瓷材料的制备方法,按以下步骤进行:

一、将碳酸钡(baco3)、碳酸钙(caco3)、三氧化二铁(fe2o3)和五氧化二钽(ta2o5)粉末按照ba0.7ca0.3fetao3的化学计量比称量并混合均匀,得到混合粉末;

二、将步骤一得到的混合粉末加入酒精,在球磨机中以200~400rpm的转速球磨12~48h,得到悬浊液a;

三、将步骤二得到的悬浊液a烘干,得到粉末a,然后再将该粉末a放入管式炉中,在温度为1100~1250℃的条件下保持3~6h,得到预烧粉末;

四、将步骤三得到的预烧粉末加入酒精,在球磨机中以200~400rpm的转速球磨12~48h,得到悬浊液b;

五、将步骤四得到的悬浊液b烘干,得到粉末b,然后按20g粉末b加入1~3ml质量百分浓度为5%~10%的聚乙烯醇溶液的比例,向粉末b中加入聚乙烯醇溶液,混合均匀后,加入模具中,压制成预制体;

六、将步骤五中得到的预制体置于管式炉中,在空气气氛下升温至500~700℃保温2~5h,进行排胶处理;

七、将步骤六中得到的排胶之后的预制体置于管式炉中,在空气气氛下升温至1250~1500℃烧结3~8h,得到单相多铁陶瓷材料。

本发明的单相多铁陶瓷材料ba0.7ca0.3fetao3在室温下是四方相结构,属于p4bm点群。在室温下同时具有铁磁性和铁电性,是一种无铅的磁性与铁电性共存的单相多铁陶瓷。本发明的制备方法简单,不使用专用设备,不需要特殊气氛烧结,可大规模制备。

本发明的单相多铁陶瓷材料可用于电气、电子领域。

附图说明

图1是实施例1中得到的bcft陶瓷样品的表面形貌图。

图2是实施例1中得到的bcft陶瓷样品的表面形貌图,是对图1的局部放大图。

图3是实施例1中得到的bcft陶瓷样品的断面形貌图。

图4是实施例1中得到的bcft陶瓷样品的x射线衍射图谱(xrd)。

图5是实施例1中得到的bcft陶瓷样品在不同激励电场下得到的电滞回线。

图6是实施例1中得到的bcft陶瓷样品测量得到的磁滞回线。

图7是实施例2中得到的bcft陶瓷样品的表面形貌图。

具体实施方式

具体实施方式一:本实施方式的单相多铁陶瓷材料的化学表达式为ba0.7ca0.3fetao3,且为棒状晶粒构成的陶瓷材料,简写为bcft。

本实施方式的单相多铁陶瓷材料的晶粒棒的直径为0.5~1μm,长度为5~20μm。

具体实施方式二:具体实施方式一所述的单相多铁陶瓷材料的制备方法,按以下步骤进行:

一、将碳酸钡(baco3)、碳酸钙(caco3)、三氧化二铁(fe2o3)和五氧化二钽(ta2o5)粉末按照ba0.7ca0.3fetao3的化学计量比称量并混合均匀,得到混合粉末;

二、将步骤一得到的混合粉末加入酒精,在球磨机中以200~400rpm的转速球磨12~48h,得到悬浊液a;

三、将步骤二得到的悬浊液a烘干,得到粉末a,然后再将该粉末a放入管式炉中,在温度为1100~1250℃的条件下保持3~6h,得到预烧粉末;

四、将步骤三得到的预烧粉末加入酒精,在球磨机中以200~400rpm的转速球磨12~48h,得到悬浊液b;

五、将步骤四得到的悬浊液b烘干,得到粉末b,然后按20g粉末b加入1~3ml质量分数为5~10%的聚乙烯醇溶液的比例,向粉末b中加入聚乙烯醇溶液,混合均匀后,加入模具中,压制成预制体;

六、将步骤五中得到的预制体置于管式炉中,在空气气氛下升温至500~700℃保温2~5h进行排胶处理;

七、将步骤六中得到的排胶之后的预制体置于管式炉中,在空气气氛下升温至1250~1500℃烧结3~8h,得到单相多铁陶瓷材料。

具体实施方式三:本实施方式与具体实施方式二不同的是步骤三中烘干温度为80℃~100℃;其它与具体实施方式二相同。

具体实施方式四:本实施方式与具体实施方式二或三不同的是步骤三中的预烧温度为1150℃,预烧时间为4h。其它与具体实施方式二或三相同。

具体实施方式五:本实施方式与具体实施方式二至四之一不同的是步骤五中的烘干温度为80℃~100℃。其它与具体实施方式二至四之一相同。

具体实施方式六:本实施方式与具体实施方式二至五之一不同的是步骤五中预制体是在200~500mpa的压强下保持1~5分钟后得到的。其它与具体实施方式二至五之一相同。

具体实施方式七:本实施方式与具体实施方式二至六之一不同的是步骤六中排胶过程是在600℃保温4h条件下进行的。其它与具体实施方式二至六之一相同。

具体实施方式八:本实施方式与具体实施方式二至七之一不同的是步骤七的烧结温度为1300~1400℃,烧结时间为5~6h。其它与具体实施方式二至七之一相同。

用以下实施例验证本发明的有益效果:

实施例1:本实施例的单相多铁陶瓷材料的制备方法按以下步骤进行:

一、按单相多铁陶瓷材料ba0.7ca0.3fetao3的化学计量比称取0.042mol的碳酸钡(baco3)、0.018mol的碳酸钙(caco3)、0.06mol的三氧化二铁(fe2o3)和0.06mol的五氧化二钽(ta2o5)粉末按并混合均匀,得到混合粉末;

二、将步骤一得到的混合粉末加入60ml酒精,在球磨机中以250rpm的转速球磨24h,得到悬浊液a;

三、将步骤二得到的悬浊液a在80℃烘干,得到粉末a,然后再将该粉末a放入管式炉中,在温度为1150℃的条件下保持4h,得到预烧粉末;

四、将步骤三得到的预烧粉末加入60ml酒精,在球磨机中以250rpm的转速球磨24h,得到悬浊液b;

五、将步骤四得到的悬浊液b在80℃烘干,得到粉末b,然后向粉末b中加入2ml的质量百分浓度为5%的聚乙烯醇溶液,混合均匀后,加入直径为φ13mm的模具中,在400mpa的压强下保持1分钟压制成厚度约为1.5mm的片状预制体;

六、将步骤五中得到的预制体置于管式炉中,在空气气氛下升温至600℃保温4h进行排胶处理,使得在步骤五中加入的聚乙烯醇完全去除;

七、将步骤六中得到的排胶之后的预制体置于管式炉中,在空气气氛下升温至1400℃烧结4h,得到单相多铁陶瓷材料。

实施例1制备出了成瓷效果较好的bcft陶瓷样品。图1是实施例1得到的bcft陶瓷样品在扫描电子显微镜(sem)下的表面形貌图,模式为二次电子模式。从sem图片可以看出,bcft陶瓷的晶粒为微米级棒状晶粒。图2是图1的局部放大图。从图中可以明显地看出微米棒晶粒的直径约为0.7~1μm,长度约为10~20μm,并且晶粒全部为微米棒晶粒。图3是实施例1得到的bcf陶瓷样品的断面sem图片。从断面图可以看出断面也是呈现出和表面一致的微米级棒状晶粒。

图4是实施例1所得到的bcft陶瓷样品的x射线衍射图谱(xrd)。主相为四方相结构,点群为p4bm,图中标出晶面指数是根据basrta4o12(pdf卡片号54-1163)的晶面指数标出的。其中用倒三角标出的两个峰是少量的杂质第二相bafeo3-x(pdf卡片号23-1024)的峰。

图5是实施例1得到的bcft陶瓷样品在不同激励电场下的电滞回线。从图中可以看出该陶瓷样品具有一定的滞回特性,具有一定的铁电性。

图6是实施例1得到的bcft陶瓷样品所测量得到的磁滞回线,说明样品具有铁磁性。矫顽力(2hc)为216oe,剩余磁化强度为0.72emu/g。

从图5和图6可知,本实施例制备的单相多铁陶瓷材料ba0.7ca0.3fetao3在室温下同时具有铁磁性和铁电性。

实施例2:本实施例的单相多铁陶瓷材料的制备方法按以下步骤进行:

一、按单相多铁陶瓷材料ba0.7ca0.3fetao3的化学计量比称取0.042mol的碳酸钡(baco3)、0.018mol的碳酸钙(caco3)、0.06mol的三氧化二铁(fe2o3)和0.06mol的五氧化二钽(ta2o5)粉末按并混合均匀,得到混合粉末;

二、将步骤一得到的混合粉末加入60ml酒精,在球磨机中以250rpm的转速球磨48h,得到悬浊液a;

三、将步骤二得到的悬浊液a烘干,得到粉末a,然后再将该粉末a放入管式炉中,在温度为1200℃的条件下保持4h,得到预烧粉末;

四、将步骤三得到的预烧粉末加入60ml酒精,在球磨机中以250rpm的转速球磨48h,得到悬浊液b;

五、将步骤四得到的悬浊液b在80℃烘干,得到粉末b,然后向粉末b中加入1ml的质量分数8%的聚乙烯醇溶液,混合均匀后,混合均匀后,加入直径为φ13mm的模具中,在300mpa的压强下保持1分钟压制成厚度为约1.5mm的片状预制体;

六、将步骤五中得到的预制体置于管式炉中,在空气气氛下升温至600℃保温2h进行排胶处理,使得在步骤五中加入的聚乙烯醇完全去除。

七、将步骤六中得到的排胶之后的预制体置于管式炉中,在空气气氛下升温至1350℃烧结4h,得到单相多铁陶瓷材料。

图7是实施例2所得到的bcft陶瓷样品的表面形貌图,图中可以看出该陶瓷样品的晶粒也为微米级棒状晶粒,直径约为0.5~0.8μm,长度约为5~10μm。

本实施例制备的单相多铁陶瓷材料ba0.7ca0.3fetao3在室温下同时具有铁磁性和铁电性。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1