一种多孔氮化铌粉体微波吸收材料的制备方法与流程

文档序号:20937199发布日期:2020-06-02 19:24阅读:404来源:国知局
一种多孔氮化铌粉体微波吸收材料的制备方法与流程

本发明属于材料科学技术领域,尤其涉及一种多孔氮化铌粉体微波吸收材料的制备方法。



背景技术:

随着各种新型雷达、先进探测器及精确制导武器的发展,现代战争对武器系统隐身技术要求不断提高,严苛的工作条件要求电磁波吸收隐身材料同时满足“厚度薄、密度低、频段宽、吸收强、频谱波段多、稳定性高”等性能指标。目前常见的吸波材料有铁氧体、碳化硅和碳纤维等,但是,由于其存在密度较大、稳定性较差、吸收频带偏窄或匹配厚度大等缺点,难以满足复杂多变环境对吸波材料的新要求。因此,研发出具有优异吸波特性和综合性能的吸波材料对发展雷达隐身材料技术、保障武器装备生存和防御能力具有重要的科学意义和军事应用前景。氮化铌具有nb2n、nb4n5、nbn等多种物相,不仅具有熔点高、硬度大、化学稳定性高和耐腐蚀性好等优点,还具有过渡金属氮化物所特有类于金属性质的电学和磁学性能,因此,引起人们的极大关注,被广泛的应用于微电子器件、刀具保护涂层、装饰涂层以及机械制造等诸多工业领域,然而其在微波吸收领域的应用尚未见报道。

最新研究发现,氧化铌和碳化铌材料具有一定的微波吸收特性。例如,d.p.gurgel等利用粉末冶金法制备了mo掺杂的nb2o5粉体,其在0.3至3ghz波段表现出较好的吸波特性。(developmentofamicrowaveabsorbingmaterialbasedonmolybdenum-dopedniobiumpentoxide[j].ceramica,2019,65:7-11.)鉴于碳化铌局域化电子结构赋予其德拜偶极弛豫介电效应特性,nianduwu等制备出核壳结构ni@c-c-nbc复合材料,由于nbc的引入使得其介电损耗增强和电磁匹配改善而具有良好的吸波性能。(transformbetweenthepermeabilityandpermittivityinni@c-c-nbcnanocompositeswithenhancedmicrowaveabsorptionproperties[j].journalofalloysandcompounds,2016,685:50-57.)zhaoyongjin等采用溶剂热法制备了一种新型的mxene相材料nb2ctx纳米片,得益于其自身独特的层状结构而产生的多重损耗、界面反射和多层反射,这种nb2ctx纳米片展现了极好的电磁波吸收性能。(ultra-efficientelectromagneticwaveabsorptionwithethanol-thermallytreatedtwo-dimensionalnb2ctxnanosheets[j].journalofcolloidandinterfacescience,2019,537:306-315.)此外,2011年,山东大学liurui等鉴于碳化钛具有微波吸收特性,依据氮化钛与碳化钛具有类似晶体结构推测出氮化钛也应具有吸波性能,并通过实验证实了该推测。(microwaveabsorptionpropertiesoftinnanoparticles[j].journalofalloysandcompounds,2011,509:10032-10035)相比之下,氮化铌具有与氮化钛、碳化铌等新型微波吸收剂相似的晶体结构,因此,氮化铌具有作为微波吸波剂的组成、结构特质,并兼具耐高温、耐腐蚀等优点,有望成为吸波候选材料。

研究发现,比表面积高的多孔材料不仅密度较低,而且其拥有的孔隙和界面可提高材料的阻抗配匹配度和介电损耗,实现电磁波的散射和多重反射增强衰减特性,可以提高材料的电磁波吸收特性。例如,t.zhang等采用有机聚合裂解技术制备出b0.23n0.19c0.58中空微球,这种中空结构使得该材料具有较低的密度和优异的吸波特性。(monodispersedboroncarbonitridehollowsphereswithhigh-performancemicrowaveabsorptionproperty[j].materialsresearchbulletin,2016,74:177-181.)rehman等通过溶剂热结合热蚀刻技术合成出多孔海星形状c/conio2异质结构纤维,由于局域电子极化和界面效应而显示出较强的电磁衰减和反射损失特性。(starfish-likec/conio2heterostructurederivedfromzif-67withtunablemicrowaveabsorptionproperties[j].chemicalengineeringjournal,2019,373:122-130.)li等通过水热及后续碳化处理成功制备了红毛丹状c@nico2o4材料,其独特的多孔红毛丹状结构赋予该材料优异的微波衰减能力。(therambutan-likec@nico2o4compositesforenhancedmicrowaveabsorptionperformance[j].materialsinelectronics,2019,30:3124-3136.)cui等通过溶剂热法构建出batio3/c核壳结构多孔微球,由于多孔核-壳结构协同作用介电损耗加强而具有良好的微波衰减和良好匹配的阻抗,显示出优异的微波吸收性能。(space-confinedsynthesisofcore-shellbatio3@carbonmicrospheresasahigh-performancebinarydielectricsystemformicrowaveabsorption[j].acsappl.mater.interfaces,doi:10.1021/acsami.9b09779.)

目前,氮化铌粉体的制备方法有多种。例如,李耀刚等以沉淀法制备的高比表面积无定形nb2o5为原料,采用氨解法在600~800℃下还原氮化3~8h制备得到了粒径为15~40nm的立方相nbn纳米粉体。(氨解法制备立方相氮化铌纳米粉体[j].东华大学学报(自然科学版),2005,31(1):1-5.)gomathi等以nbcl5与尿素为原料在氨气气氛下经900℃加热氮化获得nbn纳米颗粒(nanostructuresofthebinarynitrides,bn,tin,andnbn,preparedbytheurea-route[j].materialsresearchbulletin,2006,41(5):941-947.)。张威峰等通过液相还原反应制备得到直径为20~50nm的纳米立方相氮化铌粉末。(液相还原制备纳米nbn粉末[c]//冶金工程科学论坛.2006.)然而,采用上述方法制备的氮化铌粉体多为实心结构,孔结构不够丰富且粉体密度较大,难以满足吸波材料轻质高效的需求。

目前,将氮化铌粉体制备成多孔结构并应用于微波吸收领域的研究至今尚未见报道。为此,探索一种工艺简单且便于调控孔结构的多孔氮化铌粉体制备方法,同时通过调控多孔结构提高材料吸波性能,使其满足现代军事科技对吸波领域的新要求,具有重要理论价值和实际意义。



技术实现要素:

为了解决上述技术问题,本发明提供一种多孔氮化铌粉体微波吸收材料的制备方法,拓展多孔氮化铌粉体在微波吸收领域的应用。

为达上述目的,本发明采用如下的技术方案:

一种多孔氮化铌粉体微波吸收材料的制备方法,包括如下步骤:

(1)以五氯化铌为铌源、无水乙醇为氧供体、二氯甲烷为溶剂按一定的质量比配制成混合溶液,外加聚氧乙烯-聚氧丙烯-聚氧乙烯为造孔剂调节粉体多孔结构;

(2)将混合溶液移入到反应容弹内,在烘箱中加热引发溶胶-凝胶反应,将反应后溶液清洗干燥后获得氧化铌干凝胶;

(3)将氧化铌干凝胶在一定温度下预烧获得氧化铌粉体;

(4)将氧化铌粉体和结构稳定剂氰胺按一定质量比混合在无水乙醇中得到混合粉体,干燥后放入管式气氛炉内在氨气气氛下经还原氮化反应制备出五氮化四铌粉体。

进一步的,所述步骤(1)中混合溶液的组成为:五氯化铌的质量百分比为1%~5%,无水乙醇的质量百分比为1~5%,二氯甲烷的质量百分比为90%~98%。

进一步的,所述步骤(1)中造孔剂聚氧乙烯-聚氧丙烯-聚氧乙烯的用量为0.1~1wt%。

进一步的,所述步骤(2)中所述混合溶液溶胶-凝胶反应温度为80~150℃,反应时间为12~48h。

进一步的,所述步骤(3)中氧化铌粉体预烧温度为300~600℃,预烧时间为0.2~2h。

进一步的,所述步骤(4)中混合粉体的组成为:氧化铌粉体的质量百分比为70%~90%,氰胺的质量百分比为10~30%。

进一步的,所述步骤(4)中五氮化四铌粉体还原氮化工艺为:还原氮化温度为600~1000℃,升温速度为1~10℃/min,保温时间0.5~5h,氨气流量为200~1500ml/min。

与现有技术相比,本发明具有如下有益效果:

本发明通过溶胶-凝胶结合还原氮化法制备氮化铌粉体具有如下特征:合成粉体结晶性良好、纯度高、物相为nb4n5,颗粒尺寸分布均匀,并具有丰富的多孔结构,且孔径尺寸及数量可以通过简单的改变造孔剂用量加以调整,同时具有优异的微波吸收特性。本发明制备的氮化铌粉体可为微波吸收领域提供一种新材料。

附图说明

图1为实施例1中制备的多孔nb4n5粉体的xrd图。

图2为实施例1中制备的多孔nb4n5粉体的sem图。

图3为实施例1中制备的多孔nb4n5粉体的n2吸附脱附等温线。

图4为实施例1中制备的多孔nb4n5粉体的bjh孔径分布曲线图。

图5为实施例1中制备的多孔nb4n5粉体不同厚度下的rl计算值。

具体实施方式

实施例1

称取1.35g五氯化铌加入1.5ml无水乙醇和0.2gp123,再加入30ml二氯甲烷获得混合溶液,将混合溶液移入反应容弹内,在110℃烘箱中保温38h。取出样品后用二氯甲烷洗涤3次,之后静置30min,倒掉上清液,在80℃干燥箱中干燥24h获得氧化铌干凝胶,将氧化铌干凝胶在400℃下进行预烧,升温速率1℃/min,保温30min,得到氧化铌粉体。称取8g氧化铌粉体和1.7g氰胺置于10ml无水乙醇中搅拌均匀,再在80℃干燥箱中保温24h,将干燥后混合粉体在流动的氨气中,于800℃还原氮化2h得到多孔氮化铌粉体。氮化过程中,温度升高至300℃时通入400ml/min的氨气,升至500℃时通入800ml/min的氨气;当炉温降至500℃时将氨气流量调回至400ml/min,温度降至300℃时换为80ml/min的氮气,当温度降到室温时停止通入氮气,关闭管式炉取出样品,其中,尾气吸收处理液为水与冰乙酸的混合溶液,即可制得多孔氮化铌粉体。对该粉体进行xrd和sem检测,结果分别如图1和图2所示,由图1和图2可知所得粉体物相纯度高,为nb4n5,颗粒分布均匀,直径约2~3μm。对该粉体进行氮气等温吸脱附测试,结果如图3所示,由图3可知其比表面积为39m2/g。利用bjh法对该粉体孔径分布进行分析,结果如图4所示,可知其具有多孔结构,平均孔径约为15nm。对该粉体进行吸波材料反射损耗的测试,结果如图5所示,当吸波层厚度为6.5mm时,在16.8ghz处最佳反射损耗为-32db。

实施例2

称取1.5g五氯化铌加入1.2ml无水乙醇和0.3gp123,再加入30ml二氯甲烷获得混合溶液,将混合溶液移入反应容弹内,在100℃烘箱中保温42h。取出样品后用二氯甲烷洗涤3次,之后静置30min,倒掉上清液,在80℃干燥箱中干燥24h获得氧化铌干凝胶,将氧化铌干凝胶在400℃下进行预烧,升温速率1℃/min,保温30min,得到氧化铌粉体。称取8g氧化铌粉体和2g氰胺置于10ml无水乙醇中搅拌均匀,再在80℃干燥箱中保温24h,将干燥后混合粉体在流动的氨气中,于900℃还原氮化2h得到多孔氮化铌粉体。氮化过程中,温度升高至300℃时通入400ml/min的氨气,升至500℃时通入800ml/min的氨气;当炉温降至500℃时将氨气流量调回至400ml/min,温度降至300℃时换为80ml/min的氮气,当温度降到室温时停止通入氮气,关闭管式炉取出样品。其中,尾气吸收处理液为水与冰乙酸的混合溶液。即可制得多孔氮化铌粉体,所得粉体物相纯度高,为nb4n5,颗粒分布均匀,直径约3~4μm,具有多孔结构,平均孔径约为20nm,比表面积为44m2/g,当吸波层厚度为5mm时,在15.6ghz处最佳反射损耗为-31db。

实施例3

称取1g五氯化铌加入1ml无水乙醇和0.1p123,再加入30ml二氯甲烷获得混合溶液,将混合溶液移入反应容弹内,在1120℃烘箱中保温24h。取出样品后用二氯甲烷洗涤3次,之后静置30min,倒掉上清液,在80℃干燥箱中干燥24h获得氧化铌干凝胶,将氧化铌干凝胶在500℃下进行预烧,升温速率1℃/min,保温30min,得到氧化铌粉体。称取7g氧化铌粉体和1g氰胺置于10ml无水乙醇中搅拌均匀,再在80℃干燥箱中保温24h,将干燥后混合粉体在流动的氨气中,于700℃还原氮化4h得到多孔氮化铌粉体。氮化过程中,温度升高至300℃时通入400ml/min的氨气,升至500℃时通入800ml/min的氨气;当炉温降至500℃时将氨气流量调回至400ml/min,温度降至300℃时换为80ml/min的氮气,当温度降到室温时停止通入氮气,关闭管式炉取出样品。其中,尾气吸收处理液为水与冰乙酸的混合溶液。即可制得多孔氮化铌粉体,所得粉体物相纯度高,为nb4n5,颗粒分布均匀,直径约1~2μm,具有多孔结构,平均孔径约为10nm,比表面积为32m2/g,当吸波层厚度为6mm时,在16.3ghz处最佳反射损耗为-30db。

以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1