由金属和树脂制得的复合材料及其制造方法

文档序号:3655787阅读:151来源:国知局

专利名称::由金属和树脂制得的复合材料及其制造方法
技术领域
:本发明涉及一种复合材料及其制造方法,在所述复合材料中,由金属构成的金属部分与由树脂构成的树脂部分相结合。
背景技术
:目前,已经研制出多种复合材料。这种复合材料是由不同材料结合后而制成的,并且利用了所结合的材料的特性。特别是,由于金属和树脂彼此具有截然不同的特性,所以由金属和树脂制成的复合材料具有前所未有的特性。因此,预期这种复合材料的应用在将来会进一步增加。对于将由金属和树脂制成的复合材料中的金属和树脂相结合的方法,通常已知的是利用了在金属表面上形成的不平坦度的锚固效应的结合方法、或者利用了粘合剂的结合方法。例如,专利文献JP-A-2000-273168描述了这种粘合剂。然而,借助于锚固效应的结合方法的结合强度较小。尤其是,当对其进行伴随着重复升温和降温的热测试时,金属和树脂会在它们之间的界面处发生断裂。另一方面,借助于粘合剂的结合方法需要在金属与树脂之间的界面处具有粘合层,因此需要多个加工工序。除了上述方法之外,作为其它的将金属和树脂相结合的方法,有人还提出了这样的方法借助于混合在聚芳硫醚树脂中的环氧树脂的结合方法,如专利文献JP-A-H05-214071中所述的那样;或者借助于在金属表面上形成的热变性环氧树脂膜的结合方法,如专利文献JP-A-2004-58646中所述的那样。然而,所提出的这些方法并不能获得足够的结合强度。
发明内容本发明的实施方案通过提供由金属和树脂制成的复合材料、以及该复合材料的制造方法,从而解决了上述问题。本发明实施方案的复合材料无需粘合剂即在金属与树脂之间具有较强的结合。在本文中,较强的结合是指当将金属和树脂这两部分沿相反方向牵拉时,在具有张力的条件下,在金属与树脂之间的界面处金属与树脂之间不会发生断裂的结合。本发明实施方案的由金属和树脂制成的复合材料是这样的复合材料,在该复合材料中,由金属构成的金属部分与由树脂构成的树脂部分相结合。该复合材料包含施加于金属部分的表面之上的极性官能团、以及混合有粘附性改进剂(adhesionmodifyingagent)的树脂,其中所述粘附性改进剂具有与所述极性官能团相互作用的粘附性官能团。金属部分与树脂部分至少通过所述极性官能团与所述粘附性官能团之间的化学键而相结合。有两种施加极性官能团的方式的实施方案。在第一个实施方案中,通过极性官能团与表面的化学结合而直接将该极性官能团施加在金属部分的表面上。在第二个实施方案中,将极性官能团以含有极性官能团的化合物层的形式施加在金属部分的表面上。这两种实施方案均包含在本专利申请文件中。极性官能团与粘附性官能团之间的相互作用涉及到这两种官能团之间所形成的化学键,如氢键、共价键、离子键、范德华键等。本发明实施方案的复合材料的制造方法是制造这样的复合材料的方法,在该复合材料中,由金属构成的金属部分与由树脂构成的树脂部分相结合。所述制造方法包括通过向金属部分的表面上施加极性官能团,从而对表面进行处理;通过将树脂与粘附性改进剂相混合,从而制备模制材料,其中所述粘附性改进剂具有与极性官能团相互作用的粘附性官能团;由所述模制材料来模制成树脂部分,使得该树脂部分与金属部分接触;并且通过极性官能团与粘附性官能团之间的相互作用将金属部分与树脂部分相结合。下面将对本发明各要素的示例性实施方案进行阐述。IM漁金属部分的非限定性的示例性形状可以为板状、膜状和块状等。对金属部分的形状没有限制,并且该形状取决于复合材料的应用。可通过机器对金属部分进行成形,或者可以在金属部分与树脂部分相结合之后对金属部分进行成形。用于金属部分的金属的非限定性例子为铜、镍、锡、金、银、铝、铁、镁、铬、钨、锌、铅等,以及合金如不锈钢、黄铜等。施加于金属部分的表面上的极性官能团的非限定性例子为羧基、氨基、羟基、醛基等。由于羧基和氨基易于被施加在金属部分的表面上,因而它们是优选的。将极性官能团施加于金属部分的表面上的表面处理的非限定性实施方案为涂敷处理、火焰处理、蒸气沉积处理、等离子处理等。这些方法使用了含有极性官能团的化合物、其衍生物等。具有极性官能团的化合物或其衍生物的非限定性例子为含有羧基的化合物,如丙烯酸单体、丙烯酸的聚合物、丙烯酸和马来酸的共聚物、甲基丙烯酸单体、甲基丙烯酸的聚合物等;以及含有氨基的化合物,如烯丙胺单体、烯丙胺的聚合物等。另外,作为羧基和氨基衍生物的非限定性实施方案,有己内酰胺、聚酰胺等。树脂部分树脂部分的非限定性的示例性形状可以为板状、膜状和块状。优选的是,在对树脂部分进行模制以使其与金属部分接触时,根据复合材料的用途,将树脂部分以预定的形状成形,因为这可减少加工工序的数量。用于树脂部分的树脂的非限定性实例为工程塑料,例如聚苯硫醚(PPS)、聚酰胺(PA)或聚对苯二甲酸丁二醇酯(PBT);通用型树脂,如聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)或聚氯乙烯(PVC)等。特别是,工程塑料是优选的,这是因为其可改善复合材料的特性,如耐热性。另外,可将玻璃纤维、无机填料等混入树脂中,以改善其机械强度。聚苯硫醚的非限定性例子为交联型聚苯硫醚,其在分子内具有通过氧原子而连5接的二维或三维交联结构;或线型聚苯硫醚,其分子以直链的形式排布(结构单元以线状连接)。聚酰胺的非限定性例子为凍酰胺6(PA6)、聚酰胺11(PA11)、聚酰胺12(PA12)、聚酰胺66(PA66)、聚酰胺6T(PA6T)、聚酰胺61(PA6I)、聚酰胺9T(PA9T)和作为芳香族聚酰胺的ar咖id等。优选的是,粘附性改进剂容易且均匀地混合在树脂中。这种粘附性改进剂的非限定性例子为经改性的接枝共聚物。通过用粘附性官能团对接枝共聚物(其具有作为主链的聚乙烯、聚苯乙烯等,以及作为侧链的苯乙烯类聚合物)进行改性而得到经改性的接枝共聚物。粘附性改进剂的其他非限定性例子为这样的化合物,其中聚乙烯、聚苯乙烯等经粘附性官能团改性,等等。具体而言,其非限定性例子为经改性的乙烯-苯乙烯共聚物(其中,乙烯和苯乙烯的共聚物经甲基丙烯酸縮水甘油酯改性)、经改性的聚乙烯(其中,聚乙烯经甲基丙烯酸縮水甘油酯改性)等。粘附性改进剂的含量取决于粘附性改进剂的种类(粘附性官能团的种类、粘附性官能团在粘附性改进剂中的量等)。粘附性改进剂的优选含量范围的非限定性例子是相对于总量为100重量份的树脂和粘附性改进剂,粘附性改进剂的含量为5重量份至40重量份。当其含量低于5重量份时,树脂部分对金属部分的粘附性发生劣化。当其含量高于40重量份时,在树脂模制完成后,树脂部分对模具的脱模性变差。相对于总量为ioo重量份的树脂和粘附性改进剂,粘附性改进剂的更优选的含量为10重量份至30重量份。粘附性改进剂的非限定性例子是环氧基(包括縮水甘油基中的环氧基,下文相同)、羧基、氨基、羟基等。由于环氧基易于与极性官能团反应,因而其是优选的。在树脂和粘附性改进剂的混合物(其为模制材料)中,粘附性官能团的合适含量取决于粘附性官能团的种类。粘附性官能团的优选含量范围的非限定性例子为占树脂和粘附性改进剂的总重量的O.15重量%至1.2重量%。当其含量低于O.15重量%时,树脂部分对金属部分的粘附性发生劣化。当其含量高于1.2重量%时,在对树脂进行模制时,树脂部分对模具的脱模性变差。粘附性官能团的优选含量为占树脂和粘附性改进剂的总重量的0.3重量%至0.9重量%。通过将粘附性改进剂混入树脂中以制备模制材料时的混合工艺的非限定性例子为这样的工艺使用单螺杆或双螺杆挤出机等在预定的温度下进行熔融捏合,从而使混合物均化,随后进行造粒等。用以对树脂部分进行模制、从而使其与金属部分接触的模制工艺的非限定性例子为插入模制工艺,该工艺采用了其中支承有金属部分的金属模具。在该工艺中,可以同时进行金属部分与树脂部分之间的结合、以及对树脂部分的模制。压力成形法或注射成形法作为插入模制法的非限定性例子。所述模制工艺可包括退火过程。据认为,金属部分与树脂部分之间的结合是通过极性官能团(其被施加于金属部分的表面上)与粘附性官能团(其被施加于树脂部分上)之间的相互作用而形成的。这种相互作用是在金属部分与树脂部分间的界面处,极性官能团与粘附性官能团的原子和电子发生的相互吸引作用。具体来说,这种相互作用涉及到主键(如离子键或共价键),其伴随着在极性官能团与粘附性官能团的原子之间发生的电子转移和共用;以及次级键(如氢键或范德华键),其中在极性官能团与粘附性官能团中发生电子密度的不均匀分布,这使上述两种官能团通过库仑力而彼此吸引。齡M禾口扭聽,始鹿由金属和树脂制成的复合材料的非限定性形状为板状、膜状、绳状、柱状、球状、块状等。由金属和树脂制成的复合材料的非限定性用途为用作电子部件、建筑材料、机动车部件、农业材料、包装材料、服装、日常用品的材料、或者用作制造这些产品的材料。作为机动车部件,其非限定性实例为用于密封混合动力车的电池的密封元件、或者用于密封发动机油的密封元件。因此,本发明的实施方案提供了由金属和树脂制成的复合材料、以及该复合材料的制造方法。本发明的复合材料无需使用粘合剂即在金属与树脂之间具有强的结合。附图简要说明图1为由金属和树脂制成的复合材料在金属部分与树脂部分之间的界面附近的剖视图。具体实施方式Mi图l示出了本发明的由金属和树脂制成的复合材料的例子。复合材料10具有由金属构成的金属部分20,其表面上施加有羧基和氨基中的至少一者;以及树脂部分30,其中混合有具有环氧基的粘附性改进剂。金属部分20和树脂部分30通过金属部分20与树脂部分30之间的界面处的化学键而结合。所述化学键为环氧基与羧基和氨基中的至少一者所形成的键。制备本发明的二十五(25)个实施例(其中均将铝(A1050)用作金属部分),并对其粘附强度进行评价。另外制备15个比较例(其中均将铝用作金属部分),并且也对其粘附强度进行评价。25个实施例的评价结果示于表1中,并且15个比较例的评价结果示于表2中。表1和表2还示出了树脂和粘附性改进剂的种类、以及树脂和粘附性改进剂的含量。树脂和粘附性改进剂的含量的单位为重量份。在粘附性改进剂一栏中所示出的环氧基的量为粘附性改进剂中环氧基的重量与树脂和粘附性改进剂总重量的比值。在表1和表2中还示出了用以对实施例和比较例中的金属部分进行表面处理的化合物。在表面处理一栏中的标记""表示用于表面处理的化合物(丽表示分子量)。下面为本发明的实施例和比较例所用的材料。金属部分为长75mm、宽25mm、并且厚2mm的铝板(A1050)。树脂为聚苯硫醚(PPS)、聚酰胺66(PA66)或聚对苯二甲酸丁二醇酯(PBT)。粘附性改进剂为经改性的聚乙烯-聚苯乙烯共聚物(改性PE/PS),其中乙烯与苯乙烯的共聚物经甲基丙烯酸縮水甘油酯(GMA)改性;或者经改性的聚乙烯(改性PE),其中聚乙烯经甲基丙烯酸縮水甘油酯(GMA)改性。经改性的聚乙烯-聚苯乙烯共聚物和经改性的聚乙烯中,甲基丙烯酸縮水甘油酯的比例均为10重量%,并且环氧基的含量均为3重量%。经改性的聚乙烯-聚苯乙烯共聚物为包括接枝共聚物在内的化合物,所述接枝共聚物具有作为主链的聚乙烯和作为侧链的苯乙烯类单体、以及作为粘附性官能团的环氧基7(縮水甘油基),其中作为主链的聚乙烯经甲基丙烯酸縮水甘油酯(GMA)改性。用以将羧基施加于金属部分的表面上的化合物为丙烯酸单体(分子量丽72)、丙烯酸聚合物(分子量丽5,000至800,000)、丙烯酸和马来酸的共聚物(丙烯酸/马来酸共聚物,分子量丽10,000)。用以将羧基和氨基均施加于金属表面上的化合物为聚酰胺。用以将氨基施加于金属部分的表面上的化合物为烯丙胺单体(分子量丽57)或烯丙胺聚合物(分子量丽1,000至25,000)。按照如下方式制备实施例和比较例中的各样品。爐漁附麵頃使用粒度为#1000的砂纸打磨金属部分的表面,从而除去油分。随后,将金属部分浸入23t:的盐酸中达1分钟,以进行表面蚀刻。另外,将金属部分浸入7(TC的强碱性脱脂剂("FC-E2001",由NihonParkerizing株式会社提供)的水溶液中达1分钟,以进行脱脂。爐漁白條面处適在对金属部分的表面进行了上述预处理之后,将用于各表面处理的化合物施加于金属部分的表面上。随后,在15(TC的恒温炉内进行干燥处理10分钟,以在金属部分的表面上形成由各化合物构成的膜(层)。比较例(其中金属部分未经表面处理)不进行此项处理。树脂的混合工艺在所用树脂的熔融温度(PPS:320。C、PA66:300。C、PBT:260。C)下,利用Laboplast磨机(由ToyoSeikiSeisakusho株式会社制造的"KF70V2")将树脂和粘附性改进剂熔融捏合5分钟,以将粘附性改进剂混入树脂中,从而制得模制材料。将经上述表面处理的金属部分置于模具中之后,将上述的模制材料或树脂放置在该模具中,并在成形材料所用树脂的上述熔融温度下进行压制成形。此外,在模制过程中,于如下条件下进行退火加工。当树脂为PPS时,将模具的表面温度在15(TC下保持3小时。当树脂为PA66或PBT时,将模具的表面温度在IO(TC下保持3小时。如上所述,获得长75mm、宽15mm、厚3mm的板状复合材料。在该复合材料中,树脂部分与金属部分的表面在长度为12mm、宽度为15mm的平面(面积180mm2)处相结合。ml按照如下方式对粘附强度进行评价。根据JISK-6850(粘合剂-待结合的刚性材料的拉伸剪切结合强度测试方法)对上述制得的复合材料进行测试,从而造成各复合材料破裂。当树脂部分发生破裂时,评价结果表示为"A",而当金属部分与树脂部分之间的界面处发生破裂时,评价结果表示为"B"。根据上述结果,在所有的实施例(1至25)中,均在树脂部分发生破裂。其原因为施加到金属部分的表面上的羧基和氨基中的至少一者与树脂部分的环氧基发生化学键合。因此,在这种情况下,金属部分与树脂部分之间的粘附强度高于树脂部分的强度。另一方面,在未对金属部分进行表面处理的比较例1至6(在比较例4至6中,树脂中含有粘附性改进剂)中,在金属部分与树脂部分之间的界面处发生破裂。此外,在比较例7至15(其中,在树脂中未混入粘附性改进剂,并且仅对金属部分进行了表面处理)中,当树脂部分的树脂不是PA66(氨基被施加到金属部分的表面上的情况除外)时,在金属部分与树脂部分之间的界面处也会发生破裂。其原因为金属部分与树脂部分之间的粘附强度低于树脂部分的粘附强度。第二组例子对第二组实施例和第二组比较例的粘附强度进行评价,所述的第二组实施例和第二组比较例与上述的25个实施例和15个比较例相同,不同之处在于金属部分不是由铝(A1050)构成,而是由铜(C1100)构成。通过与上述实施例和比较例相同的方式来制备第二组实施例和第二组比较例。第二组实施例的粘附强度评价结果示于表3中,并且第二组比较例的粘附强度评价结果示于表4中。此外,用于第二组实施例和第二组比较例的树脂部分中的树脂种类、以及混入到用于第二组实施例和第二组比较例的树脂中的粘附性改进剂的含量也示于表3和表4中。另外,用于第二组实施例和第二组比较例中的金属部分的表面处理的化合物也示于表3和表4中。表3和表4中的树脂和粘附性改进剂的量的单位为重量份。粘附性改进剂一栏中所示出的环氧基的量为粘附性改进剂中的环氧基的重量与树脂和粘附性改进剂总重量的比值。表面处理一栏中的标记""表示用于表面处理的化合物(丽表示分子根据上述结果,在所有的第二组实施例(26至50)中,均在树脂部分发生破裂。其原因为施加到金属部分的表面上的羧基和氨基中的至少一者与树脂部分的环氧基发生化学键合。因此,在这种情况下,金属部分与树脂部分之间的粘附强度高于树脂部分的强度。另一方面,在未对金属部分进行表面处理的第二组比较例16至21(在第二组比较例19至21中,树脂中含有粘附性改进剂)中,在金属部分与树脂部分之间的界面处发生破裂。此外,在第二组比较例22至30(其中,在树脂中未混入粘附性改进剂,并且仅对金属部分进行了表面处理)中,在金属部分与树脂部分之间的界面处也会发生破裂。其原因为金属部分与树脂部分之间的粘附强度低于树脂部分的粘附强度。如上所述,本发明实施例中的由金属和树脂制成的复合材料,无需使用粘合剂即在金属部分与树脂部分之间具有强的结合。尽管参照具体实施方案详细地对本发明进行了说明,但对本领域的技术人员而言显而易见的是,可在不偏离本发明的精神和范围的条件下,进行各种改变和修改。9<table>tableseeoriginaldocumentpage10</column></row><table><table>tableseeoriginaldocumentpage11</column></row><table><table>tableseeoriginaldocumentpage12</column></row><table><table>tableseeoriginaldocumentpage13</column></row><table><table>tableseeoriginaldocumentpage14</column></row><table><table>tableseeoriginaldocumentpage15</column></row><table><table>tableseeoriginaldocumentpage16</column></row><table><table>tableseeoriginaldocumentpage17</column></row><table>权利要求一种复合材料,其包含由金属构成的金属部分;由树脂构成的树脂部分;被施加到所述金属部分的表面上的极性官能团;以及粘附性改进剂,该粘附性改进剂混合在所述树脂中、并且具有与所述极性官能团相互作用的粘附性官能团,其中,所述金属部分和所述树脂部分至少通过所述极性官能团与所述粘附性官能团之间的化学键而相结合。2.根据权利要求1所述的复合材料,其中所述极性官能团为羧基和氨基中的至少一者。3.根据权利要求1所述的复合材料,其中所述粘附性官能团为环氧基。4.根据权利要求3所述的复合材料,其中所述粘附性改进剂为如下化合物之一经甲基丙烯酸縮水甘油酯改性的改性乙烯_苯乙烯共聚物、以及经甲基丙烯酸縮水甘油酯改性的改性聚乙烯。5.根据权利要求1所述的复合材料,其中所述树脂为工程塑料。6.根据权利要求5所述的复合材料,其中所述工程塑料为聚苯硫醚、聚酰胺和聚对苯二甲酸丁二醇酯中的一者。7.根据权利要求1所述的复合材料,其中所述金属为铝和铜中的一者。8.根据权利要求1所述的复合材料,其中相对于总量为100重量份的所述树脂和所述粘附性改进剂,所述粘附性改进剂的量为5重量份至40重量份。9.根据权利要求1所述的复合材料,其中所述粘附性官能团的含量占所述树脂和所述粘附性改进剂的总量的0.15重量%至1.2重量%。10.—种复合材料的制造方法,在该复合材料中,由金属构成的金属部分以及由树脂构成的树脂部分相结合,所述方法包括通过向所述金属部分的表面施加极性官能团,从而对所述金属部分的表面进行处理;将所述树脂与粘附性改进剂混合,从而制备模制材料,其中所述粘附性改进剂具有与所述极性官能团相互作用的粘附性官能团;由所述模制材料来模制所述树脂部分,使得所述树脂部分与所述金属部分接触;并且通过所述极性官能团与所述粘附性官能团之间的相互作用将所述金属部分与所述树脂部分相结合。11.根据权利要求IO所述的制造方法,其中对所述表面进行处理的步骤包括使用丙烯酸单体、丙烯酸聚合物、以及丙烯酸和马来酸的共聚物中的一者,将作为极性官能团的羧基施加到所述金属部分的表面上。12.根据权利要求IO所述的制造方法,其中对所述表面进行处理的步骤包括使用烯丙胺单体和烯丙胺聚合物中的一者,将作为极性官能团的氨基施加到所述金属部分的表面上。13.根据权利要求10所述的制造方法,其中对所述表面进行处理的步骤包括使用聚酰胺,将作为极性官能团的羧基和氨基均施加到所述金属部分的表面上。14.根据权利要求10所述的制造方法,其中相对于总量为100重量份的所述树脂和所述粘附性改进剂,所述粘附性改进剂的量为5重量份至40重量份。15.根据权利要求IO所述的制造方法,其中所述粘附性官能团的含量占所述树脂和所述粘附性改进剂的总量的0.15重量%至1.2重量%。全文摘要本发明涉及一种由金属和树脂构成的复合材料、以及所述复合材料的制造方法。所述复合材料包含由金属构成的金属部分;由树脂构成的树脂部分;被施加到所述金属部分的表面上的极性官能团;以及粘附性改进剂,该粘附性改进剂混合在所述树脂中、并且具有与所述极性官能团相互作用的粘附性官能团。所述金属部分与所述树脂部分通过所述极性官能团与所述粘附性官能团之间的相互作用而相结合。文档编号C08L23/26GK101792533SQ20101010747公开日2010年8月4日申请日期2010年1月29日优先权日2009年1月30日发明者今井英幸,竹田慎一,长森吉纪申请人:丰田合成株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1