一种镍酸锰纳米片的制备方法与流程

文档序号:13651218阅读:326来源:国知局
一种镍酸锰纳米片的制备方法与流程

本发明属于功能材料制备技术领域,具体涉及一种镍酸锰纳米片的制备方法。



背景技术:

镍酸盐材料具有良好的物理性能,在电学、磁学及催化等领域具有良好的应用前景。镍酸锰作为一种重要的镍酸盐材料,引起了人们的关注。有文献(pranjalnautiyal,md.motinseikh,v.pralong,asishk.kundu.influenceofbismuthonthemagnetic&electricalpropertiesofla2mnnio6.journalofmagnetismandmagneticmaterials347(2013)111-115.)报道通过高温固相法可以制备出块体la2mnnio6材料,此种la2mnnio6具有良好的电学及磁学性能。也有文献(r.radha,c.s.swamy.effectofrareearthionsonthecatalyticactivityofln2mnnio6perovskites.react.kinet.catal.lett.28(1985)75-80.)报道通过高温固相法可以制备出块体ln2mnnio6(ln=la、nd、sm和gd)材料,这些材料具有良好的催化活性。虽然目前已有镍酸锰基块体材料的报道,然而,到目前为止还未有关于单相镍酸锰的报道,尤其是纳米级尺寸的镍酸锰,例如镍酸锰纳米片的报道。不同于大尺寸的块体镍酸盐材料,镍酸锰纳米片的尺寸小,可以作为电学材料、磁学材料和催化材料,在电学、磁学和催化等领域具有良好的应用前景。



技术实现要素:

为克服现有技术的不足,本发明的目的在于提供一种镍酸锰纳米片的制备方法。

该制备方法如下:

步骤1:以乙酸镍、乙酸锰作为原料,氧化铝片作为沉积衬底,含有氩气和氧气的混合气体作为载气,首先将乙酸镍与乙酸锰混合均匀,然后将乙酸镍与乙酸锰的混合粉末置于刚玉管反应容器的高温区,氧化铝片置于刚玉管反应容器的低温区,并密封反应容器,将高温区加热至900~1100℃、低温区加热至100~200℃,保温1~3h,氩气流速为20~40cm3/min,氧气流速为20~40cm3/min,从而得到了表面含有黑色沉积物的氧化铝片。

所述乙酸镍与乙酸锰的摩尔比为1:1。

步骤2:将步骤1得到的表面含有黑色沉积物的氧化铝片作为沉积衬底,乙酸镍、乙酸锰作为原料,水为溶剂,首先将步骤1得到的表面含有黑色沉积物的氧化铝片固定于反应容器中间,然后将乙酸镍、乙酸锰与水混合后置于反应容器内并密封,向反应容器中充入氧气后,于温度300~400℃、保温24~48h,最终在氧化铝片表面得到了絮状黑色沉积物,即为镍酸锰纳米片。

所述乙酸镍与乙酸锰的摩尔比为1:1。

所述乙酸镍、乙酸锰的总重量占水重量的20~40%。

所述乙酸镍、乙酸锰和水总量占反应容器的填充度为20~40%。

本发明的科学原理如下:

本发明采用上述制备过程,乙酸镍和乙酸锰混合粉末在高温区于900~1100℃被加热成气态,并分解为气态的氧化镍、氧化锰、水和二氧化碳,在高温下氧化镍、氧化锰和氧气反应形成气态的镍酸锰,气态的镍酸锰在流速为20~40cm3/min的载气氩气和氧气的输运下到达位于刚玉管反应容器末端的低温区,低温区的温度为100~200℃,在低温区气态的镍酸锰沉积于氧化铝片表面,经过1~3h的沉积时间,在氧化铝表面形成了镍酸锰纳米晶核,得到了表面含有黑色沉积物的氧化铝片。将表面含有镍酸锰纳米晶核的氧化铝片固定于反应容器中间、密封及充入氧气后,将反应容器加热到300~400℃,反应容器中的水气化导致容器内具有较高的压力,反应容器中的乙酸镍、乙酸锰和氧气在300~400℃的温度和较高压力下反应形成镍酸锰,镍酸锰在水蒸气的带动下沉积于表面含有镍酸锰纳米晶核的氧化铝片上,氧化铝片表面的晶核吸收了气氛中的镍酸锰,在温度、压力的作用下导致了镍酸锰纳米片的形成,随着保温时间增加至24~48h,氧化铝片表面形成了具有一定厚度的镍酸锰纳米片。

与现有技术相比,本发明具有以下技术效果:

1、本发明采用两步反应过程,制备过程简单、易于控制;

2、本发明采用的是无毒的乙酸镍、乙酸锰和水,原料及制备过程对环境无污染,符合环保要求;

3、本发明镍酸锰纳米片的厚度为纳米尺寸,尺寸小,可以作为电学材料、磁学材料和催化材料,在电学、磁学和催化等领域具有良好的应用前景。

附图说明

图1为实施例1所制备的镍酸锰纳米片的x~射线衍射(xrd)图谱;

根据jcpdspdf卡片,可以检索出所得镍酸锰纳米片由斜方mnnio3(jcpds卡,卡号:65~3695)晶相构成。

图2为实施例1所制备的镍酸锰纳米片的扫描电子显微镜(sem)图像;

从图中可以看出产物由镍酸锰纳米片构成,纳米片的厚度为30nm、整个纳米片的长度为800nm~3μm。

具体实施方式

以下结合具体实施例详述本发明,但本发明不局限于下述实施例。

实施例1

步骤1:首先将乙酸镍与乙酸锰混合均匀,其中乙酸镍与乙酸锰的摩尔比为1:1,然后将乙酸镍与乙酸锰的混合粉末置于刚玉管反应容器的高温区,将尺寸6×4cm的氧化铝片置于刚玉管反应容器的低温区,并密封刚玉管,将高温区加热至温度1100℃、低温区加热至200℃,保温3h,氩气流速为40cm3/min,氧气流速为40cm3/min,从而得到了表面含有黑色沉积物的氧化铝片。

步骤2:首先将步骤1得到的表面含有黑色沉积物的氧化铝片固定于反应容器中间,然后将占水重量40%的乙酸镍、乙酸锰与水混合后置于反应容器内并密封,其中乙酸镍与乙酸锰的摩尔比为1:1,乙酸镍、乙酸锰和水总量占反应容器的填充度为40%,向反应容器中充入氧气后,将反应容器于温度400℃、保温48h,在氧化铝片表面得到了絮状黑色沉积物,制备出了厚度为30nm、整个纳米片的长度为800nm~3μm的镍酸锰纳米片。

实施例2

步骤1:首先将乙酸镍与乙酸锰混合均匀,其中乙酸镍与乙酸锰的摩尔比为1:1,然后将乙酸镍与乙酸锰的混合粉末置于刚玉管反应容器的高温区,将尺寸6×4cm的氧化铝片置于刚玉管反应容器的低温区,并密封刚玉管,将高温区加热至温度900℃、低温区加热至100℃,保温1h,氩气流速为20cm3/min,氧气流速为20cm3/min,从而得到了表面含有黑色沉积物的氧化铝片。

步骤2:首先将步骤1得到的表面含有黑色沉积物的氧化铝片固定于反应容器中间,然后将占水重量20%的乙酸镍、乙酸锰与水混合后置于反应容器内并密封,其中乙酸镍与乙酸锰的摩尔比为1:1,乙酸镍、乙酸锰和水总量占反应容器的填充度为20%,向反应容器中充入氧气后,将反应容器于温度300℃、保温24h,在氧化铝片表面得到了絮状黑色沉积物,制备出了厚度为30nm、整个纳米片的长度为800nm~3μm的镍酸锰纳米片。

实施例3

步骤1:首先将乙酸镍与乙酸锰混合均匀,其中乙酸镍与乙酸锰的摩尔比为1:1,然后将乙酸镍与乙酸锰的混合粉末置于刚玉管反应容器的高温区,将尺寸6×4cm的氧化铝片置于刚玉管反应容器的低温区,并密封刚玉管,将高温区加热至温度920℃、低温区加热至120℃,保温1.2h,氩气流速为23cm3/min,氧气流速为23cm3/min,从而得到了表面含有黑色沉积物的氧化铝片。

步骤2:首先将步骤1得到的表面含有黑色沉积物的氧化铝片固定于反应容器中间,然后将占水重量23%的乙酸镍、乙酸锰与水混合后置于反应容器内并密封,其中乙酸镍与乙酸锰的摩尔比为1:1,乙酸镍、乙酸锰和水总量占反应容器的填充度为23%,向反应容器中充入氧气后,将反应容器于温度320℃、保温28h,在氧化铝片表面得到了絮状黑色沉积物,制备出了厚度为30nm、整个纳米片的长度为800nm~3μm的镍酸锰纳米片。

实施例4

步骤1:首先将乙酸镍与乙酸锰混合均匀,其中乙酸镍与乙酸锰的摩尔比为1:1,然后将乙酸镍与乙酸锰的混合粉末置于刚玉管反应容器的高温区,将尺寸6×4cm的氧化铝片置于刚玉管反应容器的低温区,并密封刚玉管,将高温区加热至温度950℃、低温区加热至130℃,保温1.5h,氩气流速为26cm3/min,氧气流速为26cm3/min,从而得到了表面含有黑色沉积物的氧化铝片。

步骤2:首先将步骤1得到的表面含有黑色沉积物的氧化铝片固定于反应容器中间,然后将占水重量26%的乙酸镍、乙酸锰与水混合后置于反应容器内并密封,其中乙酸镍与乙酸锰的摩尔比为1:1,乙酸镍、乙酸锰和水总量占反应容器的填充度为26%,向反应容器中充入氧气后,将反应容器于温度330℃、保温32h,在氧化铝片表面得到了絮状黑色沉积物,制备出了厚度为30nm、整个纳米片的长度为800nm~3μm的镍酸锰纳米片。

实施例5

步骤1:首先将乙酸镍与乙酸锰混合均匀,其中乙酸镍与乙酸锰的摩尔比为1:1,然后将乙酸镍与乙酸锰的混合粉末置于刚玉管反应容器的高温区,将尺寸6×4cm的氧化铝片置于刚玉管反应容器的低温区,并密封刚玉管,将高温区加热至温度980℃、低温区加热至150℃,保温1.8h,氩气流速为29cm3/min,氧气流速为29cm3/min,从而得到了表面含有黑色沉积物的氧化铝片。

步骤2:首先将步骤1得到的表面含有黑色沉积物的氧化铝片固定于反应容器中间,然后将占水重量29%的乙酸镍、乙酸锰与水混合后置于反应容器内并密封,其中乙酸镍与乙酸锰的摩尔比为1:1,乙酸镍、乙酸锰和水总量占反应容器的填充度为29%,向反应容器中充入氧气后,将反应容器于温度350℃、保温35h,在氧化铝片表面得到了絮状黑色沉积物,制备出了厚度为30nm、整个纳米片的长度为800nm~3μm的镍酸锰纳米片。

实施例6

步骤1:首先将乙酸镍与乙酸锰混合均匀,其中乙酸镍与乙酸锰的摩尔比为1:1,然后将乙酸镍与乙酸锰的混合粉末置于刚玉管反应容器的高温区,将尺寸6×4cm的氧化铝片置于刚玉管反应容器的低温区,并密封刚玉管,将高温区加热至温度1020℃、低温区加热至160℃,保温2.1h,氩气流速为32cm3/min,氧气流速为32cm3/min,从而得到了表面含有黑色沉积物的氧化铝片。

步骤2:首先将步骤1得到的表面含有黑色沉积物的氧化铝片固定于反应容器中间,然后将占水重量32%的乙酸镍、乙酸锰与水混合后置于反应容器内并密封,其中乙酸镍与乙酸锰的摩尔比为1:1,乙酸镍、乙酸锰和水总量占反应容器的填充度为32%,向反应容器中充入氧气后,将反应容器于温度360℃、保温39h,在氧化铝片表面得到了絮状黑色沉积物,制备出了厚度为30nm、整个纳米片的长度为800nm~3μm的镍酸锰纳米片。

实施例7

步骤1:首先将乙酸镍与乙酸锰混合均匀,其中乙酸镍与乙酸锰的摩尔比为1:1,然后将乙酸镍与乙酸锰的混合粉末置于刚玉管反应容器的高温区,将尺寸6×4cm的氧化铝片置于刚玉管反应容器的低温区,并密封刚玉管,将高温区加热至温度1050℃、低温区加热至180℃,保温2.4h,氩气流速为35cm3/min,氧气流速为35cm3/min,从而得到了表面含有黑色沉积物的氧化铝片。

步骤2:首先将步骤1得到的表面含有黑色沉积物的氧化铝片固定于反应容器中间,然后将占水重量35%的乙酸镍、乙酸锰与水混合后置于反应容器内并密封,其中乙酸镍与乙酸锰的摩尔比为1:1,乙酸镍、乙酸锰和水总量占反应容器的填充度为35%,向反应容器中充入氧气后,将反应容器于温度380℃、保温43h,在氧化铝片表面得到了絮状黑色沉积物,制备出了厚度为30nm、整个纳米片的长度为800nm~3μm的镍酸锰纳米片。

实施例8

步骤1:首先将乙酸镍与乙酸锰混合均匀,其中乙酸镍与乙酸锰的摩尔比为1:1,然后将乙酸镍与乙酸锰的混合粉末置于刚玉管反应容器的高温区,将尺寸6×4cm的氧化铝片置于刚玉管反应容器的低温区,并密封刚玉管,将高温区加热至温度1080℃、低温区加热至190℃,保温2.7h,氩气流速为38cm3/min,氧气流速为38cm3/min,从而得到了表面含有黑色沉积物的氧化铝片。

步骤2:首先将步骤1得到的表面含有黑色沉积物的氧化铝片固定于反应容器中间,然后将占水重量38%的乙酸镍、乙酸锰与水混合后置于反应容器内并密封,其中乙酸镍与乙酸锰的摩尔比为1:1,乙酸镍、乙酸锰和水总量占反应容器的填充度为38%,向反应容器中充入氧气后,将反应容器于温度390℃、保温46h,在氧化铝片表面得到了絮状黑色沉积物,制备出了厚度为30nm、整个纳米片的长度为800nm~3μm的镍酸锰纳米片。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1