陶瓷材料和包括陶瓷材料的电容器的制作方法

文档序号:11610670阅读:262来源:国知局
陶瓷材料和包括陶瓷材料的电容器的制造方法与工艺

本发明申请是申请日为2013年2月18日、申请号为201380019395.3、发明名称为“陶瓷材料和包括陶瓷材料的电容器”的发明专利申请的分案申请。

提出一种适合于多层工艺中的电容器的陶瓷材料和一种包括该陶瓷材料的电容器,所述电容器优选地适合于高功率应用。电容器能够在ac/dc-或dc/dc转换器中用作为滤波元件。



背景技术:

陶瓷电容器包括至少两个电导体,在所述电导体之间设置有介电的(绝缘的)陶瓷层。陶瓷电容器的特性主要通过陶瓷介电质的极化特性来确定。作为热电的表示下述材料,所述材料在不存在电场的情况下具有自发极性。如果通过施加电场(或机械应力),自发极性的方向能够发生改变,那么材料称作为是铁电的。当从顺电相中相位过渡时铁电材料的离子并非相互平行地、而是相互反平行地移动,那么该材料称作为反铁电的。

迄今主要用于压电元件的陶瓷材料是锆钛酸铅体系(pb(zrxti1-x)o3或pzt)。所述体系表示反铁电的锆酸铅(pbzro3)和铁电的钛酸铅(pbzro3,pto)的固定的解决方案(无空位的混晶列),其根据组成能够具有铁电的和反铁电的特性。相位表(图1)示出,pzt体系的居里温度和晶体对称性与其组成相关。ft和fr是铁电的四方晶相或菱面体相。pc表示顺电的立方晶相。ao和at表示反铁电的正交晶相或四方晶相。ht表示高温晶相,lt表示低温晶相。基于pto,居里点在钛离子通过锆离子取代的情况下从490℃(tc(pto)下降到230℃(tc(pzo);在此,对称性从ft经由fr改变至ao(在室温下)。在tc之上,pzt是顺电的。在低于居里温度时,近似出现立方结构的畸变,更确切地说与zr/ti比例相关。这就是说,富含ti的pzt混晶在室温下是铁电的和四方晶的,相反地,富含zr的pzt混晶是反铁电正交晶的(o相)或铁电菱面体的。pzt材料迄今主要用于压电元件,例如压电致动器。对此所需要的压电特性尤其表现在所谓的准同型相界(“morphotropicphaseboundary”;mpb),所述准同型相界分开两个fe相(ft和fr);在此,仅在zr/ti比例轻微变化之后形成两个不同的晶体结构。mpb位于pbzr0.6ti0.4o3和pbzr0.55ti0.45o3之间。

wo2011/085932a1公开一种电容器,所述电容器包括加热元件和介电层和包括在介电层之间设置的内电极的电容器区域,其中加热元件和电容器区域导热地彼此连接。



技术实现要素:

本发明的实施方式的目的在于,提供一种适合用于多层工艺中的电容器的、具有改进的特性的陶瓷材料。

该目的通过用于多层工艺中的电容器的陶瓷材料来实现,所述陶瓷材料的通式为:

pb(1-1.5a-0.5b+1.5d+e+0.5f)aabb(zr1-xtix)(1-c-d-e-f)lidcefefsico3+y·pbo(i),

其中:

a选自:la,、nd、y、eu、gd、tb、dy、ho、er和yb;

b选自na、k和ag;

c选自ni、cu、co和mn;并且

0<a<0.12;

0.05≤x≤0.3;

0≤b<0.12;

0≤c<0.12;

0≤d<0,12;

0≤e<0.12,

0≤f<0.12,

0≤y<1,

其中:

b+d+e+f>0。

根据本发明,尤其富含zr的pzt混晶相选自相位图。此外,通过条件b+d+e+f>0确定,在根据本发明的陶瓷材料中,除了出自在独立权利要求中限定的组a(稀土元素)中的掺杂剂之外,必须存在至少一种由li、na、k、ag、fe、ni、cu、co和mn构成的组(锂、铁以及组b和c)中的元素。由此,能够提供在1000℃至1120℃的温度下能烧结的陶瓷材料,这在陶瓷材料的制造方法期间就已经能够实现与其他的、在更高的温度下不稳定的物质/材料的组合。例如,陶瓷材料与由非贵金属、例如银或铜构成的内电极进行烧结(“共烧”方法)是可行的。此外,陶瓷材料与仅通过组a掺杂的pzt材料相比具有更高的切换场强和/或更高的相对电容率(介电常数)。

此外,低的烧结温度有助于形成陶瓷材料的小的晶粒大小,这有益地影响介电特性。更确切地说,pzt陶瓷的介电特性通常也由主域大小确定。将主域理解成陶瓷中的具有相同极性的区域。主域大小与晶粒大小相关。每晶粒的主域的数量随着晶粒大小增大而增大。改变的主域大小对陶瓷的材料特性产生影响。因此,值得期望的是,能够控制晶粒大小或晶粒生长。

典型地,根据本发明的掺杂的锆钛酸铅陶瓷具有钙钛矿晶格,所述钙钛矿晶格能够通过通式abo3来描述,其中a表示钙钛矿晶格的a位置并且b表示b位置。

钙钛矿晶格的特征在于相对于掺杂和空位的高的容差性。

锆钛酸铅(pzt)的钙钛矿结构能够通过通式abo3来描述。pzt晶格的单位晶胞能够通过立方体来描述。a位置通过pb2+离子占据,其中所述pb2+离子位于立方体的角上。在每个立方体面的中部存在各一个o2-离子。在立方体的中心存在ti4+离子和zr4+离子(b位置)。该结构相对于金属离子通过其他金属离子取代和缺陷具有高的容差性,因为所述结构能够良好地掺杂。

根据通过掺杂引入的离子和被取代的离子之间的大小差异,能够出现高对称性的配位多面体的畸变。所述畸变能够改变晶体的对称中心进而影响极化能力。

掺杂的不同的可行性能够根据掺杂离子的化合价来分类。等价掺杂、即离子由相同化合价的其他离子取代不作用于陶瓷材料中的可能的空位。如果低化合价的阳离子(受主)取代更高化合价的阳离子,那么在阴离子晶格种产生空位。更高价阳离子(施主)当其取代更低化合价的阳离子时造成阳离子晶格中的空位。用受主和施主掺杂分别引起材料特性的特征性的改变。受主掺杂的陶瓷也称作为“硬”陶瓷,施主掺杂的陶瓷也称作为“软”陶瓷。

在a位置上的例如用nd3+(或其他根据独立权利要求的组a中的其他稀土元素)的掺杂为施主掺杂。由于钕的离子半径,所述钕嵌到pb2+位置上。电荷补偿通过相应地形成pb空位进行。掺杂的影响是晶格的有规律的改变和单位晶胞之间的更长时间作用的相互作用的影响。

在a或b位置上用k+或fe3+的掺杂是受主掺杂。由于钾的离子半径,所述钾嵌到pb2+位置上,而fe3+嵌到zr4+或ti4+位置上。电荷补偿通过减少pb2+空位(a空缺)和/或相应地形成氧空位来进行。掺杂的影响是晶粒生长和促进烧结紧凑性的氧空位形成,所述氧空位形成在烧结温度下通过k受主产生。在冷却过程中,与nd施主的复合在形成近似中性(nd/k)的缺陷对的情况下进行,使得在制成的陶瓷中不存在或仅存在非常少的铅或氧空位浓度。

所述掺杂作用于材料的晶粒生长,所述晶粒生长与引入的掺杂的浓度相关。小的掺杂量在此有助于晶粒生长,相反地,过大量的掺杂离子能够阻碍晶粒生长。

如在nd占据pb位置的情况下存在的施主掺杂的pzt材料的特性基本上基于提高的主域可运动性,所述主域可运动性通过pb空位造成。空位引起,已经能够由小的电场影响主域。这与未掺杂的pzt陶瓷相比引起主域边界的更容易的可移动性进而引起更高的介电常数。

在根据本发明的陶瓷材料中,必要时同时存在受主和施主掺杂。这引起:在陶瓷例如仅由两种掺杂类型中的一种掺杂时出现的负面特性得到补偿。如果例如仅存在受主掺杂,那么这通常引起下降的介电常数,这就是说,所述常数低于未掺杂的陶瓷的介电常数。如果仅存在施主掺杂,那么阻碍晶粒生长,并且陶瓷的本体没有达到期望的大小。然而,根据本发明存在的掺杂组合在这些方面与未掺杂的陶瓷相比正面进步。所述掺杂组合具有更高的介电常数,在更低的烧结温度下也还得出所述更高的介电常数。

在一个根据本发明的优选的实施方式中,适用的是0.1≤x≤0.2,因为在该范围中能够更好地调整极化曲线。

在一个根据本发明的优选的实施方式中,适用的是0≤y<0.05。

在一个根据本发明的优选的实施方式中,适用的是,0.001<b<0.12,其中更优选适用的是d=e=f=0。

在另一个根据本发明的优选的实施方式中,适用的是,0.001<e<0.12,其中更优选适用的是b=d=f=0。

在另一个优选的实施方式中,b是钠(na)。由此,材料特性受到尤其有利的影响,尤其是烧结温度与仅包含稀土元素的pzt材料相比降低,并且同时切换场强增大。

在另一个根据本发明的优选的实施方式中,在电场强度为1kv/mm、优选为2kv/mm的情况下的相对电容率为在电场强度为0kv/mm的情况下的相对电容率的至少60%。更优选地,陶瓷材料在场强为2至5kv/mm、优选为1kv/mm至10kv/mm的情况下的相对电容率(介电常数)是在电场强度为0kv/mm的情况下的相对电容率的至少60%。该测量优选在陶瓷材料的温度为125℃的情况下执行。

在另一个根据本发明的优选的实施方式中,陶瓷材料在电场强度为1kv/mm、优选为2kv/mm的情况下具有至少为500、优选至少为1500的相对电容率。更有选地,陶瓷材料在电场强度为2至5kv/mm、优选为1kv/mm至10kv/mm的情况下具有至少为500、优选至少为1500的相对电容率。测量优选在陶瓷材料的温度为125℃的情况下执行。

对极化滞后的测量是用于确定相对电容率(介电常数)的标准方法。为了频率相关地进行测量,已知准静态的方法,其中点状地测量滞后回线。例如,极化测量能够借助于aixacctsystems有限公司的tfanalyser200来执行。

在另一个根据本发明的优选的实施方式中,陶瓷材料是反铁电的介电质。对此,应用优选反铁电正交晶相区域(o晶相)构成的基础材料pzt。反铁电的排布的特征在于多个有极性的子晶格的叠加,所述子晶格的电偶极矩相互抵消。反铁电的晶体因此不具有自发极化,但是具有特殊的介电特性。如果将电场施加到反铁电材料上,所述反铁电材料首先表现如线性介电质。从特定的临界场强开始,引起突然过渡到铁电相中并且之前反铁电的偶极子翻转到因此有能量的、更有益的、平行的取向中。反向的过渡相反地在电场强度较小的情况下发生。这引起所谓的双滞后回线(参见图4至6,所述图分别仅示出在电场为正值下的滞后回线)。

反铁电的陶瓷材料与铁电的陶瓷材料相比具有表现得不那么强的极化场强滞后。这在应用在电容器中时引起较小的有能量的损耗。出于该原因,应用反铁电的陶瓷材料根据本发明是优选的。

为了制造纯的和不同的掺杂的锆钛酸铅(pzt)粉末,能够应用传统的混合氧化物方法或也能够应用基于溶剂的方法,所述基于溶剂的方法也能够称作为“溶胶-凝胶”方法。出发点例如是用于构建的金属的醋酸盐或醇化物,所述醋酸盐或醇化物经由不同的干燥方法转变成颗粒状的干凝胶、陶瓷的先驱物质(前质)。为了干燥,例如可用喷雾干燥和喷雾冷冻粒化连同随后的冷冻干燥。随后,将前质热解成氧化物。这样制造的粉末能够以小的耗费去聚结并且在其他的工艺中被时效处理。

在根据本发明的第二方面中,本申请涉及一种电容器,所述电容器包括至少一个由如在上文中限定的陶瓷材料构成的陶瓷层和在至少一个陶瓷层上形成的导电电极。

在另一个优选的实施方式中,导电电极设置在相邻的陶瓷层之间。优选地,电容器是多层电容器,所述多层电容器形成为由交替的陶瓷层和电极层构成的单片的烧结体。

在另一个优选的实施方式中,导电电极包括非贵金属,优选为ag或cu。更优选地,内电极包括cu。尤其优选地,非贵金属形成内电极的主要部分。

在根据本发明的另一个优选的实施方式中,电容器在80℃至150℃的范围中、优选在-40℃至150℃的范围中具有至少为1a/μf的载流能力。

为了制造根据本发明的陶瓷电容器,例如由未烧结的根据本发明的陶瓷粉末的悬浮物借助适当的粘结剂得出薄的陶瓷膜。所述陶瓷膜以丝网印刷法借助金属膏、即随后的电极压制。金属膏能够包含cu、ag或pd。优选地,使用非贵金属,例如ag和cu,因为这样降低制造工艺的成本。压制的层片在电容器所要求数量的层中相叠地堆叠并且通过挤压固定。除了陶瓷的相对电容率(介电常数)之外,相叠的层的数量和层厚度确定电容器的随后的电容值。通过电极在堆叠中交替轻微彼此错开地堆叠,能够进行压制和堆层,借此所述电极能够梳状地在一侧与连接面接触。

层叠的和挤压的堆叠随后被分割成各个电容器。

在切割之后,从所分割的电容器中首先烤出粘结剂。此后,进行燃烧过程。在此,陶瓷粉末在1000℃和1450℃之间的温度下、优选在1000℃至1120℃下被烧结并且得到其最终的、优选结晶的结构。首先通过所述燃烧工艺,电容器得到其期望的介电性能。燃烧工艺之后是清洁并且随后对两个外部电极进行外部的金属化。通过在陶瓷块的端面上进行所述金属化来将内电极并联。

同时,金属化部是外部的电连接面。

附图说明

在下文中,根据附图阐述根据本发明的陶瓷材料的特殊的特性。

具体实施方式

图1示出pbzro3-pbtio3混晶列的相位图。ft和fr是铁电的四方晶相或菱面体相。pc表示顺电的立方晶相。ao和at表示反铁电的正交晶相或四方晶相。ht表示高温晶相,lt表示低温晶相。

图2示出用于陶瓷材料pb0.895-0.5xla0.07naxzr0.86ti0.14o3的参数x和烧结收缩的相关性,所述材料在1050℃下烧结。

图3示出用于材料pb0.895+1.105xla0.07(1-x)(zr0.86ti0.14)1-xnixo3的参数x和烧结收缩的相关性,所述材料在1050℃下烧结。

图4示出在1250℃下烧结的材料pb0.88-0.5xla0.08naxzr0.80ti0.20o3的滞后曲线的比较。滞后曲线针对x=0,x=0.005,x=0.01,x=0.03示出。

图5示出在1050℃下烧结的材料pb0.895+1.105xla0.07(1-x)(zr0.86ti0.14)1-xnixo3的滞后曲线的比较。滞后曲线针对x=0.04和x=0.05示出。

图6为陶瓷材料pb0.87la0.07na0.05zr0.86ti0.14o3示出具有cu电极的多层电容器的滞后曲线。

图7为陶瓷材料pb0.87la0.07na0.05zr0.86ti0.14o3示出相对电容率(介电常数),所述相对电容率从图6的滞后曲线的下部分支的积分得出。

图2和3示出,烧结收缩能够如何通过na或ni的相对量(参数x)来控制。

对于na,在温度为1050℃的情况下,对于值x=0.06,得出大于15%的烧结收缩。相似的烧结收缩在没有na的情况下在1260℃的温度下才达到(图2)。因此,在陶瓷材料中存在na的情况下,能够在低温下烧结。

为烧结辅助剂ni得出类似的结果。在图3中,在1050℃的温度下烧结陶瓷材料pb0.895+1.105xla0.07(1-x)(zr0.86ti0.14)1-xnixo3。对于参数x大于0.03的数值得出大于15%的最大烧结收缩。因此,在陶瓷材料中存在镍的情况下,能够在低温下烧结。

在图4中为在1250℃下烧结的材料pb0.88-0.5xla0.08naxzr0.80ti0.20o3示出参数x对极化能力和切换场强的影响。随着x的值增大,即随着na在陶瓷材料中的份额增大,得出更小的极化能力和切换场强的增大,这表现在滞后回线的展平中。

在图5中为在1050℃下烧结的材料pb0.895+1.105xla0.07(1-x)(zr0.86ti0.14)1-xnixo3得到相似的结果。在此,示出具有0.04或0.05的参数x的比较,在ni在陶瓷材料中的份额增大的情况下,极化能力下降并且切换强度增大。

在图6中示出具有cu电极的多层电容器的滞后曲线,所述多层电容器包括陶瓷材料pb0.87la0.07na0.05zr0.86ti0.14o3。陶瓷材料示出为大约8kv/mm的高的切换场强。高的切换场强能够实现,在电容器中存储相对多的能量。此外,陶瓷材料具有表现为小的极化场强滞后,由此电容器仅具有小的能量损耗。

在图7中示出相对电容率(介电常数),所述相对电容率从图6的滞后曲线的下部分支的微分中得出。得出为反铁电的材料描述特性的曲线。相对电容率在大约8kv/mm的情况下达到为3800的最大值。所述最大值相应于切换场强。

根据所公开的实施例,还公开了以下附记:

1.一种用于多层工艺中的电容器的陶瓷材料,所述陶瓷材料的通式为:pb(1-1.5a-0.5b+1.5d+e+0.5f)aabb(zr1-xtix)(1-c-d-e-f)lidcefefsico3+y·pbo(i),

其中:

a选自:la,、nd、y、eu、gd、tb、dy、ho、er和yb;

b选自na、k和ag;

c选自ni、cu、co和mn;并且

0<a<0.12;

0.05≤x≤0.3;

0≤b<0.12;

0≤c<0.12;

0≤d<0,12;

0≤e<0.12,

0≤f<0.12,

0≤y<1,

其中:

b+d+e+f>0。

2.根据附记1所述的陶瓷材料,其中0.1<x<0.2。

3.根据附记1或2所述的陶瓷材料,其中0.001<b<0.12,;并且优选地d=e=f=0。

4.根据附记1或2所述的陶瓷材料,其中0.001<e<0.12;并且优选地b=d=f=0。

5.根据附记1至4中任一项所述的陶瓷材料,其中b是na。

6.根据附记1至5中任一项所述的陶瓷材料,其中在电场强度为1kv/mm、优选为2kv/mm的情况下的相对电容率为在电场强度为0kv/mm的情况下的相对电容率的至少60%。

7.根据附记1至6中任一项所述的陶瓷材料,其中在电场强度为2至5kv/mm、优选为1kv/mm至10kv/mm的情况下的相对电容率是在电场强度为0kv/mm的情况下的相对电容率的至少60%。

8.根据附记1至7中任一项所述的陶瓷材料,其中所述陶瓷材料在电场强度为1kv/mm、优选为2kv/mm的情况下具有至少为500、优选至少为1500的相对电容率。

9.根据附记1至8中任一项所述的陶瓷材料,其中所述陶瓷材料在电场强度为2至5kv/mm、优选为1kv/mm至10kv/mm的情况下具有至少为500、优选至少为1500的相对电容率。

10.根据附记1至9中任一项所述的陶瓷材料,其中所述陶瓷材料是反铁电的介电质。

11.一种电容器,包括:

-至少一个由根据附记1至10中任一项所述的陶瓷材料构成的陶瓷层;和

-导电电极,所述导电电极在至少一个所述陶瓷层上形成。

12.根据附记11所述的电容器,其中所述导电电极设置在相邻的陶瓷层之间。

13.根据附记11或12所述的电容器,其中所述导电电极包括非贵金属,优选为ag或cu。

14.根据附记11至13中任一项所述的电容器,其中载流能力在100℃时至少为1a/μf。

15.根据附记11至14中任一项所述的电容器,其中载流能力在80℃至150℃的范围中、优选在-40℃至150℃的范围中为至少1a/μf。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1