有机磷水解酶变体的制作方法

文档序号:13145953阅读:362来源:国知局
序列表的引用本申请包括计算机可读形式的序列表,将其通过引用结合在此。背景发明领城本发明涉及有机磷水解酶变体、编码这些变体的多核苷酸、产生这些变体的方法以及使用这些变体的方法。相关领域描述本领域已知有机磷化合物。特别地,众所周知一些战剂是有机磷化合物,例如G-型神经药剂,例如萨林(Sarin)、环萨林(Cyclosarin)、和索曼(Soman),以及V-型神经药剂,例如VX。其他有机磷化合物作为杀有害生物剂为人所知。希望的是能够净化被上述有机磷化合物污染的区域。已提出将具有有机磷水解酶活性如二异丙基氟磷酸酶(diisopropylfluoirophosphatase)活性的多肽用于此目的,因为此类多肽能够水解有害的有机磷化合物并由此将其转化为有害性较低的产物。在WO99/43791中披露了一种来自欧洲乌贼(Loligovulgaris)的二异丙基氟磷酸酶并且还描述了其除其他应用之外的用于净化的潜在用途。WO2009/130285、WO2010/128115和WO2010/128116披露了来自假交替单胞菌(Pseudoalteramonashaloplanktis)、章鱼(Octopusvulgaris)、和加州海兔(Aplysiacalifornica)的其他二异丙基氟磷酸酶。本发明提供了与其亲本相比具有改进的特性的有机磷水解酶变体。发明概述本发明涉及有机磷水解酶变体,这些变体在与SEQIDNO:2的成熟多肽的位置P58、R61、F165、M167、R193、P250、和N312相对应的一个或多个(例如,若干个)位置处包括取代,其中这些变体具有有机磷水解酶活性。本发明还涉及编码这些变体的多核苷酸;包括这些多核苷酸的核酸构建体、载体以及宿主细胞;以及生产这些变体的方法。本发明还涉及净化暴露于有机磷化合物像神经毒气、毒素、或杀有害生物剂的环境或表面的方法。定义有机磷水解酶:术语“有机磷水解酶”在此定义为对有机磷化合物,特别是有机磷化合物(包括神经毒气)中的磷酐键的水解活性。因此,该术语包括具有水解酶活性和/或酯酶活性例如有机磷水解酶活性(例如有机磷酯酶活性)或有机磷酸脱水酶(OPAA)活性、或羧酸酯酶活性、二异丙基氟磷酸酶(DFP酶)活性(EC3.1.8.2)、脱卤素酶活性、催化磷-硫键的水解的、具有脯氨酸肽酶活性和/或亚氨基二肽酶活性的酶。术语“DFP酶”(EC3.1.8.2)在此被定义为二异丙基氟磷酸酶、二烷基氟磷酸酶、二异丙基氟磷酸水解酶、二异丙基氟磷酸脱卤素酶、二异丙基磷氟化酶(diisopropylphosphofluoridase)、异丙基磷氟化酶(isopropylphosphorofluoridase)、有机磷酸酯酸脱水酶、有机磷酸脱水酶、索曼分解酶、塔崩酶。DFP酶作用于有机磷化合物(包括神经毒气)中的磷酐键(例如磷-卤化物以及磷-氰化物)。出于本发明的目的,根据实例2中所述的程序确定有机磷水解酶活性。在一个方面中,本发明的这些多肽具有SEQIDNO:2的成熟多肽的至少20%,例如至少40%、至少50%、至少60%、至少70%、至少80%、至少90%、至少95%或至少100%的有机磷水解酶活性。净化:术语“净化”在此应被理解为去除、分解或破坏有害药剂,例如有机磷化合物,例如神经毒气、毒素、杀有害生物剂,从而该术语包括例如解毒活性。等位基因变体:术语“等位基因变体”意指占用同一染色体位点的一种基因的两个或更多个替代形式中的任一者。等位基因变异由突变天然产生,并且可以导致群体内的多态性。基因突变可以是沉默的(在所编码的多肽中没有改变)或可编码具有改变的氨基酸序列的多肽。多肽的等位基因变体是由基因的等位基因变体编码的多肽。cDNA:术语“cDNA”意指可以通过从得自真核或原核细胞的成熟的、剪接的mRNA分子进行反转录而制备的DNA分子。cDNA缺乏可以存在于对应基因组DNA中的内含子序列。早先的初始RNA转录本是mRNA的前体,其在呈现为成熟的剪接的mRNA之前要经一系列的步骤进行加工,包括剪接。编码序列:术语“编码序列”意指直接指明变体的氨基酸序列的多核苷酸。编码序列的边界一般由开放阅读框架决定,该开放阅读框架从起始密码子(如ATG、GTG或TTG)开始并且以终止密码子(如TAA、TAG或TGA)结束。编码序列可以是基因组DNA、cDNA、合成DNA或其组合。控制序列:术语“控制序列”意指对于表达编码本发明的变体的多核苷酸所必需的核酸序列。每个控制序列对于编码该变体的多核苷酸来说可以是原生(native)的(即,来自相同基因)或外源的(即,来自不同基因),或相对于彼此是原生的或外源的。此类控制序列包括但不限于前导子、聚腺苷酸化序列、前肽序列、启动子、信号肽序列以及转录终止子。至少,控制序列包括启动子,以及转录和翻译终止信号。出于引入有利于将这些控制序列与编码变体的多核苷酸的编码区连接的特异性限制酶切位点的目的,这些控制序列可以提供有多个接头。表达:术语“表达”包括涉及变体产生的任何步骤,包括但不限于,转录、转录后修饰、翻译、翻译后修饰以及分泌。表达载体:术语“表达载体”意指线性或环状DNA分子,该分子包括编码变体的多核苷酸并且该多核苷酸可操作地与提供用于其表达的控制序列相连接。片段:术语“片段”意指在成熟多肽的氨基和/或羧基末端缺失一个或多个(例如,若干个)氨基酸的多肽;其中该片段具有有机磷水解酶活性。在一方面,该片段包含至少290个氨基酸残基(例如,SEQIDNO:2的氨基酸24至313)、至少300个氨基酸残基(例如,SEQIDNO:2的氨基酸24至323)、或至少308个氨基酸残基(例如,SEQIDNO:2的氨基酸24至331)。高严格条件:术语“高严格条件”意指对于长度为至少100个核苷酸的探针而言,遵循标准DNA印迹程序,在42℃下在5XSSPE、0.3%SDS、200微克/ml剪切并变性的鲑鱼精子DNA和50%甲酰胺中预杂交和杂交12至24小时。最后在65℃使用2XSSC、0.2%SDS将载体材料洗涤三次,每次15分钟。宿主细胞:术语“宿主细胞”意指易于用包含本发明的多核苷酸的核酸构建体或表达载体转化、转染、转导等的任何细胞类型。术语“宿主细胞”涵盖由于复制期间发生的突变而与亲本细胞不同的亲本细胞的任何后代。改进的活性:术语“改进的活性”意指与亲本,例如,如在实例中描述的相比而言改进的变体的有机磷水解酶活性。分离的:术语“分离的”意指处于自然界中不存在的形式或环境中的物质。分离的物质的非限制性实例包括(1)任何非天然存在的物质;(2)至少部分地从与其在自然界中相关联的一种或多种或全部天然存在的组分中除去的任何物质,包括但不局限于任何酶、变体、核酸、蛋白质、肽或辅因子;(3)相对于自然界中发现的那种物质通过人工手动修饰的任何物质;或者(4)通过相对于与其天然相关联的其他组分增加该物质的量而修饰的任何物质(例如,编码该物质的基因的多个拷贝;比与编码该物质的基因天然相关联的启动子更强的启动子的使用)。一种分离的物质可以存在于发酵液样品中。低严格条件:术语“低严格条件”意指对于长度为至少100个核苷酸的探针而言,遵循标准DNA印迹程序,在42℃下在5XSSPE、0.3%SDS、200微克/ml剪切并变性的鲑鱼精子DNA和25%甲酰胺中预杂交和杂交12至24小时。最后在50℃使用2XSSC、0.2%SDS将载体材料洗涤三次,每次15分钟。成熟多肽:术语“成熟多肽”意指在翻译和任何翻译后修饰例如N-末端加工、C-末端截短、糖基化作用、磷酸化作用等之后处于其最终形式的多肽。本领域已知,一个宿主细胞可以产生由同一多核苷酸表达的两种或更多种不同成熟多肽(即,具有不同C-末端和/或N-末端氨基酸)的混合物。成熟多肽编码序列:术语“成熟多肽编码序列”意指编码具有有机磷水解酶活性的一种成熟多肽的一种多核苷酸。中严格条件:术语“中严格条件”意指对于长度为至少100个核苷酸的探针而言,遵循标准DNA印迹程序,在42℃下在5XSSPE、0.3%SDS、200微克/ml剪切并变性的鲑鱼精子DNA和35%甲酰胺中预杂交和杂交12至24小时。最后在55℃使用2XSSC、0.2%SDS将载体材料洗涤三次,每次15分钟。中-高严格条件:术语“中-高严格条件”意指对于长度为至少100个核苷酸的探针而言,遵循标准DNA印迹程序,在42℃下在5XSSPE、0.3%SDS、200微克/ml剪切并变性的鲑鱼精子DNA和35%甲酰胺中预杂交和杂交12至24小时。最后在60℃使用2XSSC、0.2%SDS将载体材料洗涤三次,每次15分钟。突变体:术语“突变体”意指编码变体的多核苷酸。核酸构建体:术语“核酸构建体”意指单链或双链的核酸分子,该核酸分子是从天然存在的基因中分离的,或以本来不存在于自然界中的方式被修饰成含有核酸的区段,或是合成的,该核酸分子包括一个或多个控制序列。可操作地连接:术语“可操作地连接”意指如下的构造,其中,控制序列相对于多核苷酸的编码序列安置在适当位置,从而使得该控制序列指导该编码序列的表达。亲本或亲本有机磷水解酶:术语“亲本”或“亲本有机磷水解酶”意指进行改变以产生本发明的酶变体的有机磷水解酶。该亲本可以是天然存在的(野生型)多肽或其变体或片段。序列一致性:两个氨基酸序列之间或两个核苷酸序列之间的关联度通过参数“序列一致性”来描述。出于本发明的目的,使用如在EMBOSS包(EMBOSS:欧洲分子生物学开放软件套件(TheEuropeanMolecularBiologyOpenSoftwareSuite),赖斯(Rice)等人,2000,遗传学趋势(TrendsGenet.)16:276-277)(优选5.0.0版或更新版本)的尼德尔(Needle)程序中所实施的尼德尔曼-翁施(Needleman-Wunsch)算法(尼德尔曼(Needleman)和翁施(Wunsch),1970,分子生物学杂志(J.Mol.Biol.)48:443-453)来确定两个氨基酸序列之间的序列一致性。所使用的参数是空位开放罚分10,空位延伸罚分0.5,以及EBLOSUM62(BLOSUM62的EMBOSS版)取代矩阵。尼德尔标注的“最长的一致性”的输出(使用-非简化选项获得)被用作百分比一致性,并且计算如下:(一致的残基×100)/(比对长度-比对中的空位总数)出于本发明的目的,使用如在EMBOSS包(EMBOSS:欧洲分子生物学开放软件套件,赖斯(Rice)等人,2000,见上文)(优选5.0.0版或更新版本)的尼德尔程序中所实施的尼德尔曼-翁施算法(尼德尔曼(Needleman)和翁施(Wunsch),1970,见上文)来确定两个脱氧核糖核苷酸序列之间的序列一致性。所使用的参数是空位开放罚分10,空位延伸罚分0.5,以及EDNAFULL(NCBINUC4.4的EMBOSS版)取代矩阵。尼德尔标注的“最长的一致性”的输出(使用-非简化选项获得)被用作百分比一致性,并且计算如下:(一致的脱氧核糖核苷酸×100)/(比对长度-比对中的空位总数)SEQIDNO:2的氨基酸序列和SEQIDNO:4的氨基酸序列之间的序列一致性是99.7%。子序列:术语“子序列”意指使一个或多个(例如,若干个)核苷酸从成熟多肽编码序列的5'端和/或3'端缺失的多核苷酸;其中该子序列编码具有有机磷水解酶活性的片段。在一方面,子序列包含至少870个核苷酸(例如,SEQIDNO:1的核苷酸70至937),至少900个核苷酸(例如,SEQIDNO:1的核苷酸70至967),或至少924个核苷酸(例如,SEQIDNO:1的核苷酸70至993)。变体:术语“变体”是指具有有机磷水解酶活性的、包含一个改变(即在一个或多个(例如,若干个)位置处的一个取代、插入和/或缺失)的一个多肽。取代意指占据一个位置的氨基酸被一个不同的氨基酸替代;缺失意指占据一个位置的氨基酸的去除;并且插入意指邻近于并且紧跟着占据一个位置的氨基酸之后添加一个氨基酸。本发明的变体具有SEQIDNO:2的成熟多肽的至少20%,例如至少40%、至少50%、至少60%、至少70%、至少80%、至少90%、至少95%或至少100%的有机磷水解酶活性。非常高严格条件:术语“非常高严格条件”意指对于长度为至少100个核苷酸的探针而言,遵循标准DNA印迹程序,在42℃下在5XSSPE、0.3%SDS、200微克/ml剪切并变性的鲑鱼精子DNA和50%甲酰胺中预杂交和杂交12至24小时。最后在70℃使用2XSSC、0.2%SDS将载体材料洗涤三次,每次15分钟。非常低严格条件:术语“非常低严格条件”是指对于长度为至少100个核苷酸的探针而言,遵循标准DNA印迹程序,在42℃下在5XSSPE、0.3%SDS、200微克/ml剪切并变性的鲑鱼精子DNA和25%甲酰胺中预杂交和杂交12至24小时。最后在45℃使用2XSSC、0.2%SDS将载体材料洗涤三次,每次15分钟。野生型有机磷水解酶:术语“野生型”有机磷水解酶意指由天然存在的微生物,如在自然界中发现的细菌、酵母或丝状真菌来表达的有机磷水解酶。变体命名惯例出于本发明的目的,使用在SEQIDNO:2中披露的成熟多肽来确定另一个有机磷水解酶中相对应的氨基酸残基。将另一种有机磷水解酶的氨基酸序列与SEQIDNO:2中披露的成熟多肽进行比对,并且基于该比对,使用如在EMBOSS包(EMBOSS:欧洲分子生物学开放软件套件,赖斯(Rice)等人,2000,遗传学趋势(TrendsGenet.)16:276-277)(优选5.0.0版或更新版本)的尼德尔程序中所实施的尼德尔曼-翁施算法(尼德尔曼(Needleman)和翁施(Wunsch),1970,分子生物学杂志(J.Mol.Biol.)48:443-453)来确定与SEQIDNO:2中所披露的成熟多肽中的任何氨基酸残基相对应的氨基酸位置编号。所使用的参数是空位开放罚分10,空位延伸罚分0.5,以及EBLOSUM62(BLOSUM62的EMBOSS版)取代矩阵。可以通过使用若干计算机程序,使用其对应默认参数比对多个多肽序列来确定在另一种有机磷水解酶中的对应氨基酸残基的鉴定,所述计算机程序包括但不限于MUSCLE(通过对数预期的多种序列比较;版本3.5或更新版本;埃德加(Edgar),2004,核酸研究(NucleicAcidsResearch)32:1792-1797)、MAFFT(版本6.857或更新版本;加藤(Katoh)和库马(Kuma),2002,核酸研究30:3059-3066;加藤等人,2005,核酸研究33:511-518;加藤和都(Toh),2007,生物信息学(Bioinformatics)23:372-374;加藤等人,2009,分子生物学方法(MethodsinMolecularBiology)537:39-64;加藤和都,2010,生物信息学26:1899-1900)以及采用ClustalW(1.83或更新版本;汤姆斯(Thompson)等人,1994,核酸研究22:4673-4680)的EMBOSSEMMA。当其他酶与SEQIDNO:2的成熟多肽相背离使得传统的基于序列的比较方法不能检测其相互关系时(林达尔(Lindahl)和埃洛弗松(Elofsson),2000,分子生物学杂志(J.Mol.Biol.)295:613-615),可应用其他成对序列比较算法。在基于序列的搜索中的更大灵敏度可以使用搜索程序来获得,这些搜索程序利用多肽家族的概率表示(谱(profile))来搜索数据库。例如,PSI-BLAST程序通过迭代数据库搜索过程来产生多个谱,并且能够检测远距离同源物(阿特休尔(Atschul)等人,1997,核酸研究(NucleicAcidsRes.)25:3389-3402)。如果多肽的家族或超家族在蛋白结构数据库中具有一个或多个代表,则可以实现甚至更大的灵敏度。程序如GenTHREADER(琼斯(Jones),1999,分子生物学杂志(J.Mol.Biol.)287:797-815;麦古芬(McGuffin)和琼斯,2003,生物信息学(Bioinformatics)19:874-881)利用来自不同来源(PSI-BLAST、二级结构预测、结构比对谱以及溶剂化势)的信息作为预测查询序列的结构折叠的神经网络的输入。类似地,高夫(Gough)等人,2000,分子生物学杂志(J.Mol.Biol.)313:903-919的方法可以用于比对未知结构的序列与存在于SCOP数据库中的超家族模型。这些比对进而可以用于产生多肽的同源性模型,并且使用出于该目的而开发的多种工具可以评定此类模型的准确度。对于已知结构的蛋白,若干工具和资源可用于检索并产生结构比对。例如,蛋白的SCOP超家族已经在结构上进行比对,并且那些比对是可访问的并且可下载的。可以使用多种算法如距离比对矩阵(奥尔姆(Holm)和桑德(Sander),1998,蛋白质(Proteins)33:88-96)或组合延伸(辛迪亚洛夫(Shindyalov)和伯恩(Bourne),1998,蛋白质工程(ProteinEngineering)11:739-747)比对两种或更多种蛋白质结构,并且这些算法的实施可以另外用于查询具有感兴趣结构的结构数据库,以便发现可能的结构同源物(例如,奥尔姆和帕克(Park),2000,生物信息学(Bioinformatics)16:566-567)。在描述本发明的变体中,以下所述的命名法适于方便参考。采用了已接受的IUPAC单个字母和三字母的氨基酸缩写。取代。对于氨基酸取代,使用以下命名法:初始氨基酸、位置、取代氨基酸。因此,在位置226处的苏氨酸被丙氨酸取代表示为“Thr226Ala”或者“T226A”。多个突变由加号(“+”)分开,例如“Gly205Arg+Ser411Phe”或“G205R+S411F”代表分别在位置205和位置411处甘氨酸(G)被精氨酸(R)取代,并且丝氨酸(S)被苯丙氨酸(F)取代。缺失。对于氨基酸缺失,使用以下命名法:初始氨基酸、位置、*。因此,在位置195处的甘氨酸缺失表示为“Gly195*”或者“G195*”。多重缺失通过加号(“+”)分开,例如,“Gly195*+Ser411*”或“G195*+S411*”。插入。对于氨基酸插入,使用以下命名法:初始氨基酸、位置、初始氨基酸、插入氨基酸。因此,在位置195处的甘氨酸之后插入赖氨酸被表示为“Gly195GlyLys”或“G195GK”。多个氨基酸的插入被表示为[原始氨基酸、位置、原始氨基酸、插入的氨基酸#1、插入的氨基酸#2;等]。例如,在位置195处的甘氨酸之后插入赖氨酸和丙氨酸被表示为“Glyl95GlyLysAla”或“G195GKA”。在此类情况下,通过将小写字母添加至在所插入的一个或多个氨基酸残基之前的氨基酸残基的位置编号中来对所插入的一个或多个氨基酸残基进行编号。在以上实例中,该序列因此将是:亲本:变体:195195195a195bGG-K-A多种改变。包含多种改变的变体由加号(“+”)分开,例如“Arg170Tyr+Gly195Glu”或者“R170Y+G195E”代表在位置170和位置195处的精氨酸和甘氨酸分别被酪氨酸和谷氨酸取代。不同改变。可以在一个位置上引入不同的改变时,这些不同的改变由逗号分开,例如“Arg170Tyr,Glu”代表在位置170上的精氨酸被酪氨酸或谷氨酸取代。因此,“Tyr167Gly,Ala+Arg170Gly,Ala”表示以下变体:“Tyr167Gly+Arg170Gly”、“Tyr167Gly+Arg170Ala”、“Tyr167Ala+Arg170Gly”、和“Tyr167Ala+Arg170Ala”。详细说明有机磷水解酶变体SEQIDNO:2的氨基酸序列和SEQIDNO:4的氨基酸序列之间的序列一致性是99.7%。本发明提供了有机磷水解酶变体,这些变体在与SEQIDNO:2的成熟多肽的位置K34、D37、D38、P58、G59、R61、D63、D91、I94、C96、M111、E164、F165、K166、M167、F169、Q170、E171、R193、F194、T216、R219、D243、E245、Q246、E247、G248、P250、W266、D290、K291、S293、和N312,优选位置P58、R61、F165、M167、R193、P250、和N312相对应的一个或多个(例如若干个)位置处的取代;其中该变体具有有机磷水解酶活性。本发明提供了有机磷水解酶变体,这些变体包括在与SEQIDNO:4的成熟多肽的位置K12、D15、D16、P36、G37、R39、D41、D69、I72、C74、M89、E142、F143、K144、M145、F147、Q148、E149、R171、F172、T194、R197、D221、E223、Q224、E225、G226、P228、W244、D268、K269、S271、和N290,优选位置P36、R39、F143、M145、R171、P228、和N290相对应的一个或多个(例如若干个)位置处的取代;其中该变体具有有机磷水解酶活性。在一个实施例中,该变体与亲本有机磷水解酶的氨基酸序列具有至少60%,例如至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、或至少99%但小于100%的序列一致性。在另一个实施例中,该变体与SEQIDNO:2的成熟多肽具有至少60%,例如至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%,如至少96%、至少97%、至少98%、或至少99%但小于100%的序列一致性。在另一个实施例中,该变体与SEQIDNO:4的成熟多肽具有至少60%,例如至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%,如至少96%、至少97%、至少98%、或至少99%但小于100%的序列一致性。在一方面,在本发明的变体中的取代数目是1至20个,例如1至10个和1至5个,例如1、2、3、4、5、6、7、8、9或10个取代。在另一个方面中,变体在与SEQIDNO:2的位置P58、R61、F165、M167、R193、P250、和N312;或SEQIDNO:4的位置P36、R39、F143、M145、R171、P228、和N290相对应的一个或多个(例如若干个)位置处包括取代。在另一个方面中,变体在与SEQIDNO:2的位置P58、R61、F165、M167、R193、P250、和N312;或SEQIDNO:4的位置P36、R39、F143、M145、R171、P228、和N290中的任何所相对应的两个位置处包括取代。在另一个方面中,变体在与SEQIDNO:2的位置P58、R61、F165、M167、R193、P250、和N312;或SEQIDNO:4的位置P36、R39、F143、M145、R171、P228、和N290中的任何所相对应的三个位置处包括取代。在另一个方面中,变体在与SEQIDNO:2的位置P58、R61、F165、M167、R193、P250、和N312;或SEQIDNO:4的位置P36、R39、F143、M145、R171、P228、和N290中的任何所相对应的四个位置处包括取代。在另一个方面中,变体在与SEQIDNO:2的位置P58、R61、F165、M167、R193、P250、和N312;或SEQIDNO:4的位置P36、R39、F143、M145、R171、P228、和N290中的任何所相对应的五个位置处包括取代。在另一个方面中,变体在与SEQIDNO:2的位置P58、R61、F165、M167、R193、P250、和N312;或SEQIDNO:4的位置P36、R39、F143、M145、R171、P228、和N290中的任何所相对应的六个位置处包括取代。在另一个方面中,变体在与SEQIDNO:2的位置P58、R61、F165、M167、R193、P250、和N312;或SEQIDNO:4的位置P36、R39、F143、M145、R171、P228、和N290相对应的每个位置处包括取代。在另一个方面中,该变体包括在对应于位置P58的位置处的取代或由其组成。在另一个方面中,在对应于位置P58的位置处的氨基酸被Ala、Arg、Asn、Asp、Cys、Gln、Glu、Gly、His、Ile、Leu、Lys、Met、Phe、Ser、Thr、Trp、Tyr、或Val取代,优选被Ala、Gly、Met、Ser、或Val取代。在另一个方面中,该变体包括SEQIDNO:2的成熟多肽的取代P58A,G,M,S,V或由其组成。在另一个方面中,该变体包括在对应于位置R61的位置处的取代或由其组成。在另一个方面中,在对应于位置R61的位置处的氨基酸被Ala、Asn、Asp、Cys、Gln、Glu、Gly、His、Ile、Leu、Lys、Met、Phe、Pro、Ser、Thr、Trp、Tyr、或Val取代,优选被Ile、Leu、Asn、Pro、或Val取代。在另一个方面中,该变体包括SEQIDNO:2的成熟多肽的取代R61I,L,N,P,V或由其组成。在另一个方面中,该变体包括在对应于位置F165的位置处的取代或由其组成。在另一个方面中,在对应于位置F165的位置处的氨基酸被Ala、Arg、Asn、Asp、Cys、Gln、Glu、Gly、His、Ile、Leu、Lys、Met、Pro、Ser、Thr、Trp、Tyr、或Val取代,优选被Ala、Gly、Ile、Leu、Met、Ser、或Val取代。在另一个方面中,该变体包括SEQIDNO:2的成熟多肽的取代F165A,G,I,L,M,S,V或由其组成。在另一个方面中,该变体包括在对应于位置M167的位置处的取代或由其组成。在另一个方面中,在对应于位置M167的位置处的氨基酸被Ala、Arg、Asn、Asp、Cys、Gln、Glu、Gly、His、Ile、Leu、Lys、Met、Pro、Ser、Thr、Trp、Tyr、或Val取代,优选被Ala、Gly、Ile、Leu、Met、Ser、或Val取代。在另一个方面中,变体包括SEQIDNO:2的成熟多肽的取代M167A,G,I,S,V或由其组成。在另一个方面中,该变体包括在对应于位置R193的位置处的取代或由其组成。在另一个方面中,在对应于位置R193的位置处的氨基酸被Ala、Asn、Asp、Cys、Gln、Glu、Gly、His、Ile、Leu、Lys、Met、Phe、Pro、Ser、Thr、Trp、Tyr、或Val取代,优选被Asn或Gln取代。在另一个方面中,该变体包括SEQIDNO:2的成熟多肽的取代R193N,Q或由其组成。在另一个方面中,该变体包括在对应于位置P250的位置处的取代或由其组成。在另一个方面中,在对应于位置P250的位置处的氨基酸被Ala、Arg、Asn、Asp、Cys、Gln、Glu、Gly、His、Ile、Leu、Lys、Met、Phe、Ser、Thr、Trp、Tyr、或Val取代,优选被Ala、Gly、Ile、或Met取代。在另一个方面中,该变体包括SEQIDNO:2的成熟多肽的取代P250A,G,I,M或由其组成。在另一个方面中,该变体包括在对应于位置N312的位置处的取代或由其组成。在另一个方面中,在对应于位置N312的位置处的氨基酸被Ala、Arg、Asp、Cys、Gln、Glu、Gly、His、Ile、Leu、Lys、Met、Phe、Pro、Ser、Thr、Trp、Tyr、或Val取代,优选被Asp取代。在另一个方面中,该变体包括SEQIDNO:2的成熟多肽的取代N312D或由其组成。在另一个方面中,该变体包括在对应于位置P36的位置处的取代或由其组成。在另一个方面中,在对应于位置P36的位置处的氨基酸被Ala、Arg、Asn、Asp、Cys、Gln、Glu、Gly、His、Ile、Leu、Lys、Met、Phe、Ser、Thr、Trp、Tyr、或Val取代,优选被Ala、Gly、Met、Ser、或Val取代。在另一个方面中,该变体包括SEQIDNO:4的成熟多肽的取代P36A,G,M,S,V或由其组成。在另一个方面中,该变体包括在对应于位置R39的位置处的取代或由其组成。在另一个方面中,在对应于位置R39的位置处的氨基酸被Ala、Asn、Asp、Cys、Gln、Glu、Gly、His、Ile、Leu、Lys、Met、Phe、Pro、Ser、Thr、Trp、Tyr、或Val取代,优选被Ile、Leu、Asn、Pro、或Val取代。在另一个方面中,该变体包括SEQIDNO:4的成熟多肽的取代R39I,L,N,P,V或由其组成。在另一个方面中,该变体包括在对应于位置F143的位置处的取代或由其组成。在另一个方面中,在对应于位置F143的位置处的氨基酸被Ala、Arg、Asn、Asp、Cys、Gln、Glu、Gly、His、Ile、Leu、Lys、Met、Pro、Ser、Thr、Trp、Tyr、或Val取代,优选被Ala、Gly、Ile、Leu、Met、Ser、或Val取代。在另一个方面中,该变体包括SEQIDNO:4的成熟多肽的取代F143A,G,I,L,M,S,V或由其组成。在另一个方面中,该变体包括在对应于位置M145的位置处的取代或由其组成。在另一个方面中,在对应于位置M145的位置处的氨基酸被Ala、Arg、Asn、Asp、Cys、Gln、Glu、Gly、His、Ile、Leu、Lys、Met、Pro、Ser、Thr、Trp、Tyr、或Val取代,优选被Ala、Gly、Ile、Ser、或Val取代。在另一个方面中,该变体包括SEQIDNO:4的成熟多肽的取代M145A,G,I,S,V或由其组成。在另一个方面中,该变体包括在对应于位置R171的位置处的取代或由其组成。在另一个方面中,在对应于位置R171的位置处的氨基酸被Ala、Asn、Asp、Cys、Gln、Glu、Gly、His、Ile、Leu、Lys、Met、Phe、Pro、Ser、Thr、Trp、Tyr、或Val取代,优选被Asn或Gln取代。在另一个方面中,该变体包括SEQIDNO:4的成熟多肽的取代R171N,Q或由其组成。在另一个方面中,该变体包括在对应于位置P228的位置处的取代或由其组成。在另一个方面中,在对应于位置P228的位置处的氨基酸被Ala、Arg、Asn、Asp、Cys、Gln、Glu、Gly、His、Ile、Leu、Lys、Met、Phe、Ser、Thr、Trp、Tyr、或Val取代,优选被[Gly]取代。在另一个方面中,该变体包括SEQIDNO:4的成熟多肽的取代P228A,G,I,M或由其组成。在另一个方面中,该变体包括在对应于位置N290的位置处的取代或由其组成。在另一个方面中,在对应于位置N290的位置处的氨基酸被Ala、Arg、Asp、Cys、Gln、Glu、Gly、His、Ile、Leu、Lys、Met、Phe、Pro、Ser、Thr、Trp、Tyr、或Val取代,优选被Asp取代。在另一个方面中,该变体包括SEQIDNO:4的成熟多肽的取代N290D或由其组成。在另一个方面中,该变体包括在对应于位置P58和R61的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58和F165的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58和M167的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58和R193的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58和P250的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R61和F165的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R61和M167的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R61和R193的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R61和P250的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R61和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置F165和M167的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置F165和R193的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置F165和P250的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置F165和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置M167和R193的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置M167和P250的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置M167和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R193和P250的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R193和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P250和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R61、和F165的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R61、和M167的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R61、和R193的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R61、和P250的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R61、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、F165、和M167的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、F165、和R193的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、F165、和P250的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、F165、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、M167、和R193的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、M167、和P250的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、M167、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R193、和P250的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R193、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、P250、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R61、F165、和M167的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R61、F165、和R193的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R61、F165、和P250的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R61、F165、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R61、M167、和R193的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R61、M167、和P250的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R61、M167、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R61、R193、和P250的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R61、R193、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R61、P250、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置F165、M167、和R193的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置F165、M167、和P250的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置F165、M167、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置F165、R193、和P250的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置F165、R193、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置F165、P250、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置M167、R193、和P250的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置M167、R193、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置M167、P250、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R193、P250、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R61、F165、和M167的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R61、F165、和R193的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R61、F165、和P250的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R61、F165、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R61、M167、和R193的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R61、M167、和P250的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R61、M167、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R61、R193、和P250的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R61、R193、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R61、P250、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、F165、M167、和R193的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、F165、M167、和P250的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、F165、M167、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、F165、R193、和P250的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、F165、R193、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、F165、P250、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、M167、R193、和P250的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、M167、R193、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、M167、P250、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R193、P250、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R61、F165、M167、和R193的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R61、F165、M167、和P250的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R61、F165、M167、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R61、F165、R193、和P250的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R61、F165、R193、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R61、F165、P250、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R61、M167、R193、和P250的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R61、M167、R193、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R61、M167、P250、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R61、R193、P250、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置F165、M167、R193、和P250的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置F165、M167、R193、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置F165、M167、P250、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置F165、R193、P250、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置M167、R193、P250、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R61、F165、M167、和R193的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R61、F165、M167、和P250的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R61、F165、M167、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R61、F165、R193、和P250的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R61、F165、R193、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R61、F165、P250、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R61、M167、R193、和P250的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R61、M167、R193、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R61、M167、P250、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R61、R193、P250、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、F165、M167、R193、和P250的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、F165、M167、R193、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、F165、M167、P250、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、F165、R193、P250、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、M167、R193、P250、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R61、F165、M167、R193、和P250的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R61、F165、M167、R193、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R61、F165、M167、P250、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R61、F165、R193、P250、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R61、M167、R193、P250、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置F165、M167、R193、P250、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R61、F165、M167、R193、和P250的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R61、F165、M167、R193、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R61、F165、M167、P250、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R61、F165、R193、P250、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R61、M167、R193、P250、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、F165、M167、R193、P250、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置R61、F165、M167、R193、P250、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括在对应于位置P58、R61、F165、M167、R193、P250、和N312的位置处的取代或由其组成,例如以上描述的那些。在另一个方面中,该变体包括选自下组的一个或多个(例如若干个)取代或由其组成,该组由以下各项组成:P58A,G,M,S,V;R61I,L,N,P,V;F165A,G,I,L,M,S,V;M167A,G,I,S,V;R193N,Q;P250A,G,I,M;和N312D。这些变体可以进一步包括在选自下组的一个或多个(例如若干个)其他位置处的一个或多个另外的取代,该组由以下各项组成:SEQIDNO:2的K34、D37、D38、G59、D63、D91、I94、C96、M111、E164、K166、F169、Q170、E171、F194、T216、R219、D243、E245、Q246、E247、G248、W266、D290、K291、和S293。优选地,这些另外的取代选自下组,该组由以下各项组成:SEQIDNO:2的K34A;D37A,N,S,T;D38A,E,N;G59A,P,S,T;D63E,N,R;D91N,S,T;I94A,F,G,V;C96A,G;M111A,G;E164A,P;K166S,T;F169I,L,V,W,Y;Q170D,E,N;E171A,Q;F194A,W;T216A,M,V;R219A,K,S,T;D243A,G,N,Q;E245D,Q;Q246A,S,T;E247A,D,Q,W;G248A,V;W266F;D290A,E,N,Q;K291A,T;和S293T。在另一个方面中,该变体包括SEQIDNO:2的成熟多肽的或具有有机磷水解酶活性的与SEQIDNO:2的成熟多肽具有至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%一致性的多肽的取代F169I、W266F、C96A、E171Q、Q246S、R193Q、K291T、F169Y、F169W、T216A、G248V、P58G、M111A、G248A、I94V、I94A、C96G、I94G、G59P、G59T、F194A、P58V、F165G、M167I、G59S、M111G、P250G、P58M、T216M、F165L、P250A、E247W、F165M、N312D、P58S、T216V、M167V、P58A、F194W、M167S、R61L、R61P、R61N、I94F、R61I、F165I、R61V、F165A、F165V、F165S、M167G、M167A、D38A+M167A、P250I+M167A、E247A+M167A、P250M+M167A、D91N+M167A、R219S+M167A、D37N+M167A、K34A+M167A、E164P+M167A、R219A+M167A、R61L+M167A、F165A+M167A、D91S+M167A、D37T+M167A、R219T+M167A、K166S+M167A、Q170E+M167A、D37S+M167A、K166T+M167A、D63N+M167A、F165S+M167A、D91T+M167A、K291A+M167A、Q246A+M167A、E247Q+M167A、D37A+M167A、Q246T+M167A、D38E+M167A、D38N+M167A、E247D+M167A、E171Q+M167A、K291T+M167A、D243A+M167A、D290N+M167A、D290Q+M167A、Q246S+M167A、R219K+M167A、D63R+M167A、D290A+M167A、D63E+M167A、R193N+M167A、E245D+M167A、D290E+M167A、E164A+M167A、D243Q+M167A、D243G+M167A、D243N+M167A、E245Q+M167A、Q170D+M167A、E171A+M167A、Q170N+M167A、P250A+M167A、P250G+M167A、R193Q+M167A、N312D+M167A、R61V+M167A+P250G、W266F+M167A+P250G、R61L+N312D+M167A、I94F+M167A+P250G、N312D+M167A+P250G、R61N+M167A+P250G、R193Q+M167A+P250G、E171Q+M167A+P250G、F165V+M167A+P250G、R61P+M167A+P250G、Q246S+M167A+P250G、E245D+M167A+P250G、K291T+M167A+P250G、R61L+M167A+P250G、R61I+M167A+P250G、E245D+M167A+P250G+R61L、F169V+M167A+P250G+R61L、F165S+M167A+P250G+R61L、G59P+M167A+P250G+R61L、N312D+M167A+P250G+R61L、G59A+M167A+P250G+R61L、I94V+M167A+P250G+R61L、F165M+M167A+P250G+R61L、I94A+M167A+P250G+R61L、C96G+M167A+P250G+R61L、F169I+M167A+P250G+R61L、P58M+M167A+P250G+R61L、T216A+M167A+P250G+R61L、K291T+M167A+P250G+R61L、G59S+M167A+P250G+R61L、S293T+M167A+P250G+R61L、F169L+M167A+P250G+R61L、P58V+M167A+P250G+R61L、P58A+M167A+P250G+R61L、或C96A+M167A+P250G+R61L或由其组成,并且进一步,该变体与SEQIDNO:2的成熟有机磷水解酶相比,具有改进的有机磷水解酶活性。在另一个方面中,该变体包括SEQIDNO:4的成熟多肽的或具有有机磷水解酶活性的与SEQIDNO:4的成熟多肽具有至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%一致性的多肽的取代F147I、W244F、C74A、E149Q、Q224S、R171Q、K269T、F147Y、F147W、T194A、G226V、P36G、M89A、G226A、I72V、I72A、C74G、I72G、G37P、G37T、F172A、P36V、F143G、M145I、G37S、M89G、P228G、P36M、T194M、F143L、P228A、E225W、F143M、N290D、P36S、T194V、M145V、P36A、F172W、M145S、R39L、R39P、R39N、I72F、R39I、F143I、R39V、F143A、F143V、F143S、M145G、M145A、D16A+M145A、P228I+M145A、E225A+M145A、P228M+M145A、D69N+M145A、R197S+M145A、D15N+M145A、K12A+M145A、E142P+M145A、R197A+M145A、R39L+M145A、F143A+M145A、D69S+M145A、D15T+M145A、R197T+M145A、K144S+M145A、Q148E+M145A、D15S+M145A、K144T+M145A、D41N+M145A、F143S+M145A、D69T+M145A、K269A+M145A、Q224A+M145A、E225Q+M145A、D15A+M145A、Q224T+M145A、D16E+M145A、D16N+M145A、E225D+M145A、E149Q+M145A、K269T+M145A、D221A+M145A、D268N+M145A、D268Q+M145A、Q224S+M145A、R197K+M145A、D41R+M145A、D268A+M145A、D41E+M145A、R171N+M145A、E223D+M145A、D268E+M145A、E142A+M145A、D221Q+M145A、D221G+M145A、D221N+M145A、E223Q+M145A、Q148D+M145A、E149A+M145A、Q148N+M145A、P228A+M145A、P228G+M145A、R171Q+M145A、N290D+M145A、R39V+M145A+P228G、W244F+M145A+P228G、R39L+N290D+M145A、I72F+M145A+P228G、N290D+M145A+P228G、R39N+M145A+P228G、R171Q+M145A+P228G、E149Q+M145A+P228G、F143V+M145A+P228G、R39P+M145A+P228G、Q224S+M145A+P228G、E223D+M145A+P228G、K269T+M145A+P228G、R39L+M145A+P228G、R39I+M145A+P228G、E223D+M145A+P228G+R39L、F147V+M145A+P228G+R39L、F143S+M145A+P228G+R39L、G37P+M145A+P228G+R39L、N290D+M145A+P228G+R39L、G37A+M145A+P228G+R39L、I72V+M145A+P228G+R39L、F143M+M145A+P228G+R39L、I72A+M145A+P228G+R39L、C74G+M145A+P228G+R39L、F147I+M145A+P228G+R39L、P36M+M145A+P228G+R39L、T194A+M145A+P228G+R39L、K269T+M145A+P228G+R39L、G37S+M145A+P228G+R39L、S271T+M145A+P228G+R39L、F147L+M145A+P228G+R39L、P36V+M145A+P228G+R39L、P36A+M145A+P228G+R39L、或C74A+M145A+P228G+R39L或由其组成,并且进一步,该变体与SEQIDNO:4的成熟有机磷水解酶相比,具有改进的有机磷水解酶活性。这些氨基酸变化可以具有微小性质,即,不会显著地影响蛋白质的折叠和/或活性的保守氨基酸取代或插入;典型地1-30个氨基酸的小缺失;小的氨基或羧基-末端延伸,如氨基末端的甲硫氨酸残基;多达20-25个残基的小接头肽;或便于通过改变净电荷或另一种功能来纯化的小延伸,如聚组氨酸段(tract)、抗原表位或结合结构域。保守取代的实例是在下组的范围内:碱性氨基酸(精氨酸、赖氨酸及组氨酸)、酸性氨基酸(谷氨酸和天冬氨酸)、极性氨基酸(谷氨酰胺和天冬酰胺)、疏水性氨基酸(亮氨酸、异亮氨酸及缬氨酸)、芳香族氨基酸(苯丙氨酸、色氨酸及酪氨酸)及小氨基酸(甘氨酸、丙氨酸、丝氨酸、苏氨酸及甲硫氨酸)。一般不会改变比活性的氨基酸取代是本领域已知的并且例如由H.诺伊拉特(Neurath)和R.L.希尔(Hill),1979在蛋白质(TheProteins),学术出版社(AcademicPress),纽约中描述。常见的取代是Ala/Ser、Val/Ile、Asp/Glu、Thr/Ser、Ala/Gly、Ala/Thr、Ser/Asn、Ala/Val、Ser/Gly、Tyr/Phe、Ala/Pro、Lys/Arg、Asp/Asn、Leu/Ile、Leu/Val、Ala/Glu、和Asp/Gly。可替代地,氨基酸改变具有这样的性质:改变多肽的物理化学特性。例如,氨基酸改变可以改进多肽的热稳定性、改变底物特异性、改变最适pH,等。可以根据本领域中已知的程序,如定点诱变或丙氨酸扫描诱变(Cunningham(坎宁汉)和Wells(威尔斯),1989,Science(科学)244:1081-1085)来鉴定多肽中的必需氨基酸。在后一技术中,将单一丙氨酸突变引入到分子中的每个残基,并且测试所得突变分子的有机磷水解酶活性以鉴定对于该分子的活性关键的氨基酸残基。还参见希尔顿(Hilton)等人,1996,生物化学杂志(J.Biol.Chem.),271:4699-4708。也可结合假定接触位点氨基酸的突变,如通过以下技术例如核磁共振、结晶学、电子衍射、或光亲和标记进行确定的对结构进行物理学分析,从而确定酶的活性位点或其他生物学相互作用。参见,例如德沃斯(deVos)等人,1992,科学(Science)255:306-312;史密斯(Smith)等人,1992,分子生物学杂志(J.Mol.Biol.)224:899-904;乌乐达维尔(Wlodaver)等人,1992,欧洲生物化学学会联盟通讯(FEBSLett.)309:59-64。还可以从与相关多肽的比对推断鉴定必需氨基酸。这些变体可以由290至308个氨基酸例如300至308个氨基酸组成。在一个实施例中,与亲本酶相比,该变体具有改进的有机磷水解酶活性(催化速率)。亲本有机磷水解酶亲本有机磷水解酶可以是(a)与SEQIDNO:2的成熟多肽具有至少60%序列一致性的多肽;(b)由以下多核苷酸编码的多肽,该多核苷酸在低严格条件下与(i)SEQIDNO:1的成熟多肽编码序列或(ii)(i)的全长互补体杂交;或(c)由以下多核苷酸编码的多肽,该多核苷酸与SEQIDNO:1的成熟多肽编码序列具有至少60%序列一致性。在一个方面中,该亲本与SEQIDNO:2的成熟多肽具有至少60%,例如至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%的序列一致性,具有有机磷水解酶活性。在一个方面,该亲本的氨基酸序列与SEQIDNO:2的成熟多肽相差多达10个氨基酸,例如1、2、3、4、5、6、7、8、9或10个。在另一个方面,该亲本包括SEQIDNO:2的氨基酸序列或由其组成。在另一个方面,该亲本包括SEQIDNO:2的成熟多肽或由其组成。在另一个方面中,该亲本是SEQIDNO:2的成熟多肽的、包含至少308个氨基酸残基例如至少300个氨基酸残基以及至少290个氨基酸残基的一个片段。在另一个实施例中,该亲本是SEQIDNO:2的成熟多肽的等位基因变体。亲本有机磷水解酶也可以是(a)与SEQIDNO:4的成熟多肽具有至少60%序列一致性的多肽;(b)由以下多核苷酸编码的多肽,该多核苷酸在低严格条件下与(i)SEQIDNO:3的成熟多肽编码序列或(ii)(i)的全长互补体杂交;或(c)由以下多核苷酸编码的多肽,该多核苷酸与SEQIDNO:3的成熟多肽编码序列具有至少60%序列一致性。在一个方面中,该亲本与SEQIDNO:4的成熟多肽具有至少60%,例如至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%的序列一致性,具有有机磷水解酶活性。在一个方面,该亲本的氨基酸序列与SEQIDNO:2的成熟多肽相差多达10个氨基酸,例如1、4、3、4、5、6、7、8、9或10个。在另一个方面,该亲本包括SEQIDNO:4的氨基酸序列或由其组成。在另一个方面,该亲本包括SEQIDNO:4的成熟多肽或由其组成。在另一个方面中,该亲本是SEQIDNO:4的成熟多肽的、包含至少300个氨基酸残基例如至少290个氨基酸残基的一个片段。在另一个实施例中,该亲本是SEQIDNO:4的成熟多肽的等位基因变体。在另一个方面,该亲本是由如下的多核苷酸编码,该多核苷酸在非常低严格条件、低严格条件、中严格条件、中-高严格条件、高严格条件或非常高严格条件下与(i)SEQIDNO:1的成熟多肽编码序列、或(ii)(i)的全长互补体杂交(萨拉布鲁克(Sambrook)等人,1989,分子克隆实验指南(MolecularCloning:ALaboratoryManual),第二版,冷泉港(ColdSpringHarbor),纽约)。可以使用SEQIDNO:1的多核苷酸或其子序列、连同SEQIDNO:2的多肽或其片段来设计核酸探针以根据本领域熟知的方法来鉴别并克隆对来自不同属或种的菌株的亲本进行编码的DNA。具体而言,可以根据标准DNA印迹程序,使用这类探针与感兴趣的细胞的基因组DNA或cDNA杂交,以便鉴定和分离其中的对应基因。此类探针可以明显短于完整序列,但是长度应为至少15,例如至少25、至少35、或至少70个核苷酸。优选地,核酸探针的长度为至少100个核苷酸,例如长度为至少200个核苷酸、至少300个核苷酸、至少400个核苷酸、至少500个核苷酸、至少600个核苷酸、至少700个核苷酸、至少800个核苷酸或至少900个核苷酸。DNA和RNA探针二者均可使用。典型地将探针进行标记(例如,用32P、3H、35S、生物素、或抗生物素蛋白),以检测相应的基因。本发明涵盖此类探针。可以针对与上文所述的探针杂交并编码亲本的DNA来筛选由这类其他菌株制备的基因组DNA或cDNA文库。来自这类其他菌株的基因组DNA或其他DNA可以通过琼脂糖或聚丙烯酰胺凝胶电泳,或其他分离技术来分离。来自文库的DNA或分离的DNA可转移到并固定在硝酸纤维素或其他适合的载体材料上。为了鉴定与SEQIDNO:1或其子序列杂交的克隆或DNA,将载体材料用于DNA印迹中。出于本发明的目的,杂交表明多核苷酸在非常低到非常高严格条件下与一种被标记的核酸探针杂交,该探针对应于(i)SEQIDNO:1;(ii)SEQIDNO:1的成熟多肽编码序列;(iii)其全长互补体;或(iv)其子序列。可以使用例如X-射线胶片或本领域已知的任何其他检测手段来检测在这些条件下核酸探针杂交的分子。在一个方面中,该核酸探针是以下多核苷酸,该多核苷酸编码SEQIDNO:2的多肽;其成熟多肽;或其片段。在另一方面,该核酸探针是SEQIDNO:1。在另一个实施例中,该亲本由如下的多核苷酸编码,该多核苷酸与SEQIDNO:1的成熟多肽编码序列具有至少60%,例如至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%的序列一致性。该多肽可以是杂合多肽,其中一种多肽的区域在另一种多肽的区域的N-末端或C-末端处融合。亲本可以是融合多肽或可切割融合多肽,其中另一种多肽在本发明多肽的N-末端或C-末端处融合。通过将编码另一多肽的多核苷酸融合到本发明的多核苷酸而产生融合多肽。用于产生融合多肽的技术在本领域是已知的,并且包括连接编码多肽的编码序列,这样使得它们在框内并且使得融合多肽的表达处于相同的一个或多个启动子和终止子的控制下。融合多肽还可以使用内含肽技术来构建,其中融合多肽在翻译后产生(库珀(Cooper)等人,1993,欧洲分子生物学学会杂志(EMBOJ.)12:2575-2583;道森(Dawson)等人,1994,科学(Science)266:776-779)。融合多肽可以在两种多肽之间进一步包括切割位点。在融合蛋白分泌之时,该位点被切割,从而释放出这两种多肽。切割位点的实例包括但不限于以下各项中披露的位点:马丁(Martin)等人,2003,工业微生物学与生物技术杂志(J.Ind.Microbiol.Biotechnol.)3:568-576;斯韦蒂纳(Svetina)等人,2000,生物技术杂志(J.Biotechnol.)76:245-251;拉斯马森(Rasmussen)-威尔逊(Wilson)等人,1997,应用环境微生物学(Appl.Environ.Microbiol.)63:3488-3493;华德(Ward)等人,1995,生物技术(Biotechnology)13:498-503;以及孔特拉斯(Contreras)等人,1991,生物技术9:378-381;伊顿(Eaton)等人,1986,生物化学(Biochemistry)25:505-512;柯林斯(Collins)-莱斯(Racie)等人,1995,生物技术13:982-987;卡特(Carter)等人,1989,蛋白:结构、功能和遗传学(Proteins:Structure,Function,andGenetics)6:240-248;以及史蒂文斯(Stevens),2003,世界药物发现(DrugDiscoveryWorld)4:35-48。该亲本可以从任何属的微生物中获得。出于本发明的目的,如在此结合一种给定的来源使用的术语“从...中获得”应意指由多核苷酸编码的亲本是由该来源或由其中已经插入来自该来源的多核苷酸的一种菌株产生的。在一方面,该亲本是胞外分泌的。该亲本可以是海兔科(相当大的海蛞蝓和海兔的科)有机磷水解酶。优选地,该亲本是海兔属有机磷水解酶;例如,该亲本是加州海兔、加州黑海兔(Aplysiacedrocensis)、褐海兔(Aplysiacervina)、牛角海兔(Aplysiacornigera)、克罗纳拉海兔(Aplysiacronullae)、黑指纹海兔(Aplysiadactylomela)、丹尼氏海兔(Aplysiadenisoni)、脱毛海兔(Aplysiadepilans)、杜拉海兔(Aplysiadura)、奥伊罗拉海兔(Aplysiaeuchlora)、超常海兔(Aplysiaextraordinaria)、斑点海兔(Aplysiafasciata)、巨海兔(Aplysiagigantea)、小海兔(Aplysiagracilis)、印加海兔(Aplysiainca)、朱莉安娜海兔(Aplysiajuliana)、卡拉得里尼海兔(Aplysiakeraudreni)、黑斑海兔(Aplysiakurodai)、斑纹海兔(Aplysiamaculata)、莫里奥海兔(Aplysiamorio)、黑海兔(Aplysianigra)、黑海兔(Aplysianigra)、眼斑海兔(Aplysiaoculifera)、矮海兔(Aplysiaparvula)、肺海兔(Aplysiapulmonica)、点状海兔(Aplysiapunctata)、狭海兔(Aplysiarehderi)、网状海兔(Aplysiareticulata)、网状伪足海兔(Aplysiareticulopoda)、罗氏海兔(Aplysiarobertsi)、叶海兔(Aplysiarudmani)、相模海兔(Aplysiasagamiana)、西宝海兔(Aplysiasibogae)、苏氏海兔(Aplysiasowerbyi)、悉尼海兔(Aplysiasydneyensis)、坦桑尼亚海兔(Aplysiatanzanensis)、提格里尼亚海兔(Aplysiatigrinella)、或巨大海兔(Aplysiavaccaria)有机磷水解酶。在一个优选方面中,该亲本是加州海兔有机磷水解酶,例如SEQIDNO:2的有机磷水解酶或其成熟多肽。应理解的是对于前述的种,本发明涵盖完全和不完全阶段(perfectandimperfectstates),和其他分类学的等同物(equivalent),例如无性型(anamorph),而与它们已知的种名无关。本领域的普通技术人员将容易地识别适当等效物的身份。这些物种的菌株可以容易地在许多培养物保藏中心为公众所获得,如美国典型培养物保藏中心(ATCC)、德国微生物菌种保藏中心(DeutscheSammlungvonMikroorganismenundZellkulturenGmbH,DSMZ)、荷兰菌种保藏中心(CentraalbureauVoorSchimmelcultures,CBS)以及美国农业研究服务专利培养物保藏中心北方地区研究中心(NRRL)。可以使用以上提到的探针从其他来源,包括从自然界(例如,土壤、堆肥、水等等)分离的微生物或直接从自然材料(例如,土壤、堆肥、水等等)获得的DNA样品鉴定和获得该亲本。用于从自然生活环境中直接分离微生物和DNA的技术是本领域熟知的。然后可通过在另一种微生物或混合DNA样本的基因组DNA或cDNA文库中类似地进行筛选来获得编码亲本的多核苷酸。一旦用一种或多种探针检测到编码亲本的多核苷酸,就可以通过使用本领域普通技术人员已知的技术分离或克隆该多核苷酸(参见,例如,萨姆布鲁克等人,1989,见上文)。变体的制备本发明涉及用于获得具有有机磷水解酶活性的变体的方法,该方法包括:(a)将在与SEQIDNO:2的成熟多肽的位置K34、D37、D38、P58、G59、R61、D63、D91、I94、C96、M111、E164、F165、K166、M167、F169、Q170、E171、R193、F194、T216、R219、D243、E245、Q246、E247、G248、P250、W266、D290、K291、S293、和N312,优选位置P58、R61、F165、M167、R193、P250、和N312相对应的一个或多个(例如若干个)位置处的取代引入亲本有机磷水解酶,其中该变体具有有机磷水解酶活性;并且(b)回收该变体。可以使用本领域已知的任何诱变程序来制备这些变体,例如定点诱变、合成基因构建、半合成基因构建、随机诱变、改组等。定点诱变是在编码该亲本的多核苷酸中的一个或多个限定位点处引入一个或多个(例如,若干个)突变的技术。通过使用涉及含有所希望的突变的寡核苷酸引物的PCR可以体外实现定点诱变。也可以通过盒式诱变进行体外定点诱变,所述盒式诱变涉及由限制酶在包括编码亲本的多核苷酸的质粒中的位点处切割并且随后将含有突变的寡核苷酸连接在多核苷酸中。通常,消化该质粒与该寡核苷酸的限制酶是相同的,以允许该质粒的粘性末端以及插入片段彼此连接。参见,例如,谢勒(Scherer)和戴维斯(Davis),1979,美国国家科学院院刊(Proc.Natl.Acad.Sci.USA)76:4949-4955;以及巴顿(Barton)等人,1990,核酸研究(NucleicAcidsRes.)18:7349-4966。还可以通过本领域已知的方法体内实现定点诱变。参见例如,美国专利申请公开号2004/0171154;斯道瑞希(Storici)等人,2001,自然生物技术(NatureBiotechnol.)19:773-776;卡伦(Kren)等人,1998,自然医学(Nat.Med.)4:285-290;以及凯利萨诺(Calissano)和马奇诺(Macino),1996,真菌遗传学简讯(FungalGenet.Newslett.)43:15-16。在本发明中可以使用任何定点诱变程序。存在可用于制备变体的很多可商购的试剂盒。合成基因构建需要体外合成设计的多核苷酸分子以编码感兴趣的多肽。基因合成可以利用多种技术来进行,如由田(Tian)等人(2004,自然(Nature)432:1050-1054)所描述的基于多路微芯片的技术、以及其中在光可编程的微流芯片上合成并组装寡核苷酸的类似技术。可以做出单个或多个氨基酸取代、缺失和/或插入并且使用诱变、重组和/或改组的已知方法进行测试,随后进行相关筛选程序,如由里德哈尔-奥尔森(Reidhaar-Olson)和萨奥尔(Sauer),1988,科学(Science)241:53-57;博维(Bowie)和萨奥尔,1989,美国国家科学院院刊(Proc.Natl.Acad.Sci.USA)86:2152-2156;WO95/17413;或WO95/22625所披露的那些。可以使用的其他方法包括易错PCR、噬菌体展示(例如,洛曼(Lowman)等人,1991,生物化学(Biochemistry)30:10832-10837;美国专利号5,223,409;WO92/06204)以及区域定向诱变(德比什尔(Derbyshire)等人,1986,基因(Gene)46:145;内尔(Ner)等人,1988,DNA7:127)。可以结合诱变/改组方法与高通量自动化筛选方法来检测由宿主细胞表达的克隆的、诱变的多肽的活性(内斯(Ness)等人,1999,自然生物技术(NatureBiotechnology)17:893-896)。编码活性多肽的诱变的DNA分子可以回收自宿主细胞,并且使用本领域的标准方法对其进行迅速测序。这些方法允许迅速确定多肽中单个氨基酸残基的重要性。通过组合合成基因构建、和/或定点诱变、和/或随机诱变、和/或改组的多个方面来实现半合成基因构建。半合成构建典型地是,利用合成的多核苷酸片段的过程结合PCR技术。因此,基因的限定的区域可以从头合成,而其他区域可以使用位点特异性诱变引物来扩增,而还有其他区域可以经受易错PCR或非易错PCR扩增。然后可以对多核苷酸子序列进行改组。多核苷酸本发明还涉及编码本发明的变体的多核苷酸。核酸构建体本发明还涉及包括编码本发明的变体的、可操作地连接至一个或多个控制序列上的多核苷酸的核酸构建体,该一个或多个控制序列在与控制序列相容的条件下指导编码序列在适合的宿主细胞中的表达。可以按多种方式来操纵该多核苷酸以提供变体的表达。取决于表达载体,在其插入载体以前操纵多核苷酸可以是希望的或必需的。用于利用重组DNA方法修饰多核苷酸的技术是本领域熟知的。控制序列可以是启动子,即由宿主细胞识别用于表达该多核苷酸的多核苷酸。启动子包含介导该变体的表达的转录控制序列。启动子可以是在宿主细胞中显示出转录活性的任何多核苷酸,包括突变型、截短型及杂合型启动子,并且可以是由编码与该宿主细胞同源或异源的细胞外或细胞内多肽的基因获得。用于在细菌宿主细胞中指导本发明的核酸构建体的转录的合适启动子的实例是从以下基因中获得的启动子:解淀粉芽孢杆菌α-淀粉酶基因(amyQ)、地衣芽孢杆菌α-淀粉酶基因(amyL)、地衣芽孢杆菌青霉素酶基因(penP)、嗜热脂肪芽孢杆菌麦芽糖淀粉酶基因(amyM)、枯草芽孢杆菌果聚糖蔗糖酶基因(sacB)、枯草芽孢杆菌xylA和xylB基因、苏云金杆菌cryIIIA基因(阿盖塞(Agaisse)和勒尔克吕(Lereclus),1994,分子微生物学(MolecularMicrobiology)13:97-107)、大肠杆菌lac操纵子、大肠杆菌trc启动子(埃贡(Egon)等人,1988,基因(Gene)69:301-315)、天蓝链霉菌琼脂水解酶基因(dagA)、以及原核β-内酰胺酶基因(维拉-卡马洛夫(Villa-Kamaroff)等人,1978,美国国家科学院院刊(Proc.Natl.Acad.Sci.USA)75:3727-3731)以及tac启动子(德波尔(DeBoer)等人,1983,美国国家科学院院刊80:21-25)。其他启动子描述在吉尔伯特(Gilbert)等人,1980,科学美国人(ScientificAmerican)242:74-94的“来自重组细菌的有用蛋白质(Usefulproteinsfromrecombinantbacteria)”;以及在萨姆布鲁克(Sambrook)等人,1989,见上文。串联启动子的实例披露在WO99/43835中。用于指导本发明的核酸构建体在丝状真菌宿主细胞中的转录的合适启动子的实例是从以下各项的基因获得的启动子:构巢曲霉乙酰胺酶、黑曲霉中性α-淀粉酶、黑曲霉酸稳定性α-淀粉酶、黑曲霉或泡盛曲霉葡糖淀粉酶(glaA)、米曲霉TAKA淀粉酶、米曲霉碱性蛋白酶、米曲霉丙糖磷酸异构酶、尖镰孢胰蛋白酶样蛋白酶(WO96/00787)、镶片镰孢淀粉葡糖苷酶(WO00/56900)、镶片镰孢Daria(FusariumvenenatumDaria)(WO00/56900)、镶片镰孢Quinn(FusariumvenenatumQuinn)(WO00/56900)、米黑根毛霉(Rhizomucormiehei)脂肪酶、米黑根毛霉天冬氨酸蛋白酶、里氏木霉β-葡糖苷酶、里氏木霉纤维二糖水解酶I、里氏木霉纤维二糖水解酶II、里氏木霉内切右旋糖酐酶I、里氏木霉内切右旋糖酐酶II、里氏木霉内切右旋糖酐酶III、里氏木霉内切右旋糖酐酶IV、里氏木霉内切右旋糖酐酶V、里氏木霉木聚糖酶I、里氏木霉木聚糖酶II、里氏木霉β-木糖苷酶,以及NA2tpi启动子(一种修饰的启动子,其来自曲霉属中性α-淀粉酶基因,其中未翻译的前导序列由曲霉属丙糖磷酸异构酶基因的未翻译的前导序列替代;非限制性实例包括修饰的启动子,其来自黑曲霉中性α-淀粉酶的基因,其中未翻译的前导序列由构巢曲霉或米曲霉丙糖磷酸异构酶基因的未翻译的前导序列替代);以及其突变型启动子、截短型启动子、以及杂合型启动子。在酵母宿主中,有用的启动子从以下的基因获得:酿酒酵母烯醇酶(ENO-1)、酿酒酵母半乳糖激酶(GAL1)、酿酒酵母醇脱氢酶/甘油醛-3-磷酸脱氢酶(ADH1、ADH2/GAP)、酿酒酵母丙糖磷酸异构酶(TPI)、酿酒酵母金属硫蛋白(CUP1)、以及酿酒酵母3-磷酸甘油酸激酶。罗马诺斯(Romanos)等人,1992,酵母(Yeast)8:423-488描述了酵母宿主细胞的其他有用的启动子。控制序列还可以是由宿主细胞识别以终止转录的转录终止子。该终止子序列被可操作地连接至编码该变体的多核苷酸的3’-端。可以使用在宿主细胞中具有功能的任何终止子。用于细菌宿主细胞的优选终止子是从克劳氏芽孢杆菌碱性蛋白酶(aprH)、地衣芽孢杆菌α-淀粉酶(amyL)以及大肠杆菌核糖体RNA(rrnB)的基因获得。丝状真菌宿主细胞的优选终止子是从以下各项的基因中获得的:构巢曲霉邻氨基苯甲酸合酶、黑曲霉葡糖淀粉酶、黑曲霉α-葡糖苷酶、米曲霉TAKA淀粉酶以及尖镰孢胰蛋白酶样蛋白酶。用于酵母宿主细胞的优选终止子从以下各项的基因获得:酿酒酵母烯醇酶、酿酒酵母细胞色素C(CYC1)、以及酿酒酵母甘油醛-3-磷酸脱氢酶。用于酵母宿主细胞的其他有用的终止子由罗马诺斯(Romanos)等人,1992,见上文描述。该控制序列还可以是在启动子下游并且在基因编码序列上游的mRNA稳定子区域,它增加该基因的表达。适合的mRNA稳定子区的实例是从以下获得的:苏云金杆菌cryIIIA基因(WO94/25612)和枯草芽孢杆菌SP82基因(化(Hue)等人,1995,细菌学杂志(JournalofBacteriology)177:3465-3471)。该控制序列还可以是一个前导子,一种对宿主细胞翻译很重要的非翻译mRNA区域。前导子序列可操作地连接至编码该变体的多核苷酸的5’-端。可以使用在宿主细胞中具有功能的任何前导序列。用于丝状真菌宿主细胞的优选前导序列是从米曲霉TAKA淀粉酶和构巢曲霉丙糖磷酸异构酶的基因获得。适用于酵母宿主细胞的前导序列从以下各项的基因获得:酿酒酵母烯醇酶(ENO-1)、酿酒酵母3-磷酸甘油酸激酶、酿酒酵母α因子、以及酿酒酵母醇脱氢酶/甘油醛-3-磷酸脱氢酶(ADH2/GAP)。该控制序列还可以是多腺苷酸化序列,即被可操作地连接至该变体编码序列的3’-末端并且当转录时由宿主细胞识别成将多腺苷酸残基添加到所转录的mRNA上的信号的序列。可以使用在宿主细胞中起作用的任何多腺苷酸化序列。用于丝状真菌宿主细胞的优选聚腺苷酸化序列是从以下各项的基因获得:构巢曲霉邻氨基苯甲酸合酶、黑曲霉葡糖淀粉酶、黑曲霉α-葡糖苷酶、米曲霉TAKA淀粉酶以及尖镰孢胰蛋白酶样蛋白酶。对于酵母宿主细胞有用的多聚腺苷酸化序列在郭(Guo)和谢尔曼(Sherman),1995,分子细胞生物学(Mol.CellularBiol.)15:5983-5990中得以描述。该控制序列还可以是信号肽编码区,编码与变体的N-端连接的信号肽,并且引导该变体进入细胞的分泌通路。该多核苷酸的编码序列的5’-端可以固有地包含信号肽编码序列,该信号肽编码序列在翻译阅读框中与编码该变体的编码序列的区段天然地连接在一起。可替代地,编码序列5’-端可以包括对于该编码序列是外源的信号肽编码序列。在编码序列不天然地包含信号肽编码序列的情况下,可能需要外源信号肽编码序列。可替代地,外源信号肽编码序列可以简单地置换天然信号肽编码序列,以便增加变体的分泌。然而,可以使用指导表达的变体进入宿主细胞的分泌通路的任何信号肽编码序列。用于细菌宿主细胞的有效信号肽编码序列是从以下各项的基因获得的信号肽编码序列:芽孢杆菌属NCIB11837产麦芽糖淀粉酶、地衣芽孢杆菌枯草杆菌蛋白酶、地衣芽孢杆菌β-内酰胺酶、嗜热脂肪芽孢杆菌α-淀粉酶、嗜热脂肪芽孢杆菌中性蛋白酶(nprT、nprS、nprM)以及枯草芽孢杆菌prsA。西蒙纳(Simonen)和帕尔瓦(Palva),1993,微生物学评论(MicrobiologicalReviews)57:109-137描述了另外的信号肽。用于丝状真菌宿主细胞的有效信号肽编码序列是获得自以下项的基因的信号肽编码序列:黑曲霉中性淀粉酶、黑曲霉葡糖淀粉酶、米曲霉TAKA淀粉酶、特异腐质霉纤维素酶、特异腐质霉内切右旋糖酐酶V、柔毛腐质霉脂肪酶以及米黑根毛霉天冬氨酸蛋白酶。对于酵母宿主细胞有用的信号肽获得自以下项的基因:酿酒酵母α-因子和酿酒酵母转化酶。罗马诺斯(Romanos)等人,1992,同上,描述了其他有用的信号肽编码序列。该控制序列还可以是编码位于变体的N-末端处的前肽的前肽编码序列。生成的多肽被称为前体酶(proenzyme)或多肽原(或在一些情况下被称为酶原(zymogen))。多肽原通常是无活性的并且可以通过催化切割或自身催化切割来自多肽原的前肽而转化为活性多肽。前肽编码序列可以从以下各项的基因获得:枯草芽孢杆菌碱性蛋白酶(aprE)、枯草芽孢杆菌中性蛋白酶(nprT)、嗜热毁丝霉漆酶(WO95/33836)、米黑根毛霉天冬氨酸蛋白酶、以及酿酒酵母α-因子。在信号肽序列和前肽序列二者都存在的情况下,该前肽序列定位成紧邻该变体的N-末端并且该信号肽序列定位成紧邻该前肽序列的N-末端。还令人希望的可以是添加相对于宿主细胞的生长来调节该变体的表达的调节序列。调节系统的实例是响应于化学或物理刺激而引起基因的表达开启或关闭的那些,包括调节化合物的存在。原核系统中的调节系统包括lac、tac、以及trp操纵子系统。在酵母中,可以使用ADH2系统或GAL1系统。在丝状真菌中,可以使用黑曲霉葡糖淀粉酶启动子、米曲霉TAKAα-淀粉酶启动子、以及米曲霉葡糖淀粉酶启动子。调节序列的其他例子是允许基因扩增的那些。在真核系统中,这些调节序列包括在甲氨蝶呤存在下被扩增的二氢叶酸还原酶基因以及用重金属扩增的金属硫蛋白基因。在这些情况下,编码该变体的多核苷酸将与该调节序列可操作地连接。表达载体本发明还涉及包括编码本发明的变体的多核苷酸、启动子、以及转录和翻译终止信号的重组表达载体。不同的核苷酸和控制序列可以连接在一起以产生重组表达载体,这一重组表达载体可以包括一个或多个便利的限制酶切位点以允许在这些位点处插入或取代编码该变体的多核苷酸。可替代地,该多核苷酸可以通过将该多核苷酸或包括该多核苷酸的核酸构建体插入用于表达的适当载体中来表达。在产生该表达载体时,该编码序列位于该载体中,这样使得该编码序列与该供表达的适当控制序列可操作地连接。重组表达载体可以是任何载体(例如,质粒或病毒),其能够方便地进行重组DNA程序,并且能够引起多核苷酸的表达。载体的选择将典型地取决于该载体与有待引入该载体的宿主细胞的相容性。该载体可以是线性的或闭合的环状质粒。该载体可以是自主复制载体,即,作为染色体外实体存在的载体,其复制独立于染色体复制,例如,质粒、染色体外元件、微染色体或人工染色体。该载体可包含任何用以保证自我复制的要素。可替代地,该载体可以是这样载体,当它被引入该宿主细胞中时,被整合到基因组中并且与其中已整合了它的一个或多个染色体一起复制。此外,可以使用单一载体或质粒或两个或更多个载体或质粒(这些载体或质粒共同含有待引入宿主细胞的基因组中的总DNA)或转座子。该载体优选包含一个或多个允许方便地选择转化细胞、转染细胞、转导细胞等细胞的选择性标记。选择性标记是这样一种基因,该基因的产物提供了杀生物剂抗性或病毒抗性、重金属抗性、营养缺陷型的原养型等。细菌性选择性标记的实例是地衣芽孢杆菌或枯草芽孢杆菌dal基因,或赋予抗生素抗性(例如氨苄青霉素、氯霉素、卡那霉素、新霉素、大观霉素或四环素抗性)的标记。用于酵母宿主细胞的适合的标记包括但不限于ADE2、HIS3、LEU2、LYS2、MET3、TRP1、以及URA3。用于在丝状真菌宿主细胞中使用的选择性标记包含但不限于amdS(乙酰胺酶)、argB(鸟氨酸氨甲酰基转移酶)、bar(草胺膦乙酰转移酶)、hph(潮霉素磷酸转移酶)、niaD(硝酸还原酶)、pyrG(乳清苷-5’-磷酸脱羧酶)、sC(硫酸腺苷基转移酶)、以及trpC(邻氨基苯甲酸合酶)、连同其等效物。优选在曲霉属细胞中使用的是构巢曲霉或米曲霉amdS和pyrG基因以及吸水链霉菌(Streptomyceshygroscopicus)bar基因。载体优选含有允许载体整合到宿主细胞的基因组中或载体在细胞中独立于基因组自主复制的一个或多个元件。对于整合到该宿主细胞基因组中,该载体可以依靠编码该变体的多核苷酸序列或者用于通过同源或非同源重组整合到该基因组中的该载体的任何其他元件。可替代地,该载体可以包含用于指导通过同源重组而整合到宿主细胞基因组中的一个或多个染色体中的一个或多个精确位置处的另外的多核苷酸。为了增加在精确位置整合的可能性,这些整合的元件应包含足够数量的核酸,例如100至10,000个碱基对、400至10,000个碱基对、以及800至10,000个碱基对,这些碱基对与对应的靶序列具有高度的序列一致性以提高同源重组的可能性。这些整合元件可以是与宿主细胞的基因组内的靶序列同源的任何序列。此外,这些整合元件可以是非编码多核苷酸或编码多核苷酸。另一个方面,该载体可以通过非同源重组整合到宿主细胞的基因组中。对于自主复制,载体可以进一步包含使该载体能够在所讨论的宿主细胞中自主复制的复制起点。复制起点可以是在细胞中起作用的介导自主复制的任何质粒复制子。术语“复制起点(originofreplication)”或“质粒复制子(plasmidreplicator)”意指使得质粒或载体可在体内复制的多核苷酸。细菌复制起点的实例是允许在大肠杆菌中复制的质粒pBR322、pUC19、pACYC177、以及pACYC184的复制起点,以及允许在芽孢杆菌属中复制的质粒pUB110、pE194、pTA1060、以及pAMβ1的复制起点。用于在酵母宿主细胞中使用的复制起点的实例是2微米复制起点ARS1、ARS4、ARS1与CEN3的组合以及ARS4与CEN6的组合。在丝状真菌细胞内有用的复制起点的实例是AMA1和ANS1(格姆斯(Gems)等人,1991,基因(Gene)98:61-67;卡伦(Cullen)等人,1987,核酸研究(NucleicAcidsRes.)15:9163-9175;WO00/24883)。AMA1基因的分离和包含该基因的质粒或载体的构建可以根据披露于WO00/24883中的方法来完成。可以将本发明的多核苷酸的多于一个的拷贝插入到一个宿主细胞中以增加变体的产生。通过将序列的至少一个另外的拷贝整合到宿主细胞基因组中或通过包括一个与该多核苷酸一起的可扩增的选择性标记基因可以获得多核苷酸的增加的拷贝数目,其中通过在适当的选择性试剂的存在下培养细胞可以选择包含选择性标记基因的经扩增的拷贝的细胞、以及由此该多核苷酸的另外的拷贝。用于连接以上所描述的元件以构建本发明的重组表达载体的程序是本领域的普通技术人员熟知的(参见,例如,萨姆布鲁克(Sambrook)等人,1989,见上文)。宿主细胞本发明还涉及重组宿主细胞,这些重组宿主细胞包括编码本发明的变体的、可操作地连接至一个或多个控制序列的多核苷酸,该一个或多个控制序列指导本发明的变体的产生。将包括多核苷酸的构建体或载体引入宿主细胞中,这样使得该构建体或载体被维持作为染色体整合体或作为自主复制的染色体外载体,如早前所描述。术语“宿主细胞”涵盖由于复制过程中发生的突变与亲本细胞不同的亲本细胞的任何后代。宿主细胞的选择在很大程度上将取决于编码该变体的基因及其来源。宿主细胞可以是在重组产生变体中有用的任何细胞,例如原核细胞或真核细胞。原核宿主细胞可以是任何革兰氏阳性或革兰氏阴性细菌。革兰氏阳性细菌包括但不限于:芽孢杆菌属、梭菌属、肠球菌属、土芽孢杆菌属、乳杆菌属、乳球菌属、海洋芽孢杆菌属、葡萄球菌属、链球菌属以及链霉菌属。革兰氏阴性细菌包括但不限于:弯曲杆菌属、大肠杆菌、黄杆菌属、梭杆菌属、螺杆菌属、泥杆菌属、奈瑟球菌属、假单胞菌属、沙门氏菌属、以及脲原体属。细菌宿主细胞可以是任何芽孢杆菌细胞,包括但不限于:嗜碱芽孢杆菌、解淀粉芽孢杆菌、短芽孢杆菌、环状芽孢杆菌、克劳氏芽孢杆菌、凝结芽孢杆菌、坚硬芽孢杆菌、灿烂芽孢杆菌、迟缓芽孢杆菌、地衣芽孢杆菌、巨大芽孢杆菌、短小芽孢杆菌、嗜热脂肪芽孢杆菌、枯草芽孢杆菌以及苏云金杆菌细胞。细菌宿主细胞还可以是任何链球菌属细胞,包括但不限于:似马链球菌、酿脓链球菌、乳房链球菌以及马链球菌兽瘟亚种细胞。细菌宿主细胞还可以是任何链霉菌属细胞,包括但不局限于产色链霉菌、除虫链霉菌、天蓝链霉菌、灰色链霉菌、以及浅青紫链霉菌细胞。将DNA引入芽孢杆菌属细胞中可通过以下来实现:原生质体转化(参见例如,张(Chang)和科恩(Cohen),1979,分子遗传学与基因组学(Mol.Gen.Genet.)168:111-115)、感受态细胞转化(参见,例如,杨格(Young)和斯皮宰曾(Spizizen),1961,细菌学杂志(J.Bacteriol.)81:823-829;或杜拜努(Dubnau)以及大卫杜夫-阿贝尔森(Davidoff-Abelson),1971,分子生物学杂志(J.Mol.Biol.)56:209-221)、电穿孔(参见,例如,茂川(Shigekawa)和道尔(Dower),1988,生物技术(Biotechniques)6:742-751)、或者接合(参见,例如克勒(Koehler)和索恩(Thorne),1987,细菌学杂志169:5271-5278)。将DNA引入大肠杆菌细胞中可通过以下来实现:原生质体转化(参见例如,哈纳汗(Hanahan),1983,分子生物学杂志(J.Mol.Biol.)166:557-580)或电穿孔(参见例如,道尔(Dower)等人,1988,核酸研究(NucleicAcidsRes.)16:6127-6145)。将DNA引入链霉菌属细胞中可通过以下来实现:原生质体转化、电穿孔(参见例如,贡(Gong)等人,2004,叶线形微生物学(FoliaMicrobiol.)(布拉格(Praha))49:399-405)、接合(参见例如,马佐迪耶(Mazodier)等人,1989,细菌学杂志(J.Bacteriol.)171:3583-3585)、或转导(参见例如,伯克(Burke)等人,2001,美国国家科学院院刊(Proc.Natl.Acad.Sci.USA)98:6289-6294)。将DNA引入假单孢菌属细胞中可通过以下来实现:电穿孔(参见例如,蔡(Choi)等人,2006,微生物学方法杂志(J.Microbiol.Methods)64:391-397)或接合(参见例如,皮内多(Pinedo)和斯梅茨(Smets),2005,应用与环境微生物学(Appl.Environ.Microbiol.)71:51-57)。将DNA引入链球菌属细胞中可通过以下来实现:天然感受态(参见例如,佩里(Perry)和藏满(Kuramitsu),1981,感染与免疫(Infect.Immun.)32:1295-1297)、原生质体转化(参见例如,凯特(Catt)和乔力克(Jollick),1991,微生物学(Microbios)68:189-207)、电穿孔(参见例如,巴克利(Buckley)等人,1999,应用与环境微生物学(Appl.Environ.Microbiol.)65:3800-3804)、或者接合(参见例如,克莱威尔(Clewell),1981,微生物学评论(Microbiol.Rev.)45:409-436)。然而,可以使用本领域已知的用于将DNA引入宿主细胞中的任何方法。宿主细胞还可以是真核细胞,如哺乳动物、昆虫、植物、或真菌细胞。宿主细胞可以是真菌细胞。如在此使用的“真菌”包括子囊菌门(Ascomycota)、担子菌门(Basidiomycota)、壶菌门(Chytridiomycota)、以及接合菌门(Zygomycota)、连同卵菌门(Oomycota)和全部有丝分裂孢子真菌(如由霍克斯沃思(Hawksworth)等人在安斯沃思和拜斯比真菌词典(AinsworthandBisby’sDictionaryofTheFungi),第8版,1995,国际应用生物科学中心(CABInternational),大学出版社(UniversityPress),英国剑桥(Cambridge,UK)中进行定义的)。该真菌宿主细胞可以是酵母细胞。如在此使用的“酵母”包括产子嚢酵母(内孢霉目)、产担子酵母和属于半知菌类(芽孢纲)的酵母。由于酵母的分类在将来可能有变化,出于本发明的目的,酵母应如酵母生物学和活动性(BiologyandActivitiesofYeast)(斯金纳(Skinner)、帕斯莫尔(Passmore)、以及达文波特(Davenport)编辑,应用细菌学学会讨论会(Soc.App.Bacteriol.Symposium)系列第9期,1980)所述地进行定义。酵母宿主细胞可以是假丝酵母属、汉逊酵母属、克鲁弗酵母属、毕赤酵母属、酵母属、裂殖酵母属、或耶氏酵母属细胞,如乳酸克鲁弗酵母(Kluyveromyceslactis)、卡尔酵母、酿酒酵母、糖化酵母、道格拉氏酵母、克鲁弗酵母、诺地酵母、卵形酵母、或解脂耶氏酵母(Yarrowialipolytica)细胞。真菌宿主细胞可以是丝状真菌细胞。“丝状真菌”包括真菌门(Eumycota)和卵菌门的亚门(如由霍克斯沃思(Hawksworth)等人,1995,见上文所定义)的所有丝状形式。丝状真菌通常的特征在于由壳多糖、纤维素、葡聚糖、壳聚糖、甘露聚糖、以及其他复杂多糖构成的菌丝体壁。营养生长是通过菌丝延伸,而碳分解代谢是专性需氧的。相反,酵母(如酿酒酵母)的营养生长是通过单细胞菌体的出芽(budding),而碳分解代谢可以是发酵的。丝状真菌宿主细胞可以是枝顶孢霉属、曲霉属、短梗霉属、烟管霉属(Bjerkandera)、拟腊菌属、金孢子菌属、鬼伞属、革盖菌属(Coriolus)、隐球菌属、线黑粉菌科(Filibasidium)、镰孢属、腐质霉属、梨孢菌属、毛霉属、毁丝霉属、新美鞭菌属、链孢菌属、拟青霉属、青霉属、平革菌属、射脉菌属(Phlebia)、瘤胃壶菌属、侧耳属(Pleurotus)、裂褶菌属、篮状菌属、嗜热子囊菌属、梭孢壳属、弯颈霉属、栓菌属(Trametes)或木霉属细胞。例如,丝状真菌宿主细胞可以是泡盛曲霉、臭曲霉、烟曲霉、日本曲霉、构巢曲霉、黑曲霉、米曲霉、黑刺烟管菌(Bjerkanderaadusta)、干拟蜡菌(Ceriporiopsisaneirina)、卡内基拟蜡菌(Ceriporiopsiscaregiea)、浅黄拟蜡孔菌(Ceriporiopsisgilvescens)、潘诺希塔拟蜡菌(Ceriporiopsispannocinta)、环带拟蜡菌(Ceriporiopsisrivulosa)、微红拟蜡菌(Ceriporiopsissubrufa)、虫拟蜡菌(Ceriporiopsissubvermispora)、狭边金孢子菌(Chrysosporiuminops)、嗜角质金孢子菌、卢克诺文思金孢子菌(Chrysosporiumlucknowense)、粪状金孢子菌(Chrysosporiummerdarium)、租金孢子菌、昆士兰金孢子菌(Chrysosporiumqueenslandicum)、热带金孢子菌、褐薄金孢子菌(Chrysosporiumzonatum)、灰盖鬼伞(Coprinuscinereus)、毛革盖菌(Coriolushirsutus)、杆孢状镰孢、谷类镰孢、库威镰孢、大刀镰孢、禾谷镰孢、禾赤镰孢、异孢镰孢、合欢木镰孢、尖镰孢、多枝镰孢、粉红镰孢、接骨木镰孢、肤色镰孢、拟分枝孢镰孢、硫色镰孢、圆镰孢、拟丝孢镰孢、镶片镰孢、特异腐质霉、柔毛腐质霉、米黑毛霉、嗜热毁丝霉、粗糙链孢菌、产紫青霉、黄孢平革菌(Phanerochaetechrysosporium)、射脉菌(Phlebiaradiata)、刺芹侧耳(Pleurotuseryngii)、土生梭孢壳霉、长域毛栓菌(Trametesvillosa)、变色栓菌(Trametesversicolor)、哈茨木霉、康宁木霉、长枝木霉、里氏木霉、或绿色木霉细胞。可以将真菌细胞通过涉及原生质体形成、原生质体转化、以及细胞壁再生的方法以本身已知的方式转化。用于转化曲霉属和木霉属宿主细胞的适合程序在EP238023和约尔顿(Yelton)等人,1984,美国国家科学院院刊(Proc.Natl.Acad.Sci.USA)81:1470-1474以及科里蒂森(Christensen)等人,1988,生物/技术(Bio/Technology)6:1419-1422中描述。用于转化镰孢属物种的适合方法由马拉迪尔(Malardier)等人,1989,基因(Gene)78:147-156和WO96/00787描述。酵母可以使用以下各文献中所描述的程序转化:贝克尔(Becker)和古伦特(Guarente),在艾本尔森J.N.(Abelson,J.N.)和塞蒙M.I.(Simon,M.I.)编辑,酵母遗传学与分子生物学指南(GuidetoYeastGeneticsandMolecularBiology),酶学方法(MethodsinEnzymology),第194卷,第182-187页,学术出版社有限公司,纽约;埃托(Ito)等人,1983,细菌学杂志(J.Bacteriol.)153:163;及辛伦(Hinnen)等人,1978,美国国家科学院院刊(Proc.Natl.Acad.Sci.USA)75:1920。生产方法本发明还涉及产生变体的方法,这些方法包括:(a)在适合于该变体的表达的条件下培养本发明的一种宿主细胞;并且(b)回收该变体。使用本领域已知的方法在适合于产生该变体的一种营养培养基中培养这些宿主细胞。例如,可以通过摇瓶培养,或者在一种适合的培养基中并在允许该变体表达和/或分离的条件下在实验室或工业发酵罐中进行小规模或大规模发酵(包括连续发酵、分批发酵、分批给料发酵或固态发酵)来培养该细胞。该培养是使用本领域中已知的程序,在一种适合营养培养基中发生,该培养基包含碳和氮来源及无机盐。适合的培养基可从商业供应商获得或可以根据公开的组成(例如,在美国典型培养物保藏中心的目录中)制备。如果该变体被分泌到该营养培养基中,则该变体可直接从该培养基中回收。如果该变体没有分泌,则它可从细胞裂解液中回收。使用本领域已知的对这些变体特异的方法可以检测该变体(还参见实例1)。这些检测方法包括但不限于,特异性抗体的使用、酶产物的形成或酶底物的消失。例如,可以使用酶测定来确定该变体的活性。可以使用本领域已知的方法来回收该变体。例如,可以通过多种常规程序从该营养培养基中回收该变体,这些常规程序包括但不局限于收集、离心、过滤、萃取、喷雾干燥、蒸发、或沉淀。可以通过本领域中已知的多种程序来纯化变体以获得基本上纯的变体,这些程序包括但不限于:色谱法(例如,离子交换色谱、亲和色谱、疏水作用色谱、色谱聚焦、以及尺寸排阻色谱)、电泳程序(例如,制备型等电点聚焦)、差别溶解度(例如,硫酸铵沉淀)、SDS-PAGE、或萃取(参见,例如,蛋白质纯化(ProteinPurification),詹森(Janson)和赖登(Ryden)编辑,VCH出版社(VCHPublishers),纽约,1989)。在一个替代方面,没有回收该变体,而是将表达该变体的本发明的宿主细胞用作该变体的一个来源。植物本发明还涉及植物,例如转基因植物、植物部分或植物细胞,其包括本发明的多核苷酸,以便以可回收的量表达和产生该变体。该变体可以从植物或植物部分回收。可替代地,可以按原样将含有该变体的植物或植物部分用于改善食品或饲料的质量,例如,改善营养价值、可口性、以及流变性质,或用以破坏抗营养因子。转基因植物可以是双子叶的(双子叶植物)或单子叶的(单子叶植物)。单子叶植物的实例是草,如草甸草(蓝草,早熟禾属);饲草,如羊茅属(Festuca)、黑麦草属(Lolium);温带草,如翦股颖属(Agrostis);以及谷类,例如小麦、燕麦、黑麦、大麦、稻、高粱、以及玉蜀黍(玉米)。双子叶植物的实例是烟草、豆类(如羽扇豆(lupins)、马铃薯、糖甜菜(sugarbeet)、豌豆、豆(bean)和大豆(soybean))、以及十字花科植物(十字花科(familyBrassicaceae))(如花椰菜、油菜籽、以及紧密相关的模式生物拟南芥)。植物部分的实例是茎、愈伤组织、叶、根、果实、种子、以及块茎、以及包括这些部分的独立组织,例如,表皮、叶肉、薄壁组织(parenchyme)、维管组织、分生组织。特定植物细胞区室,如叶绿体、质外体(apoplast)、线粒体、液泡、过氧化物酶体以及细胞质也被认为是植物部分。此外,任何植物细胞,无论是何种组织来源,都被认为是植物部分。同样地,植物部分,如分离以有助于本发明的利用的特定组织和细胞也被认为是植物部分,例如胚、胚乳、糊粉和种皮。同样包括于本发明范围内的是此类植物、植物部分以及植物细胞的子代。表达变体的转基因植物或植物细胞可以根据本领域已知的方法来构建。简而言之,通过如下方法构建该植物或植物细胞:将编码变体的一个或多个表达构建体并入到植物宿主基因组或叶绿体基因组中,并且使所得的修饰植物或植物细胞繁殖为转基因植物或植物细胞。表达构建体宜为包括编码变体的多核苷酸的核酸构建体,该多核苷酸与在选择的植物或植物部分中表达该多核苷酸所需的适当的调节序列可操作地连接。而且,表达构建体可包括用于鉴定整合了此表达构建体的植物细胞的选择性标记,和将此构建体引入所讨论的植物所必需的DNA序列(后者取决于所用的引入DNA的方法)。例如,基于希望在何时、何处、以及如何表达该变体来确定对调节序列如启动子和终止子序列和任选的信号或转运序列的选择。例如,编码变体的基因的表达可以是组成型的或诱导型的,或可以是发育、阶段或组织特异性的,并且可以使基因产物靶向特定组织或植物部分,如种子或叶。调节序列由例如塔格(Tague)等人,1988,植物生理学(PlantPhysiology)86:506描述。对于组成型表达,可以使用35S-CaMV、玉米泛素1、或稻肌动蛋白1启动子(弗兰克(Franck)等人,1980,细胞(Cell)21:285-294;克里斯滕森(Christensen)等人,1992,植物分子生物学(PlantMol.Biol.)18:675-689;张(Zhang)等人,1991,植物细胞(PlantCell)3:1155-1165)。器官特异性启动子可以是以下各项的启动子,例如来自贮藏库组织(例如种子、马铃薯块茎、和果实)(爱德华兹(Edwards)和科鲁兹(Coruzzi),1990,遗传学年鉴(Ann.Rev.Genet.)24:275-303),或来自代谢库组织(例如分生组织)(伊藤(Ito)等人,1994,植物分子生物学(PlantMol.Biol.)24:863-878)的启动子,种子特异性启动子,例如来自稻的谷蛋白、醇溶谷蛋白、球蛋白或白蛋白启动子(吴(Wu)等人,1998,植物与细胞生理学(PlantCellPhysiol.)39:885-889),来自豆球蛋白B4的蚕豆启动子和来自蚕豆的未知种子蛋白基因(康拉德(Conrad)等人,1998,植物生理学杂志(J.PlantPhysiol.)152:708-711),来自种子油体蛋白的启动子(陈(Chen)等人,1998,植物与细胞生理学(PlantCellPhysiol.)39:935-941),来自欧洲油菜的贮藏蛋白napA启动子,或本领域已知的任何其他种子特异性启动子,例如,如在WO91/14772中所描述的。此外,启动子可以是叶特异性启动子,如来自稻或番茄的rbcs启动子(京冢(Kyozuka)等人,1993,植物生理学(PlantPhysiol.)102:991-1000)、小球藻病毒腺嘌呤甲基转移酶基因启动子(麦卓(Mitra)和希金斯(Higgins),1994,植物分子生物学26:85-93)、来自稻的aldP基因启动子(加贺屋(Kagaya)等人,1995,分子遗传学与基因组学(Mol.Gen.Genet.)248:668-674)、或伤口诱导型启动子(如马铃薯pin2启动子)(许(Xu)等人,1993,植物分子生物学22:573-588)。同样地,启动子可以通过非生物处理来诱导,如温度、干旱、或盐度变化,或通过外源施加的激活该启动子的物质来诱导,例如乙醇、雌激素、植物激素(如乙烯、脱落酸和赤霉酸)、以及重金属。启动子增强子元件也可以用于实现变体在植物中的较高表达。例如,启动子增强子元件可以是置于启动子与编码变体的多核苷酸之间的内含子。例如,许(Xu)等人,1993,见上文,披露了使用稻肌动蛋白1基因的第一内含子以增强表达。该选择性标记基因及该表达构建体的任何其他部分可以选自本领域中可用的那些。可以根据本领域中已知的常规技术将核酸构建体结合到植物基因组中,这些常规技术包括土壤杆菌介导的转化、病毒介导的转化、微注射、粒子轰击、生物射弹转化、以及电穿孔(加塞尔(Gasser)等人,1990,科学(Science)244:1293;波特里库斯(Potrykus),1990,生物/技术(Bio/Technology)8:535;岛本(Shimamoto)等人,1989,自然(Nature)338:274)。目前根癌土壤杆菌介导的基因转移是用于产生转基因双子叶植物(关于综述,请参见霍伊卡(Hooykas)和施尔伯鲁特(Schilperoort),1992,植物分子生物学(PlantMol.Biol.)19:15-38)并且用于转化单子叶植物的方法,但对于这些植物还常常使用其他的转化方法。用于产生转基因单子叶植物的方法是粒子(涂覆有转化DNA的微观金或钨粒子)轰击胚愈伤组织或发育中的胚(克里斯托(Christou),1992,植物杂志(PlantJ.)2:275-281;岛本,1994,生物技术当前述评(Curr.Opin.Biotechnol.)5:158-162;瓦西尔(Vasil)等人,1992,生物/技术(Bio/Technology)10:667-674)。用于转化单子叶植物的替代方法是基于原生质体转化,如由奥米儒勒(Omirulleh)等人,1993,植物分子生物学(PlantMol.Biol.)21:415-428所描述。另外的转化方法包括美国专利号6,395,966和7,151,204(两者都通过引用以其全文结合于此)中所描述的那些。在转化后,根据本领域熟知的方法选出已并入了表达构建体的转化体,并使其再生成为完整植物。通常设计转化程序用于通过如下方法在再生期间或在后续世代中选择性消除选择基因:例如,使用带有两个独立的T-DNA构建体的共转化或利用特异性重组酶位点特异性地切除选择基因。除用本发明的构建体直接转化具体植物基因型之外,还可以通过使具有构建体的植物与缺乏该构建体的第二植物杂交来产生转基因植物。例如,可以通过杂交将编码变体的构建体引入特定植物品种中,无需总是直接地转化该给定品种的植物。因此,本发明不仅涵盖了从根据本发明已经转化的细胞直接再生的植物,而且还涵盖了此类植物的后代。如在此使用的,后代可以是指根据本发明制备的亲本植物的任何代的后代。此类后代可以包括根据本发明制备的DNA构建体。杂交导致通过供体植物系与起始系交叉授粉,将转基因引入植物系。此类步骤的非限制性实例描述于美国专利号7,151,204中。植物可以通过回交转化方法生成。例如,植物包括被称为回交转化的基因型、种系、近交体、或杂交体的植物。可以使用遗传标记以协助本发明的一种或多种转基因从一个遗传背景渗入到另一个。标记协助的选择提供了相对于常规育种的优势,在于其可以用于避免由表型变异导致的错误。另外,遗传标记可以在具体杂交的个别后代中提供有关良种种质相对程度的数据。例如,当具有所希望性状并且另外具有非农艺学所希望的遗传背景的植物与良种亲本杂交时,可以使用遗传标记来选择不仅具有感兴趣的性状,还具有相对较大比例所希望种质的后代。以此方式,使一种或多种性状渗入特定遗传背景所需的世代数得以最小化。本发明还涉及产生本发明的变体的方法,包括:(a)在有助于产生该变体的条件下培养包含编码该变体的多核苷酸的转基因植物或植物细胞;并且(b)回收该变体。组合物本发明还涉及包括本发明的一种多肽的组合物。该组合物可以根据本领域已知的方法制备,并可以是液体或干燥组合物的形式。例如,该多肽组合物可以呈颗粒或微粒的形式。包括在该组合物中的多肽可以根据本领域中已知的方法稳定化。下面给出了本发明的多肽组合物的优选应用的实例。本发明的多肽组合物的剂量以及使用该组合物的其他条件可以基于本领域中已知的方法进行确定。用途本发明还涉及使用具有有机磷水解酶活性的多肽(有机磷水解酶)或其组合物的方法。在一个优选实施例中,本发明还涉及本发明的有机磷水解酶用于对经至少一种有害的或不希望的有机磷化合物污染的区域或装置进行净化的用途。将本发明的有机磷水解酶或包含本发明的有机磷水解酶的组合物以足以降解至少一种有害的或不希望的有机磷化合物的至少一部分的量施于所述区域或装置。在另一个实施例中,本发明的有机磷水解酶可以用于供施于例如人或动物的乳剂(例如微乳液)中。将本发明的有机磷水解酶或包含本发明的有机磷水解酶的组合物施于人或动物以针对至少一种有害的或不希望的有机磷化合物进行保护。在进一步的实施例中,本发明的有机磷水解酶可并入用于检测至少一种有害的或不希望的有机磷化合物的测定法中。此类测定法对于快速评估不希望的有机磷化合物的存在可为有利的。有害的或不希望的有机磷化合物包括:包含神经毒气(G试剂或G-系列)的有机磷胆碱酯酶抑制化合物,例如N,N-二甲氨基氰磷酸乙酯(塔崩)、二异丙基氟磷酸(DFP)、O-甲氟膦酸异丙酯(萨林)、O-甲氟膦酸频那醇酯(索曼)和O-甲氟膦酸环己酯。其他有害化合物包括V试剂(或V系列),它可以包括VX、VE、VG、VM、VRTetriso和苏联V-气体(俄罗斯VX)。杀有害生物剂可包括杀真菌剂、杀虫剂、除草剂和杀啮齿类剂。杀有害生物剂可以是内吸磷、灭赐松、磺吸磷、甲基内吸磷、对硫磷、亚胺硫磷、三硫磷、苯噁磷、谷硫磷、乙基谷硫磷、胺吸磷、赛果、果虫磷、氯亚胺硫磷、乐果、敌噁磷、乙拌磷、内毒磷、Etion、益果、安果、马拉硫磷、灭蚜磷、氧化乐果、异亚砜磷、砜拌磷、芬硫磷、甲拌磷、伏杀磷、乙噻唑磷、发果、苏果、甲基乙拌磷、灭蚜硫磷、甲胺磷。本发明在下面各段中进行了进一步的定义:实施例1.一种有机磷水解酶变体,包括在与SEQIDNO:2的成熟多肽的位置K34、D37、D38、P58、G59、R61、D63、D91、I94、C96、M111、E164、F165、K166、M167、F169、Q170、E171、R193、F194、T216、R219、D243、E245、Q246、E247、G248、P250、W266、D290、K291、S293、和N312,优选位置P58、R61、F165、M167、R193、P250、和N312相对应的一个或多个位置处的取代,其中该变体具有有机磷水解酶活性,并且其中该变体与SEQIDNO:2的成熟多肽具有至少60%,例如至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少96%、至少97%、至少98%、或至少99%但小于100%的序列一致性。实施例2.如实施例1所述的变体,该变体是亲本有机磷水解酶的变体,该亲本有机磷水解酶选自下组,该组由以下各项组成:(a)与SEQIDNO:2的成熟多肽具有至少60%序列一致性的多肽;(b)由如下的多核苷酸编码的多肽,该多核苷酸在低严格条件下与(i)SEQIDNO:1的成熟多肽编码序列、或(ii)(i)的全长互补体杂交;(c)由与SEQIDNO:1的成熟多肽编码序列具有至少60%一致性的多核苷酸编码的多肽;以及(d)SEQIDNO:2的成熟多肽的片段,该片段具有有机磷水解酶活性。实施例3.如实施例1所述的变体,该变体是亲本有机磷水解酶的变体,该亲本有机磷水解酶选自下组,该组由以下各项组成:(a)与SEQIDNO:4的成熟多肽具有至少60%序列一致性的多肽;(b)由如下的多核苷酸编码的多肽,该多核苷酸在低严格条件下与(i)SEQIDNO:3的成熟多肽编码序列、或(ii)(i)的全长互补体杂交;(c)由与SEQIDNO:3的成熟多肽编码序列具有至少60%一致性的多核苷酸编码的多肽;以及(d)SEQIDNO:4的成熟多肽的片段,该片段具有有机磷水解酶活性。实施例4.如实施例2所述的变体,其中该亲本有机磷水解酶与SEQIDNO:2的成熟多肽具有至少60%,例如至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少96%、至少97%、至少98%、至少99%或100%的序列一致性。实施例5.如实施例3所述的变体,其中该亲本有机磷水解酶与SEQIDNO:4的成熟多肽具有至少60%,例如至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少96%、至少97%、至少98%、至少99%或100%的序列一致性。实施例6.如实施例2所述的变体,其中该亲本有机磷水解酶包括SEQIDNO:2的成熟多肽或由其组成。实施例7.如实施例2所述的变体,其中该亲本有机磷水解酶是SEQIDNO:2的成熟多肽的片段,其中该片段具有有机磷水解酶活性。实施例8.如实施例3所述的变体,其中该亲本有机磷水解酶包括SEQIDNO:4的成熟多肽或由其组成。实施例9.如实施例3所述的变体,其中该亲本有机磷水解酶是SEQIDNO:4的成熟多肽的片段,其中该片段具有有机磷水解酶活性。实施例10.如实施例2-9中任一项所述的变体,该变体与该亲本有机磷水解酶的氨基酸序列具有至少60%,例如至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%一致性、至少96%、至少97%、至少98%、或至少99%但小于100%的序列一致性。实施例11.如实施例1-10中任一项所述的变体,其中取代的数目是1-20个,例如1-10和1-5个,如1、2、3、4、5、6、7、8、9或者10个改变。实施例12.如实施例1-11中任一项所述的变体,该变体包括在对应于位置P58的位置处的取代;优选地,该取代是Ala、Gly、Met、Ser、或Val。实施例13.如实施例1-12中任一项所述的变体,该变体包括在对应于位置R61的位置处的取代;优选地,该取代是Ile、Leu、Asn、Pro、或Val。实施例14.如实施例1-13中任一项所述的变体,该变体包括在对应于位置F165的位置处的取代;优选地,该取代是Ala、Gly、Ile、Leu、Met、Ser、或Val。实施例15.如实施例1-14中任一项所述的变体,该变体包括在对应于位置M167的位置处的取代;优选地,该取代是Ala、Gly、Ile、Ser、或Val。实施例16.如实施例1-15中任一项所述的变体,该变体包括在对应于位置R193的位置处的取代;优选地,该取代是Asn或Gln。实施例17.如实施例1-16中任一项所述的变体,该变体包括在对应于位置P250的位置处的取代;优选地,该取代是Ala、Gly、Ile、或Met。实施例18.如实施例1-17中任一项所述的变体,该变体包括在对应于位置N312的位置处的取代;优选地,该取代是Asp。实施例19.如实施例1-18中任一项所述的变体,该变体在与位置P58、R61、F165、M167、R193、P250、和N312中的任何所相对应的两个位置处包括取代。实施例20.如实施例1-19中任一项所述的变体,该变体在与位置P58、R61、F165、M167、R193、P250、和N312中的任何所相对应的三个位置处包括取代。实施例21.如实施例1-20中任一项所述的变体,该变体在与位置P58、R61、F165、M167、R193、P250、和N312中的任何所相对应的四个位置处包括取代。实施例22.如实施例1-21中任一项所述的变体,该变体在与位置P58、R61、F165、M167、R193、P250、和N312中的任何所相对应的五个位置处包括取代。实施例23.如实施例1-22中任一项所述的变体,该变体在与位置P58、R61、F165、M167、R193、P250、和N312中的任何所相对应的六个位置处包括取代。实施例24.如实施例1-23中任一项所述的变体,该变体在与位置P58、R61、M167、F165、R193、P250、和N312相对应的每个位置处包括取代。实施例25.如实施例1-24中任一项所述的变体,该变体包括与选自下组的取代相对应的一个或多个取代,该组由以下各项组成:K34A、D37A、D37N、D37S、D37T、D38A、D38E、D38N、P58A、P58G、P58M、P58S、P58V、G59A、G59P、G59S、G59T、R61I、R61L、R61N、R61P、R61V、D63E、D63N、D63R、D91N、D91S、D91T、I94A、I94F、I94G、I94V、C96A、C96G、M111A、M111G、E164A、E164P、F165A、F165G、F165I、F165L、F165M、F165S、F165V、K166S、K166T、M167A、M167G、M167I、M167S、M167V、F169I、F169L、F169V、F169W、F169Y、Q170D、Q170E、Q170N、E171A、E171Q、R193N、R193Q、F194A、F194W、T216A、T216M、T216V、R219A、R219K、R219S、R219T、D243A、D243G、D243N、D243Q、E245D、E245Q、Q246A、Q246S、Q246T、E247A、E247D、E247Q、E247W、G248A、G248V、P250A、P250G、P250I、P250M、W266F、D290A、D290E、D290N、D290Q、K291A、K291T、S293T、和N312D。实施例26.如实施例1-25中任一项所述的变体,该变体包括对应于SEQIDNO:2的成熟多肽的F169I、W266F、C96A、E171Q、Q246S、R193Q、K291T、F169Y、F169W、T216A、G248V、P58G、M111A、G248A、I94V、I94A、C96G、I94G、G59P、G59T、F194A、P58V、F165G、M167I、G59S、M111G、P250G、P58M、T216M、F165L、P250A、E247W、F165M、N312D、P58S、T216V、M167V、P58A、F194W、M167S、R61L、R61P、R61N、I94F、R61I、F165I、R61V、F165A、F165V、F165S、M167G、M167A、D38A+M167A、P250I+M167A、E247A+M167A、P250M+M167A、D91N+M167A、R219S+M167A、D37N+M167A、K34A+M167A、E164P+M167A、R219A+M167A、R61L+M167A、F165A+M167A、D91S+M167A、D37T+M167A、R219T+M167A、K166S+M167A、Q170E+M167A、D37S+M167A、K166T+M167A、D63N+M167A、F165S+M167A、D91T+M167A、K291A+M167A、Q246A+M167A、E247Q+M167A、D37A+M167A、Q246T+M167A、D38E+M167A、D38N+M167A、E247D+M167A、E171Q+M167A、K291T+M167A、D243A+M167A、D290N+M167A、D290Q+M167A、Q246S+M167A、R219K+M167A、D63R+M167A、D290A+M167A、D63E+M167A、R193N+M167A、E245D+M167A、D290E+M167A、E164A+M167A、D243Q+M167A、D243G+M167A、D243N+M167A、E245Q+M167A、Q170D+M167A、E171A+M167A、Q170N+M167A、P250A+M167A、P250G+M167A、R193Q+M167A、N312D+M167A、R61V+M167A+P250G、W266F+M167A+P250G、R61L+N312D+M167A、I94F+M167A+P250G、N312D+M167A+P250G、R61N+M167A+P250G、R193Q+M167A+P250G、E171Q+M167A+P250G、F165V+M167A+P250G、R61P+M167A+P250G、Q246S+M167A+P250G、E245D+M167A+P250G、K291T+M167A+P250G、R61L+M167A+P250G、R61I+M167A+P250G、E245D+M167A+P250G+R61L、F169V+M167A+P250G+R61L、F165S+M167A+P250G+R61L、G59P+M167A+P250G+R61L、N312D+M167A+P250G+R61L、G59A+M167A+P250G+R61L、I94V+M167A+P250G+R61L、F165M+M167A+P250G+R61L、I94A+M167A+P250G+R61L、C96G+M167A+P250G+R61L、F169I+M167A+P250G+R61L、P58M+M167A+P250G+R61L、T216A+M167A+P250G+R61L、K291T+M167A+P250G+R61L、G59S+M167A+P250G+R61L、S293T+M167A+P250G+R61L、F169L+M167A+P250G+R61L、P58V+M167A+P250G+R61L、P58A+M167A+P250G+R61L、或C96A+M167A+P250G+R61L的取代。实施例27.如实施例1-26中任一项所述的变体,该变体包括选自SEQIDNO:5至SEQIDNO:146和SEQIDNO:147至SEQIDNO:288中任一项的氨基酸序列或由其组成。实施例28.如实施例1-27中任一项所述的变体,该变体具有改进的有机磷水解酶活性。实施例29.一种组合物,该组合物包括如实施例1-28中任一项所述的变体。实施例30.如实施例29所述的组合物,其中该组合物是微乳液或洗剂。实施例31.根据实施例1-28中任一项所述的变体的、或如实施例29或30所述的组合物的用于净化被至少一种有害的或不希望的有机磷化合物污染的区域或装置的用途;优选地,其中该至少一种有害的或不希望的有机磷化合物选自G试剂、V试剂和杀有害生物剂。实施例32.一种用于去除有机磷化合物的方法,该方法包括使该有机磷化合物与如实施例1-28中任一项所述的变体、或如实施例29或30所述的组合物相接触。实施例33.一种编码如实施例1-28中任一项所述的变体的多核苷酸。实施例34.一种包括如实施例33所述的多核苷酸的核酸构建体。实施例35.一种包括如实施例33所述的多核苷酸的表达载体。实施例36.一种包括如实施例33所述的多核苷酸的宿主细胞。实施例37.一种生产有机磷水解酶变体的方法,该方法包括:(a)在适合于该变体的表达的条件下培养如实施例36所述的宿主细胞;并且(b)回收该变体。实施例38.一种用如实施例33所述的多核苷酸转化的转基因植物、植物部分或植物细胞。实施例39.一种产生如实施例1-28中任一项所述的变体的方法,该方法包括:(a)在有益于产生该变体的条件下培养包含编码该变体的多核苷酸的转基因植物或植物细胞;并且(b)回收该变体。实施例40.一种用于获得有机磷水解酶变体的方法,该方法包括:将在与SEQIDNO:2的成熟多肽的位置K34、D37、D38、P58、G59、R61、D63、D91、I94、C96、M111、E164、F165、K166、M167、F169、Q170、E171、R193、F194、T216、R219、D243、E245、Q246、E247、G248、P250、W266、D290、K291、S293、和N312,优选位置P58、R61、F165、M167、R193、P250、和N312相对应的一个或多个位置处的取代引入亲本有机磷水解酶,其中该变体具有有机磷水解酶活性;并且回收该变体。通过以下实例进一步描述本发明,这些实例不应当解释为限制本发明的范围。实例用作缓沖液和底物的化学品至少是试剂等级的商品。实例1有机磷水解酶变体的克隆与表达克隆预先制备编码来自加州海兔的有机磷水解酶的合成基因(SEQIDNO:4)(还参见WO2010/128116)。此外,出于纯化目的,通过添加编码6-组氨酸标签和肠激酶切割位点的22个氨基酸,制备加州海兔的N端组氨酸标记的基因(SEQIDNO:2)。通过用引入了所希望的序列改变(取代)的诱变引物进行基于PCR的定点诱变,制造其变体。设计引物,这样使得突变位于具有足够侧翼核苷酸(14-25个碱基对)的寡核苷酸的中部。用校对DNA聚合酶(PhusionDNA聚合酶(来自飞酶公司(Finnzymes),赛默科技公司(thermoscientific)))设置该PCR,并且通过同源重组进枯草芽孢杆菌宿主细胞基因组,来整合PCR产物。从单克隆转化的枯草芽孢杆菌菌株中分离DNA并且对其测序,以证实所希望的取代的存在。在三联启动子系统(如WO99/43835中所述)的控制下表达该基因构建体,该启动子系统由包含mRNA稳定化序列的地衣芽孢杆菌α-淀粉酶基因(amyL)启动子、解淀粉芽孢杆菌α-淀粉酶基因(amyQ)启动子和苏云金杆菌cryIIIA启动子组成。将编码氯霉素乙酰基转移酶的基因用作标记。表达将容纳以上描述的His-标记的有机磷水解酶基因的氯霉素抗性枯草芽孢杆菌转化体接种进在24深孔板中的0.8ml生长介质中。将培养物在30℃和220rpm下生长3天。纯化根据来自制造商(通用电气医疗集团(GEHealthcare))的说明书,通过在4000rpm离心10min,从培养物收获细胞,并且收集上清液用于96孔板中的His-标签纯化。然后根据来自制造商(通用电气医疗集团(GEHealthcare))的说明书,使用PD96孔捕获(Trap)G-25板,使样品脱盐,并且在具有1mMCaCl2的50mMTris(pH7.0)中洗脱。在A280测量蛋白的产量,并且通过SDS-PAGE分析评估纯度。实例2有机磷水解酶活性的测量使用有机磷水解酶变体来水解神经药剂VX(S-[2-(二异丙基氨基)乙基]甲基硫代膦酸O-乙酯)。如在布鲁姆菲尔德(Broomfield)等人,“通过人血浆酶的神经药剂水解的动力学(Kineticsofnerveagenthydrolysisbyahumanplasmaenzyme)”,CBMTSIII会议论文集,2000年5月7-12日,施皮茨,瑞士中描述,基于用DTNB(5,5’-二硫双-2-硝基苯甲酸盐)检测游离硫醇,在比色测定中确定VX的水解。在DTNB测定中,在412nm,将通过有机磷水解酶变体催化的VX的水解测量为5-硫代,2-硝基双苯甲酸盐的累积。在包含50mMTRIS缓冲液、2mMCaCl2、0.2mMDTNB和3.4mMVX以及10μg有机磷水解酶变体酶,或无酶(自水解)的200μl(在pH7.0)中进行该测定。将每一酶变体的活性计算为经30分钟,在412nm的吸光度(A412)的斜率。减去自水解。在表1中,相对于作为改进倍数的野生型酶的活性,示出了所有变体的有机磷水解酶活性。例如,二的改进倍数意指与野生型酶相比,活性是高两倍。表1。VX的水解。在412nm,将VX水解测量为5-硫代,2-硝基双苯甲酸盐的累积。在每一测定中使用10μg的酶。从针对每一变体的三次独立重复的平均活性测量计算改进倍数。实例3组氨酸标签对有机磷水解酶活性的影响为了检查添加的组氨酸标签的影响,在DTNB测定中检验了具有和不具有组氨酸标签的变体M167A。在DTNB测定中,VX水解导致5-硫代,2-硝基双苯甲酸盐的累积,这可以在412nm处测量(参见实例2)。在每一测定中使用10μg的酶。从针对每一变体的三次独立重复的平均活性测量计算改进倍数,并且结果示出于表2中。如表2所示,具有和不具有组氨酸标签的变体示出了相似活性。因此,可以推断,组氨酸标签并不影响有机磷水解酶的活性。表2。来自VX的水解的改进倍数。变体改进倍数具有his标签的M167A1.0不具有his标签的M167A1.6在此描述并且要求保护的本发明不限于在此披露的特定方面的范围,因为这些方面旨在作为本发明若干方面的说明。预期任何等效方面都处于本发明的范围内。实际上,除在此所示和描述的那些之外,本发明的不同修改对于本领域普通技术人员而言从前述描述将变得清楚。此类修改也旨在落入所附权利要求书的范围内。在有冲突的情况下,以包括定义的本披露为准。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1