一种含纳米氧化钛净化甲醛用滤芯的制备方法与流程

文档序号:17086567发布日期:2019-03-13 22:54阅读:184来源:国知局

本申请涉及一种含纳米氧化钛的净化甲醛用滤芯,具体涉及一种利用管式光催化降解甲醛的陶瓷膜滤芯。



背景技术:

甲醛为较高毒性的物质,在中国有毒化学品优先控制名单上甲醛高居第二位。甲醛已经被世界卫生组织确定为致癌和致畸形物质,是公认的变态反应源,也是潜在的强致突变物之一。研究表明,甲醛具有强烈的致癌和促癌作用。甲醛对人体健康的影响主要表现在嗅觉异常、刺激、过敏、肺功能异常、肝功能异常和免疫功能异常等方面。

目前,对甲醛气体的脱主要采用开窗通风法、吸附法、空气负离子技术和光催化方法,其中

吸附法最被常用,常用的吸附剂主要有活性炭、活性炭纤维、分子筛、多孔粘土矿石、硅胶等,该法的优点是方法简单、成本低,易推广;缺点会受到吸附剂容量的限制,且吸附剂对甲醛只吸附不消除,在高温环境下效果差且会造成二次污染。光催化氧化技术是目前公认的最理想的去除甲醛的方法。它是利用催化剂催化甲醛和氧气反应生成无毒的二氧化碳和水的过程。该技术消除甲醛的效率高、相对成本低、无二次污染、不存在吸附饱和等问题,对低浓度甲醛污染的处理效果更为显著,是目前治理室内甲醛污染的研究热点。但是光催化技术存在问题是光催化效果比较低,而且现有技术中常采用的负载型催化剂容易出现催化剂流失等问题。



技术实现要素:

本发明针对现有技术中存在的问题,提出了一种以兼并有吸附法和光催化法优点的净化甲醛用滤芯以催化降解甲醛,所述净化甲醛用滤芯采用下列方法制备,该方法包括以下步骤:一种含纳米氧化钛净化甲醛用滤芯的制备方法,其特征在于包括以下步骤:

(1)将亚微米级氧化铝粉体、纳米级二氧化钛粉体按照质量比为100:5~30的比例进行混合后,经练泥-挤压成型-干燥-焙烧后获得管式载体;

(2)将步骤(1)制备的管式载体经浸泡、酸洗、碱洗、清水洗、干燥处理,将管式载体两端与循环流动的高温合成液连接以使高温合成液间歇通过所述管式载体,所述的合成液为制备介孔分子筛颗粒的合成液;

(3)将步骤(2)处理过的管式载体浸入硝酸银溶液中,旋转加热蒸发至硝酸盐溶液完全挥发,并进一步水洗、干燥后置于马弗炉中高温焙烧从而获得含纳米氧化钛的净化甲醛用滤芯。

优选的,所述的介孔分子筛颗粒为全硅的mcm-41、sap0-34、sba-16分子筛。

优选的,所述的介孔分子筛为mcm-41。

优选的,合成液的成分为合成液的成分为1sio2:0.05~0.2十六烷基三甲基溴化铵(ctab):0.1~0.3na2o:200~500h2o。

优选的,所述的间歇通过是合成液通过管式载体的时间与间歇时间比例为1:1~2。

优选的,晶化温度为80-100℃,晶化时间(该晶化时间包括合成液通过时间与间歇时间)为4-6h。

优选的,步骤(3)中硝酸盐的浓度为0.05-0.2mol/l。

优选的,于步骤(3)中马弗炉的焙烧条件为400-600℃下保持2-6h,升降温速度将为1℃/min。

优选的,氧化钛为红宝石型。

本发明具有以下技术效果:

1.本发明采用亚微米氧化铝和具有光催化功能的纳米级氧化钛制备成陶瓷膜,克服了负载型纳米氧化钛容易流失的问题,该陶瓷膜在高温下性质稳定,且当采用300-800nm尺寸的氧化铝和20-50nm的氧化钛、且以100:5-30的比例制备陶瓷膜可以保证陶瓷膜的的制备合格率,避免焙烧过程中陶瓷膜裂缝的产生。

2.其次,本发明将合成液间歇的通过管式载体以水热晶化制备分子筛颗粒颗粒以作为吸附剂辅助光催化,并创造性的利用间歇流动法晶化分子筛颗粒以保证陶瓷膜中晶化分子筛颗粒疏松,不交联成膜,并对合成液的组成、晶化条件等参数及方式进行优化以保证沸石颗粒间的疏松度。而且,即使在陶瓷膜制备中偶尔出现膜层裂缝的情况,合成液也会渗透到裂缝中形成分子筛以对裂缝进行修补。

3.另外,在具有强结合力的沸石和氧化钛上继续负载一层纳米银颗粒,使其与氧化钛相互协同降解空气中的甲醛,显著提高了陶瓷膜的光催化降解甲醛的性能。

具体实施方式

实施例1

(1)陶瓷膜的制备

将平均粒径500nm的α-氧化铝粉体、平均粒径40nm的红宝石型二氧化钛粉体按照质量比为100:10的比例进行混合后,经练泥-挤压成型-干燥制备成陶瓷膜坯体,并在950℃焙烧3h,自然冷却。

(2)制备合成液

按照1sio2:0.2十六烷基三甲基溴化铵(ctab):0.3na2o:500h2o的质量比例,依次称取一定量的ctab、去离子水在60℃下超声10min,搅拌至形成澄清溶液,再逐滴加入na0h和硅溶胶的混台溶胶,继续搅拌2h后形成合成液。

(3)沸石填充

将步骤(1)制备的管式载体经浸泡、酸洗、碱洗、清水洗、干燥处理,将陶瓷膜装入特制的合成釜中,并将陶瓷膜两端与循环流动的高温合成液连接以使高温合成液间歇的通过陶瓷膜,将混合液转入专用的反应罐中,具体间歇通过是合成液通过1min、停止2min,在90℃温度下静态晶化4h,取出陶瓷膜,用去离子水洗涤、浸泡后再60℃烘箱内烘干。

(4)涂敷银颗粒

将晶化分子筛颗粒的陶瓷膜浸入0.1mol/l硝酸银溶液中,旋转加热蒸发至硝酸盐溶液完全挥发,并进一步水洗、干燥后置于550℃马弗炉中高温焙烧从而获得净化甲醛用滤芯。

对比例1

(1)陶瓷膜的制备

将平均粒径500nm的α-氧化铝粉体经练泥-挤压成型-干燥制备成陶瓷膜坯体,并在950℃焙烧3h,自然冷却。将纳米二氧化钛和粘结剂置于去离子水中形成悬浮液,采用喷涂法将氧化钛悬浮液喷涂再陶瓷上,喷涂后置于烘箱中干燥。喷涂、干燥两次后室温干燥形成负载纳米氧化钛的陶瓷膜。

(2)制备合成液

按照1sio2:0.2十六烷基三甲基溴化铵(ctab):0.3na2o:500h2o的质量比例,依次称取一定量的ctab、去离子水在60℃下超声10min,搅拌至形成澄清溶液,再逐滴加入na0h和硅溶胶的混台溶胶,继续搅拌2h后形成合成液。

(3)沸石填充

将步骤(1)制备的管式载体经浸泡、酸洗、碱洗、清水洗、干燥处理,将陶瓷膜装入特制的合成釜中,并将陶瓷膜两端与循环流动的高温合成液连接以使高温合成液间歇的通过陶瓷膜,将混合液转入专用的反应罐中,具体间歇通过是合成液通过1min、停止2min,在90℃温度下静态晶化4h,取出陶瓷膜,用去离子水洗涤、浸泡后再60℃烘箱内烘干。

(4)涂敷银颗粒

将晶化分子筛颗粒的陶瓷膜浸入0.1mol/l硝酸银溶液中,旋转加热蒸发至硝酸盐溶液完全挥发,并进一步水洗、干燥后置于550℃马弗炉中高温焙烧从而获得净化甲醛用滤芯。

对比例2

(1)陶瓷膜的制备

将平均粒径500nm的α-氧化铝粉体、平均粒径40nm的红宝石型二氧化钛粉体按照质量比为100:10的比例进行混合后,经练泥-挤压成型-干燥制备成陶瓷膜坯体,并在950℃焙烧3h,自然冷却。

(2)涂敷银颗粒

将晶化分子筛颗粒的陶瓷膜浸入0.1mol/l硝酸银溶液中,旋转加热蒸发至硝酸盐溶液完全挥发,并进一步水洗、干燥后置于550℃马弗炉中高温焙烧从而获得滤芯。

对比例3

(1)陶瓷膜的制备

将平均粒径500nm的α-氧化铝粉体、平均粒径40nm的红宝石型二氧化钛粉体按照质量比为100:10的比例进行混合后,经练泥-挤压成型-干燥制备成陶瓷膜坯体,并在950℃焙烧3h,自然冷却。

(2)制备合成液

按照1sio2:0.2十六烷基三甲基溴化铵(ctab):0.3na2o:500h2o的质量比例,依次称取一定量的ctab、去离子水在60℃下超声10min,搅拌至形成澄清溶液,再逐滴加入na0h和硅溶胶的混台溶胶,继续搅拌2h后形成合成液。

(3)沸石填充

将步骤(1)制备的管式载体经浸泡、酸洗、碱洗、清水洗、干燥处理,将陶瓷膜装入特制的合成釜中,并将陶瓷膜两端与循环流动的高温合成液连接以使高温合成液间歇的通过陶瓷膜,将混合液转入专用的反应罐中,具体间歇通过是合成液通过1min、停止2min,在90℃温度下静态晶化4h,取出陶瓷膜,用去离子水洗涤、浸泡后再60℃烘箱内烘干从而获得滤芯。

将实施例1和对比例1-3上制备的滤芯装入前置有吸风机的空气净化器中,并置于浓度为1.0mg/m的甲醛测试反应器中,采用紫外照射2h,用气相色谱法测定反应室中甲醛浓度。取出上述空气净化器,继续置于同样的甲醛测试反应器中,重复5次,并测定每次测试结束后反应器中甲醛浓度,并计算甲醛净化率,结果如表1所示。由该表结果可见,虽然在陶瓷膜载体表面负载纳米氧化钛在第一次测试结果中净化率稍高于本发明,但是随着操作次数的增多,其净化率明显下降,而本发明的净化率没有明显下降。其次,相对于没有沸石填充的滤芯、没有银协同作用的滤芯,本发明所制备的滤芯净化率明显高很多,证明了本发明在甲醛降解方面的功效。

以上所述仅为本发明创造的较佳实施例而已,并不用以限制本发明创造,凡在本发明创造的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明创造的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1