高度取向纳米MAX相陶瓷和MAX相原位自生氧化物纳米复相陶瓷的制备方法与流程

文档序号:16583381发布日期:2019-01-14 18:10阅读:342来源:国知局
高度取向纳米MAX相陶瓷和MAX相原位自生氧化物纳米复相陶瓷的制备方法与流程

本发明涉及陶瓷材料领域,具体为一种高度取向纳米max相陶瓷和max相原位自生氧化物纳米复相陶瓷的制备方法。



背景技术:

max相陶瓷(如:ti3sic2、ti2alc、nb2alc等)是一类具有纳米三元层状结构和众多独特优异性质的可加工陶瓷,其晶体结构特征可描述为:在结晶密堆的m原子钟插入纯a原子层,x原子填入m组成的八面体间隙内。其中,m原子指代过渡族金属元素,a原子是一种a族元素,x原子可以是c和n元素。这种晶体结构的陶瓷同时具有共价键、金属键、离子键,所以兼具陶瓷和金属的性质。如:陶瓷材料的高熔点、抗氧化和抗腐蚀能力、金属的导电性、可加工性、损伤容抗、抗热冲击等性能,纳米陶瓷的耐辐射损伤性。

然而,作为结构陶瓷材料使用,max相陶瓷确存在着强度低于大部分致密的工程陶瓷,如:氧化陶瓷、氮化物陶瓷、碳化物陶瓷等。虽然max相陶瓷由于其具有纳米层状结构使其断裂韧性强于大部分陶瓷材料,然而这种层状结构仅限于晶粒内部,其晶粒取向由于反应合成中形核位点多且生长方向无明显取向性,导致宏观晶粒上无取向,断裂韧性无法大幅度提高。同时大部分max相陶瓷由于反应合成温度很高,反应合成的晶粒非常粗大。而且作为可以自蔓延燃烧合成的材料,反应合成中放出大量的热,导致反应不可控反应副产物多,晶粒大小控制非常困难,难以通过反应控制获得致密度高,力学及抗氧化性优良的纳米晶陶瓷。晶粒尺寸大后,max相陶瓷的力学强度也降低得很明显。

普通陶瓷韧性差,内部缺陷多强度偏低,而纳米粉体由于活性高,比表面大可以显著降低烧结温度,烧结后材料的致密度高,成分均匀性好,陶瓷的强度、韧性和超塑性相比普通陶瓷而言均大幅提高。因而,研发max相纳米陶瓷的技术对于提高max相陶瓷的性能和应用前景至关重要。纳米复相陶瓷由于引入分布于晶界的第二相颗粒,对裂纹有偏转、吸收、桥接等作用,有助于提高陶瓷材料的韧性以及高温强度。但是现有的纳米复相陶瓷主要通过添加外部的第二相颗粒强韧化,该方法制备的纳米复相陶瓷受第二相分散性不足及界面匹配和化学亲和性不好等因素影响,性能远远不及在纳米陶瓷基体上原位生长具有位相界面匹配的纳米二相颗粒强韧化陶瓷。



技术实现要素:

本发明的目的在于提供一种高度取向纳米max相陶瓷和max相原位自生氧化物纳米复相陶瓷的制备方法,解决现有的纳米复相陶瓷性能不及在纳米陶瓷基体上原位生长具有位相界面匹配的纳米二相颗粒强韧化陶瓷等问题。

本发明的技术方案是:

一种高度取向纳米max相陶瓷和max相原位自生氧化物纳米复相陶瓷的制备方法,具体如下:

(1)制备原料采用max相陶瓷的纳米片层粉体或纳米片层粉体构成的胚体,粉体或胚体中max相陶瓷的纳米片层颗粒物满足粒度在20~400纳米之间,氧含量在0.0001%~20%质量分数之间;

(2)原料经烧结后的得到陶瓷中max相晶粒为片层状或纺锤状,片层的具有高度取向性。

所述的高度取向纳米max相陶瓷和max相原位自生氧化物纳米复相陶瓷的制备方法,纳米max相陶瓷呈砖块有序堆砌分布和max相氧化物分布在纳米max相陶瓷晶粒的晶界处,max相晶粒尺寸20~400纳米。

所述的高度取向纳米max相陶瓷和max相原位自生氧化物纳米复相陶瓷的制备方法,按质量百分比计,纳米max相陶瓷和max相氧化物纳米复相陶瓷中,纳米max相氧化物含量为0.0002%~40%,其余为纳米max相陶瓷。

所述的高度取向纳米max相陶瓷和max相原位自生氧化物纳米复相陶瓷的制备方法,烧结方法直接采用纳米粉体或胚体加压烧结,或者烧结方法直接采用纳米粉体或胚体预压成型而后无压烧结。

所述的高度取向纳米max相陶瓷和max相原位自生氧化物纳米复相陶瓷的制备方法,直接采用纳米粉体或胚体加压烧结的方法,采用热压烧结法、热等静压烧结法或放电等离子烧结法,其中:

(1)热压烧结法

直接将纳米片层粉体或胚体装入石墨模具,在石墨模具中热压烧结,烧结温度500~2000℃,烧结压力1~200mpa,保温时间10~3600分钟,升温速率1~100℃/分钟,烧结在真空或氩气气氛下进行;

(2)热等静压烧结法

直接将纳米片层粉体或胚体装入热等静压包套中,然后将包套抽真空并密封;在包套中热等静压烧结,烧结温度500~2000℃,烧结压力1~800mpa,保温时间10~3600分钟,升温速率1~100℃/分钟,烧结在真空或氩气气氛下进行;

(3)放电等离子烧结法

直接将纳米片层粉体或胚体装入烧结模具中,在施加大的脉冲电流烧结,烧结温度300~1800℃,烧结压力1~400mpa,保温时间5~600分钟,升温速率1~500℃/分钟,烧结在真空或氩气气氛下进行。

所述的高度取向纳米max相陶瓷和max相原位自生氧化物纳米复相陶瓷的制备方法,直接采用纳米粉体或胚体预压成型而后无压烧结的方法采用如下之一项:

(1)将纳米粉体或胚体装入压制模具中,对模具施加压力使其致密化,施加压力5~1000mpa,而后将获得的粉体压制产物进行无压烧结;

(2)将纳米粉体或胚体装入冷等静压包套中,然后将包套抽真空并密封,在包套中冷等静压致密化,冷等静压温度0~600℃,冷等静压压力1~800mpa,保压时间10~3600分钟,升温速率1~100℃/分钟,而后将粉体压制产物从包套中取出进行无压烧结;

(3)将纳米粉体或胚体装入包套中或者用胚体进行轧制,轧制压力10~1000mpa,轧制温度0~600℃,而后将获得的max相陶瓷的纳米片层粉体或胚体轧制成型产物进行无压烧结;

(4)对获得的预压成型max相陶瓷的纳米片层产物进行无压烧结,烧结方法是将粉末装入承受烧结温度的容器中,并将容器抽真空或者通入保护性气体,或者直接将粉末放入抽真空或者通入保护性气体的可进行无压烧结的炉体内进行。

所述的高度取向纳米max相陶瓷和max相原位自生氧化物纳米复相陶瓷的制备方法,烧结用的设备是马弗炉、感应加热炉、微波加热炉、红外加热炉,烧结温度300~2000℃,烧结时间10~9600分钟。

所述的高度取向纳米max相陶瓷和max相原位自生氧化物纳米复相陶瓷的制备方法,制备取向max相/氧化物纳米复相陶瓷时,max相/氧化物纳米复相陶瓷中氧化物的含量,由用于制备上述陶瓷的max相陶瓷的纳米片层粉体或胚体氧含量调控,获得的晶粒大小由纳米片层颗粒物粒度以及粉体烧结参数调控,获得的陶瓷取向性程度由加压方式和烧结方式的不同组合和参数共同调控。

本发明的设计思想是:

本发明简单制备高度取向纳米max相陶瓷和max相原位自生氧化物纳米复相陶瓷的方法,利用纳米片层状max粉体的特殊性质,在加压变形发生取向的,获得类似天然珍珠外壳中的层状结构,这种结构就如同建筑物所使用的砖块一样,具有很高的承力能力,以及对外部载荷和裂纹扩展的抗力。同时,烧结过程中无剧烈放热反应发生,纳米max相陶瓷不会发生明显的长大现象,保留纳米陶瓷的特性。

本发明通过使用表面吸氧调节过的max相陶瓷的纳米片层粉体,能在烧结时在纳米max相陶瓷的基体里原位生长出细小弥散分布,化学亲和性极高,含量精确可调控的纳米max相/氧化物复相陶瓷,该类陶瓷具有极优异的室温及高温力学性能。本发明含量精确可调控意味着针对材料不同的使役环境,可以对材料的性能进行优化设计满足不同需求,有效利用材料的优点,提高使役适应性。

本发明具有以下优点及有益效果:

(1)本发明工艺路线及制备方法简单,易于批量化大规模连续制备。基于相同的原理和原料可实现的技术路线广泛,技术适应性和可移植性好。

(2)本发明方法对所有max相体系均适应,能制备所有max相种类的取向性陶瓷、纳米陶瓷、纳米复相陶瓷。

(3)本发明制备的陶瓷力学性能高,这种纳米片层的取向结构导致陶瓷的力学性能大幅提升。

(4)本发明通过选择的表面完全无氧和高度吸氧的max相陶瓷的纳米片层粉体能分布制备出纯高度取向纳米max相陶瓷和max相氧化物纳米复相陶瓷。

(5)本发明能通过氧含量调节纳米复相陶瓷中氧化物含量,进而调控力学性能,实现力学性能可设计。

附图说明

图1为对最终烧结的试样受压面进行电子背散射衍射表征(ebsd)获得的极图。其中,(a)为ti2alc/al2o3纳米复相陶瓷中ti2alc相晶体中的001晶面在衍射投影面的极图,(b)为ti2alc/al2o3纳米复相陶瓷中ti2alc相晶体的11-20晶面在衍射投影面的极图,(c)为ti2alc/al2o3纳米复相陶瓷中ti2alc相晶体的10-10晶面在衍射投影面的极图。

图2为对最终烧结的试样垂直受压面进行电子背散射衍射表征获得的组织图片。

图3为最终烧结的试样平行受压面和垂直受压面x射线晶体衍射数据。图中,横坐标2theta代表衍射角(deg.),纵坐标intensity代表强度;1-verticalsurface代表垂直受压面,2-parallelsurface代表平行受压面。

图4为对最终烧结的试样受压面进行电子背散射衍射表征(ebsd)获得的极图。其中,(a)为ti3alc2/al2o3纳米复相陶瓷中ti3alc2相晶体的001晶面在衍射投影面的极图,(b)为ti3alc2/al2o3纳米复相陶瓷中ti3alc2相晶体的11-20晶面在衍射投影面的极图,(c)为ti3alc2/al2o3纳米复相陶瓷中ti3alc2相晶体的10-10晶面在衍射投影面的极图。

图5为对最终烧结的试样垂直受压面进行电子背散射衍射表征获得的组织图片。

具体实施方式

在具体实施过程中,本发明高度取向纳米max相陶瓷和max相原位自生氧化物纳米复相陶瓷的制备方法如下:

(1)制备原料采用max相陶瓷的纳米片层粉体或纳米片层粉体构成的胚体,粉体或胚体中max相陶瓷的纳米片层颗粒物满足粒度在20~400纳米之间(优选为100~200纳米),氧含量在0.0001%~20%质量分数之间(优选为0.02%~10%)。

(2)烧结后的得到陶瓷中max相晶粒为片层状或纺锤状,片层的具有高度取向性。

(3)制备方法可以直接采用纳米粉体或胚体加压烧结法。例如:采用热压烧结法,直接将纳米片层粉体或胚体装入石墨模具,在石墨模具中热压烧结,烧结温度500~2000℃,烧结压力1~200mpa,保温时间10~3600分钟,升温速率1~100℃/分钟,烧结可以是真空或氩气等其他气氛下进行。采用热等静压烧结法,直接将纳米片层粉体或胚体装入热等静压包套中,然后将包套抽真空并密封。在包套中热等静压烧结,烧结温度500~2000℃,烧结压力1~800mpa,保温时间10~3600分钟,升温速率1~100℃/分钟,烧结可以是真空或氩气等其他气氛下进行。采用放电等离子烧结,直接将纳米片层粉体或胚体装入烧结模具中,在施加大的脉冲电流烧结,烧结温度300~1800℃,烧结压力1~400mpa,保温时间5~600分钟,升温速率1~500℃/分钟,烧结可以是真空或氩气等其他气氛下进行。纳米粉体或胚体压力烧结方式并不仅限于以上列举的方式,任何可以对粉末施加外来作用,使之产生变形并同时烧结的加压烧结方法,都在本发明的保护范围内。

(4)制备方法可以直接采用纳米粉体或胚体预压成型而后无压烧结法。例如:将纳米粉体或胚体装入压制模具中,对模具施加压力使其致密化,施加压力5~1000mpa,而后将获得的粉体压制产物进行无压烧结。还可以将纳米粉体或胚体装入冷等静压包套中,然后将包套抽真空并密封,在包套中冷等静压致密化,冷等静压温度0~600℃,冷等静压压力1~800mpa,保压时间10~3600分钟,升温速率1~100℃/分钟。而后将粉体压制产物从包套中取出进行无压烧结。还可以将纳米粉体或胚体装入包套中或者用胚体进行轧制,轧制压力10~1000mpa,轧制温度0~600℃,而后将获得的max相陶瓷的纳米片层粉体或胚体轧制成型产物进行无压烧结。纳米粉体或胚体预压成型并不仅限于以上列举的方式,任何可以对粉末施加外来作用使之产生变形的加压方法,都在本发明的保护范围内。对获得的预压成型max相陶瓷的纳米片层产物进行无压烧结,烧结方法可以是将粉末装入可以承受烧结温度的容器中,并将容器抽真空或者通入保护性气体(如:氩气),也可以直接将粉末放入抽真空或者通入保护性气体(如:氩气)的可进行无压烧结的炉体内进行。烧结设备可以是马弗炉、感应加热炉、微波加热炉、红外加热炉等任何可对样品进行加热使其烧结致密化的设备。烧结温度300~2000℃,烧结时间10~9600分钟。纳米粉体预压成型产物无压烧结方式并不仅限于以上列举的方式,任何可以对粉末施加温度场的烧结方式,都在本发明的保护范围内。

(5)上述方法制备取向纳米max相陶瓷和max相/氧化物纳米复相陶瓷时,具体是纳米max相陶瓷还是max相/氧化物纳米复相陶瓷,以及max相/氧化物纳米复相陶瓷中氧化物的含量,由用于制备上述陶瓷的max相陶瓷的纳米片层粉体或胚体氧含量调控,获得的晶粒大小由纳米片层颗粒物粒度以及粉体烧结参数调控,获得的陶瓷取向性程度由所述方法中加压方式和烧结方式的不同组合和参数共同调控。

下面,通过实施例和附图对本发明进一步详细阐述。

实施例1

本实施例中,高度取向纳米max相陶瓷和max相原位自生氧化物纳米复相陶瓷的制备方法如下:

称取200克品名为ti2alc的纳米max相陶瓷片层粉体,粉体粒度为180纳米,粉体含氧量质量分数8%。直接将纳米片层粉体装入石墨模具,采用热压烧结法,在石墨模具中热压烧结,烧结温度1250℃,烧结压力50mpa,保温时间60分钟,升温速率5℃/分钟,烧结气氛为真空。烧结结束后获得ti2alc/al2o3纳米复相陶瓷,氧化铝含量占材料12%质量分数。材料压缩强度达2200mpa,远高于普通ti2alc的400~1000mpa强度,断裂韧性8~9mpa.m1/2,远高于普通ti2alc的5~6mpa.m1/2断裂韧性值,其高温性能:1000℃压缩强度达400mpa。

如图1所示,对最终烧结的试样受压面进行电子背散射衍射表征(ebsd)获得的极图,由该图可知该面ti2ac相的001晶面方向几乎完全集中在投影面中心位置,11-20面晶面方向和10-10晶面方向几乎完全平行于投影面,显示出材料的取向性。

如图2所示,对最终烧结的试样垂直受压面进行电子背散射衍射表征获得的组织图片,由图片可知材料组织和晶粒具有明显的取向性。

如图3所示,最终烧结的试样平行受压面和垂直受压面x射线晶体衍射数据,从图中可知平行受压面ti2ac相主要晶面是(002)和(006)等(00l)晶面,垂直受压面ti2ac相的晶面(00l)晶面峰位基本消失,主要晶面是(101)、(110)、(103)等(10l)晶面,显示出材料不同方向明显的取向性。

本实施例中,原料经烧结后的得到陶瓷中max相晶粒为片层状或纺锤状,纳米max相陶瓷呈砖块有序堆砌分布和max相氧化物分布在纳米max相陶瓷晶粒的晶界处,max相晶粒尺寸为厚度50~300纳米,宽度0.5~3微米。

实施例2

本实施例中,高度取向纳米max相陶瓷和max相原位自生氧化物纳米复相陶瓷的制备方法如下:

称取500克品名为ti3alc2的纳米max相陶瓷片层粉体,粉体粒度为200纳米,粉体含氧量质量分数5%。直接将纳米片层粉体装入不锈钢包套,对包套进行抽真空和密封。将密封的包套放入采用热等静压炉内烧结,烧结温度1100℃,烧结压力200mpa,保温时间120分钟,升温速率5℃/分钟,烧结气氛为氩气。烧结结束后获得ti3alc2/al2o3纳米复相陶瓷,氧化铝含量占材料8%质量分数,材料压缩强度达1800mpa,断裂韧性14~17mpa.m1/2,远高于普通ti3alc2的7~8mpa.m1/2断裂韧性值,其高温性能:1000℃压缩强度达350mpa。

如图4所示,对最终烧结的试样受压面进行电子背散射衍射表征(ebsd)获得的极图,由该图可知该面ti3alc2相001晶面方向几乎完全集中在投影面中心位置,11-20面晶面方向和10-10晶面方向几乎完全平行于投影面,显示出材料的取向性。

本实施例中,原料经烧结后的得到陶瓷中max相晶粒为片层状或纺锤状,纳米max相陶瓷呈砖块有序堆砌分布和max相氧化物分布在纳米max相陶瓷晶粒的晶界处,max相晶粒尺寸为厚度100~400纳米,宽度1~10微米。

如图5所示,对最终烧结的试样垂直受压面进行电子背散射衍射表征获得的组织图片,由图片可知材料组织和晶粒具有明显的取向性,同时材料的片层组织发育非常明显和完整。

实施例3

本实施例中,高度取向纳米max相陶瓷和max相原位自生氧化物纳米复相陶瓷的制备方法如下:

称取1千克品名为ti3sic2的纳米max相陶瓷片层粉体,粉体含氧量质量分数6%,粉体粒度为80纳米。将纳米粉体装入铝合金冷等静压包套中,然后将包套抽真空并密封,在包套中冷等静压致密化,冷等静压温度400℃,冷等静压压力250mpa,保压时间360分钟,升温速率5℃/分钟。而后将粉体压制产物从包套中取出。将压好胚体放入氧化铝坩埚中并送入真空炉中烧结,烧结温度1300℃,烧结时间180分钟。烧结结束后获得ti3alc2/sio2纳米复相陶瓷,二氧化硅含量占材料10%质量分数,材料压缩强度达1900mpa,断裂韧性12~15mpa.m1/2,远高于普通ti3sic2的7~8mpa.m1/2断裂韧性值,其高温性能:1000℃压缩强度达320mpa。

本实施例中,原料经烧结后的得到陶瓷中max相晶粒为片层状或纺锤状,纳米max相陶瓷呈砖块有序堆砌分布和max相氧化物分布在纳米max相陶瓷晶粒的晶界处,max相晶粒尺寸为厚度100~400纳米,宽度1~10微米。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1